Server 端支持通过 Http 的方式被访问,各种语言都有实现 Http 请求的一些库,下边介绍使用 Java/Python/Go 等语言通过 Http 的方式直接访问服务端进行预测的方法。
<aname="1.1"></a>
**一. Http 方式:**
基本流程和原理:客户端需要将数据按照 Proto 约定的格式(请参阅[`core/general-server/proto/general_model_service.proto`](../../core/general-server/proto/general_model_service.proto))封装在 Http 请求的请求体中。
Server 会尝试去 JSON 字符串中再去反序列化出 Proto 格式的数据,从而进行后续的处理。
在服务器端为 Paddle Serving 定义 C++ 运算符后,最后一步是在 Python API 中为 Paddle Serving 服务器 API 添加注册, `python/paddle_serving_server/dag.py` 文件里有关于 API 注册的代码如下
``` python
self.op_list=[
"GeneralInferOp",
"GeneralReaderOp",
"GeneralResponseOp",
"GeneralTextReaderOp",
"GeneralTextResponseOp",
"GeneralSingleKVOp",
"GeneralDistKVInferOp",
"GeneralDistKVOp",
"GeneralCopyOp",
"GeneralDetectionOp",
]
```
在 `python/paddle_serving_server/server.py` 文件中仅添加`需要加载模型,执行推理预测的自定义的 C++ OP 类的类名`。例如 `GeneralReaderOp` 由于只是做一些简单的数据处理而不加载模型调用预测,故在上述的代码中需要添加,而不添加在下方的代码中。
@@ -16,6 +16,8 @@ The following is the dynamic shape api
For detail, please refer to API doc [C++](https://paddleinference.paddlepaddle.org.cn/api_reference/cxx_api_doc/Config/GPUConfig.html#tensorrt)/[Python](https://paddleinference.paddlepaddle.org.cn/api_reference/python_api_doc/Config/GPUConfig.html#tensorrt)
### C++ Serving
1. Method 1:
Modify the following code in `**/paddle_inference/paddle/include/paddle_engine.h`
```
...
...
@@ -110,6 +112,54 @@ Modify the following code in `**/paddle_inference/paddle/include/paddle_engine.h
}
```
2. Method 2:
Refer to the code of `**/python/paddle_serving_server/serve.py` below to generate the configuration information,
and using method `server.set_trt_dynamic_shape_info(info)` to set information.