diff --git a/CMakeLists.txt b/CMakeLists.txt index 7d61ce76fd9ddd2c70fced654efd08b02ce94b52..9761750b2715931e8be2dca5baf860034db0fb1d 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -61,6 +61,7 @@ option(PADDLE_ON_INFERENCE "Compile for encryption" option(WITH_OPENCV "Compile Paddle Serving with OPENCV" OFF) option(WITH_ROCM "Compile Paddle Serving with ROCM" OFF) option(WITH_ASCEND_CL "Compile PaddlePaddle with ASCEND CL" OFF) +option(WITH_JETSON "Compile PaddlePaddle with JETSON" OFF) if(NOT DEFINED VERSION_TAG) set(VERSION_TAG "0.0.0") diff --git a/README.md b/README.md index dcc5ef7903c9f32f4a4c4bfd101000fdb03f9b68..9f1c60178da79aa2b8b331b2c69f4355ba36a4e3 100755 --- a/README.md +++ b/README.md @@ -64,7 +64,7 @@ This chapter guides you through the installation and deployment steps. It is str - [Deploy Paddle Serving with Security gateway(Chinese)](doc/Serving_Auth_Docker_CN.md) - Deploy on more hardwares[[ARM CPU、百度昆仑](doc/Run_On_XPU_EN.md)、[华为昇腾](doc/Run_On_NPU_CN.md)、[海光DCU](doc/Run_On_DCU_CN.md)、[Jetson](doc/Run_On_JETSON_CN.md)] - [Docker Images](doc/Docker_Images_EN.md) -- [Latest Wheel packages](doc/Latest_Packages_CN.md) +- [Download Wheel packages](doc/Latest_Packages_EN.md) > Use @@ -90,6 +90,8 @@ The first step is to call the model save interface to generate a model parameter - [Analyze and optimize performance](doc/Python_Pipeline/Performance_Tuning_EN.md) - [TensorRT dynamic Shape](doc/TensorRT_Dynamic_Shape_EN.md) - [Benchmark(Chinese)](doc/Python_Pipeline/Benchmark_CN.md) + - Our Paper: [JiZhi: A Fast and Cost-Effective Model-As-A-Service System for +Web-Scale Online Inference at Baidu](https://arxiv.org/pdf/2106.01674.pdf) - Client SDK - [Python SDK(Chinese)](doc/C++_Serving/Introduction_CN.md#42-多语言多协议Client) - [JAVA SDK](doc/Java_SDK_EN.md) @@ -108,13 +110,13 @@ For Paddle Serving developers, we provide extended documents such as custom OP,
-| PaddleOCR | PaddleDetection | PaddleClas | PaddleSeg | PaddleRec | Paddle NLP | -| :----: | :----: | :----: | :----: | :----: | :----: | -| 8 | 12 | 14 | 2 | 3 | 6 | +| PaddleOCR | PaddleDetection | PaddleClas | PaddleSeg | PaddleRec | Paddle NLP | Paddle Video | +| :----: | :----: | :----: | :----: | :----: | :----: | :----: | +| 8 | 12 | 14 | 2 | 3 | 6 | 1|
diff --git a/README_CN.md b/README_CN.md index e5ea1976d24b8b8f2882347c86e8b1e1a074b01a..65bf8b4686318c68103a00f8e32dd98169cddbb1 100755 --- a/README_CN.md +++ b/README_CN.md @@ -60,7 +60,7 @@ Paddle Serving依托深度学习框架PaddlePaddle旨在帮助深度学习开发 - [部署Paddle Serving安全网关](doc/Serving_Auth_Docker_CN.md) - 异构硬件部署[[ARM CPU、百度昆仑](doc/Run_On_XPU_CN.md)、[华为昇腾](doc/Run_On_NPU_CN.md)、[海光DCU](doc/Run_On_DCU_CN.md)、[Jetson](doc/Run_On_JETSON_CN.md)] - [Docker镜像](doc/Docker_Images_CN.md) -- [最新Wheel开发包(English)](doc/Latest_Packages_CN.md) +- [下载Wheel包](doc/Latest_Packages_CN.md) > 使用 @@ -104,9 +104,9 @@ Paddle Serving与Paddle模型套件紧密配合,实现大量服务化部署,-| PaddleOCR | PaddleDetection | PaddleClas | PaddleSeg | PaddleRec | Paddle NLP | -| :----: | :----: | :----: | :----: | :----: | :----: | -| 8 | 12 | 14 | 2 | 3 | 6 | +| PaddleOCR | PaddleDetection | PaddleClas | PaddleSeg | PaddleRec | Paddle NLP | Paddle Video | +| :----: | :----: | :----: | :----: | :----: | :----: | :----: | +| 8 | 12 | 14 | 2 | 3 | 6 | 1 |
diff --git a/cmake/paddlepaddle.cmake b/cmake/paddlepaddle.cmake index 0774db92b5a9132ef22bea8271bbfa0eb8ab57b5..ad8df0f1844e902a632f7c7df390ec3c2a783345 100644 --- a/cmake/paddlepaddle.cmake +++ b/cmake/paddlepaddle.cmake @@ -94,6 +94,9 @@ else() SET(PADDLE_LIB_VERSION "${PADDLE_VERSION}/cxx_c/Linux/CPU/gcc8.2_openblas") endif() endif() +if(WITH_JETSON) + SET(PADDLE_LIB_VERSION "${PADDLE_VERSION}/cxx_c/Jetson/jetpack4.6_gcc7.5/all") +endif() if(WITH_LITE) if (WITH_XPU) @@ -103,6 +106,8 @@ if(WITH_LITE) endif() elseif(WITH_ASCEND_CL) SET(PADDLE_LIB_PATH "http://paddle-serving.bj.bcebos.com/inferlib/${PADDLE_LIB_VERSION}/paddle_inference.tgz ") +elseif(WITH_JETSON) + SET(PADDLE_LIB_PATH "http://paddle-inference-lib.bj.bcebos.com/${PADDLE_LIB_VERSION}/paddle_inference_install_dir.tgz") else() SET(PADDLE_LIB_PATH "http://paddle-inference-lib.bj.bcebos.com/${PADDLE_LIB_VERSION}/paddle_inference.tgz") endif() diff --git a/core/general-server/CMakeLists.txt b/core/general-server/CMakeLists.txt index 4dbb066ee49fa6ec971c83286197117774e14eb9..9b78ec4c0d8abd9676684d8c7271db75f35fa571 100644 --- a/core/general-server/CMakeLists.txt +++ b/core/general-server/CMakeLists.txt @@ -42,7 +42,9 @@ if(WITH_GPU) endif() if(WITH_MKL OR WITH_GPU) - if (WITH_TRT) + if (WITH_JETSON) + target_link_libraries(serving openblas -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -lbz2) + elseif (WITH_TRT) target_link_libraries(serving -liomp5 -lmklml_intel -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -lbz2 -ldnnl) else() target_link_libraries(serving -liomp5 -lmklml_intel -lmkldnn -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -lbz2) diff --git a/doc/Docker_Images_CN.md b/doc/Docker_Images_CN.md index ad49ecd5e39e7333942ad280667518e490b4271b..97293b3b3b6b82bcd3252f2cd2c4fbbcd73589d3 100644 --- a/doc/Docker_Images_CN.md +++ b/doc/Docker_Images_CN.md @@ -26,7 +26,7 @@ ## 镜像说明 若需要基于源代码二次开发编译,请使用后缀为-devel的版本。 -**在TAG列,0.7.0也可以替换成对应的版本号,例如0.5.0/0.4.1等,但需要注意的是,部分开发环境随着某个版本迭代才增加,因此并非所有环境都有对应的版本号可以使用。** +**在TAG列,0.8.0也可以替换成对应的版本号,例如0.5.0/0.4.1等,但需要注意的是,部分开发环境随着某个版本迭代才增加,因此并非所有环境都有对应的版本号可以使用。** | 镜像选择 | 操作系统 | TAG | Dockerfile | diff --git a/doc/FAQ_CN.md b/doc/FAQ_CN.md index 7713f0eef92ed0b1bc07e7e1c8a7a9121df70a36..ee3c30428601a7d54858b9d334fea875f51c1487 100644 --- a/doc/FAQ_CN.md +++ b/doc/FAQ_CN.md @@ -8,6 +8,8 @@ Failed to predict: (data_id=1 log_id=0) [det|0] Failed to postprocess: postproce ``` **A:** 在服务端程序(例如 web_service.py)的postprocess函数定义中增加参数data_id,改为 def postprocess(self, input_dicts, fetch_dict, **data_id**, log_id) 即可。 +*** + ## 基础知识 #### Q: Paddle Serving 、Paddle Inference、PaddleHub Serving三者的区别及联系? @@ -40,6 +42,8 @@ Failed to predict: (data_id=1 log_id=0) [det|0] Failed to postprocess: postproce **A:** http rpc +*** + ## 安装问题 #### Q: pip install安装whl包过程,报错信息如下: @@ -119,6 +123,7 @@ pip install shapely==1.7.0 方法2: pip install -r python/requirements.txt ``` +*** ## 编译问题 @@ -144,8 +149,16 @@ make: *** [all] Error 2 **A:** 运行命令安装libbz2: apt install libbz2-dev +*** ## 环境问题 +#### Q: ImportError: dlopen: cannot load any more object with static TLS + +**A:** 一般是用户使用Linux系统版本比较低或者Python使用的gcc版本比较低导致的,可使用以下命令检查,或者通过使用Serving或Paddle镜像安装 +``` +strings /lib/libc.so | grep GLIBC +``` + #### Q:使用过程中出现CXXABI错误。 这个问题出现的原因是Python使用的gcc版本和Serving所需的gcc版本对不上。对于Docker用户,推荐使用[Docker容器](https://github.com/PaddlePaddle/Serving/blob/develop/doc/Docker_Images_CN.md),由于Docker容器内的Python版本与Serving在发布前都做过适配,这样就不会出现类似的错误。如果是其他开发环境,首先需要确保开发环境中具备GCC 8.2,如果没有gcc 8.2,参考安装方式 @@ -208,6 +221,24 @@ wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \ (3) Cuda10.1及更高版本需要TensorRT。安装TensorRT相关文件的脚本参考 [install_trt.sh](../tools/dockerfiles/build_scripts/install_trt.sh). +*** + +## 模型参数保存问题 + +#### Q: 找不到'_remove_training_info'属性,详细报错信息如下: +``` +python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_det_infer/ \ + --model_filename inference.pdmodel \ + --params_filename inference.pdiparams \ + --serving_server ./ppocrv2_det_serving/ \ + --serving_client ./ppocrv2_det_client/ + AttributeError: 'Program' object has no attribute '_remove_training_info' +``` + +**A:** Paddle版本低,升级Paddle版本到2.2.x及以上 + +*** + ## 部署问题 #### Q: GPU环境运行Serving报错,GPU count is: 0。 @@ -251,6 +282,8 @@ InvalidArgumentError: Device id must be less than GPU count, but received id is: #### Q: Docker中启动server IP地址 127.0.0.1 与 0.0.0.0 差异 **A:** 您必须将容器的主进程设置为绑定到特殊的 0.0.0.0 “所有接口”地址,否则它将无法从容器外部访问。在Docker中 127.0.0.1 代表“这个容器”,而不是“这台机器”。如果您从容器建立到 127.0.0.1 的出站连接,它将返回到同一个容器;如果您将服务器绑定到 127.0.0.1,接收不到来自外部的连接。 +*** + ## 预测问题 #### Q: 使用GPU第一次预测时特别慢,如何调整RPC服务的等待时间避免超时? @@ -296,7 +329,7 @@ client.connect(["127.0.0.1:9393"]) **A:** 参考该文档安装TensorRT: https://blog.csdn.net/hesongzefairy/article/details/105343525 - +*** ## 日志排查 @@ -321,7 +354,6 @@ GLOG_v=2 python -m paddle_serving_server.serve --model xxx_conf/ --port 9999 ``` - #### Q: (GLOG_v=2下)Server端日志一切正常,但Client端始终得不到正确的预测结果 **A:** 可能是配置文件有问题,检查下配置文件(is_load_tensor,fetch_type等有没有问题) @@ -341,4 +373,3 @@ GLOG_v=2 python -m paddle_serving_server.serve --model xxx_conf/ --port 9999 注意:可执行文件路径是C++ bin文件的路径,而不是python命令,一般为类似下面的这种/usr/local/lib/python3.6/site-packages/paddle_serving_server/serving-gpu-102-0.7.0/serving -## 性能优化 diff --git a/doc/Install_CN.md b/doc/Install_CN.md index da1201b6d1b23ba170a8198fd669c63fcd206b91..74ee28d2633e9b43cc9cd3495e57b20e9ebdbb18 100644 --- a/doc/Install_CN.md +++ b/doc/Install_CN.md @@ -65,21 +65,21 @@ pip3 install -r python/requirements.txt - post112 = CUDA11.2 + TensorRT8 ```shell -pip3 install paddle-serving-client==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple -pip3 install paddle-serving-app==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-client==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-app==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple # CPU Server -pip3 install paddle-serving-server==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-server==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple # GPU Server,需要确认环境再选择执行哪一条,推荐使用CUDA 10.2的包 -pip3 install paddle-serving-server-gpu==0.8.2.post102 -i https://pypi.tuna.tsinghua.edu.cn/simple -pip3 install paddle-serving-server-gpu==0.8.2.post101 -i https://pypi.tuna.tsinghua.edu.cn/simple -pip3 install paddle-serving-server-gpu==0.8.2.post112 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-server-gpu==0.8.3.post102 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-server-gpu==0.8.3.post101 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-server-gpu==0.8.3.post112 -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 默认开启国内清华镜像源来加速下载,如果您使用HTTP代理可以关闭(`-i https://pypi.tuna.tsinghua.edu.cn/simple`) -如果需要使用develop分支编译的安装包,请从[最新安装包列表](./Latest_Packages_CN.md)中获取下载地址进行下载,使用`pip install`命令进行安装。如果您想自行编译,请参照[Paddle Serving编译文档](./Compile_CN.md)。 +如果需要使用develop分支编译的安装包,请从[下载Wheel包](./Latest_Packages_CN.md)中获取下载地址进行下载,使用`pip install`命令进行安装。如果您想自行编译,请参照[Paddle Serving编译文档](./Compile_CN.md)。 paddle-serving-server和paddle-serving-server-gpu安装包支持Centos 6/7, Ubuntu 16/18和Windows 10。 diff --git a/doc/Install_EN.md b/doc/Install_EN.md index 98e43277704080cfdc9391b0d30e9a27a5f70c7c..709a88789c8478f0a19948dbd13faadf238b5ff2 100644 --- a/doc/Install_EN.md +++ b/doc/Install_EN.md @@ -62,24 +62,22 @@ pip3 install -r python/requirements.txt Install the service whl package. There are three types of client, app and server. The server is divided into CPU and GPU. Choose one installation according to the environment. - GPU with CUDA10.2 + Cudnn7 + TensorRT6(Recommended) -- post101 = CUDA10.1 + TensorRT6 -- post112 = CUDA11.2 + TensorRT8 ```shell -pip3 install paddle-serving-client==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple -pip3 install paddle-serving-app==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-client==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-app==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple # CPU Server -pip3 install paddle-serving-server==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-server==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple # GPU environments need to confirm the environment before choosing which one to execute -pip3 install paddle-serving-server-gpu==0.8.2.post102 -i https://pypi.tuna.tsinghua.edu.cn/simple -pip3 install paddle-serving-server-gpu==0.8.2.post101 -i https://pypi.tuna.tsinghua.edu.cn/simple -pip3 install paddle-serving-server-gpu==0.8.2.post112 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-server-gpu==0.8.3.post102 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-server-gpu==0.8.3.post101 -i https://pypi.tuna.tsinghua.edu.cn/simple +pip3 install paddle-serving-server-gpu==0.8.3.post112 -i https://pypi.tuna.tsinghua.edu.cn/simple ``` By default, the domestic Tsinghua mirror source is turned on to speed up the download. If you use a proxy, you can turn it off(`-i https://pypi.tuna.tsinghua.edu.cn/simple`). -If you need to use the installation package compiled by the develop branch, please download the download address from [Latest installation package list](./Latest_Packages_CN.md), and use the `pip install` command to install. If you want to compile by yourself, please refer to [Paddle Serving Compilation Document](./Compile_CN.md). +If you need to use the installation package compiled by the develop branch, please download the download address from [Download wheel packages](./Latest_Packages_EN.md), and use the `pip install` command to install. If you want to compile by yourself, please refer to [Paddle Serving Compilation Document](./Compile_CN.md). The paddle-serving-server and paddle-serving-server-gpu installation packages support Centos 6/7, Ubuntu 16/18 and Windows 10. @@ -124,3 +122,10 @@ pip3 install https://paddle-inference-lib.bj.bcebos.com/2.2.2/python/Linux/GPU/x | CUDA11.2 + CUDNN8 | 0.8.0-cuda11.2-cudnn8-devel | Ubuntu 16.04 | 2.2.2-gpu-cuda11.2-cudnn8 | Ubuntu 18.04 | For **Windows 10 users**, please refer to the document [Paddle Serving Guide for Windows Platform](Windows_Tutorial_CN.md). + +## 5.Installation Check +When the above steps are completed, you can use the command line to run the environment check function to automatically run the Paddle Serving related examples to verify the environment-related configuration. +``` +python3 -m paddle_serving_server.serve check +``` +For more information, please see[Installation Check](./Check_Env_CN.md) \ No newline at end of file diff --git a/doc/Latest_Packages_CN.md b/doc/Latest_Packages_CN.md index 9c87ad04eb2364c52dc3056e70585896eabc191c..31b6f39c828d4b7ae74b311623ddad4cac8897a5 100644 --- a/doc/Latest_Packages_CN.md +++ b/doc/Latest_Packages_CN.md @@ -1,50 +1,53 @@ -# Latest Wheel Packages +# Wheel包下载 + +(简体中文|[English](./Latest_Packages_EN.md)) ## Paddle-Serving-Server (x86 CPU/GPU) -Check the following table, and copy the address of hyperlink then run `pip3 install`. For example, if you want to install `paddle-serving-server-0.0.0-py3-non-any.whl`, right click the hyper link and copy the link address, the final command is `pip3 install https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl`. +查找下面表格,拷贝链接地址,并运行 `pip3 install`。例如要安装 `paddle-serving-server-0.0.0-py3-non-any.whl`, 请右键点击链接拷贝链接地址,最终命令是`pip3 install https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl`。 | | develop whl | develop bin | stable whl | stable bin | |---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------| -| cpu-avx-mkl | [paddle_serving_server-0.0.0-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl) | [serving-cpu-avx-mkl-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-mkl-0.0.0.tar.gz) | [paddle_serving_server-0.8.2-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.2-py3-none-any.whl) | [serving-cpu-avx-mkl-0.8.2.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-mkl-0.8.2.tar.gz) | -| cpu-avx-openblas | [paddle_serving_server-0.0.0-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl) | [serving-cpu-avx-openblas-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-openblas-0.0.0.tar.gz) | [paddle_serving_server-0.8.2-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.2-py3-none-any.whl) | [serving-cpu-avx-openblas-0.8.2.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-openblas-0.8.2.tar.gz) | -| cpu-noavx-openblas | [paddle_serving_server-0.0.0-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl) | [ serving-cpu-noavx-openblas-0.0.0.tar.gz ]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-noavx-openblas-0.0.0.tar.gz) | [paddle_serving_server-0.8.2-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.2-py3-none-any.whl) | [serving-cpu-noavx-openblas-0.8.2.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-noavx-openblas-0.8.2.tar.gz) | -| cuda10.1-cudnn7-TensorRT6 | [paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl) | [serving-gpu-101-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-101-0.0.0.tar.gz) | [paddle_serving_server_gpu-0.8.2.post101-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.2.post101-py3-none-any.whl) | [serving-gpu-101-0.8.2.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-101-0.8.2.tar.gz) | -| cuda10.2-cudnn7-TensorRT6 | [paddle_serving_server_gpu-0.0.0.post102-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post102-py3-none-any.whl) | [serving-gpu-102-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-102-0.0.0.tar.gz) | [paddle_serving_server_gpu-0.8.2.post102-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.2.post102-py3-none-any.whl) | [serving-gpu-102-0.8.2.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-102-0.8.2.tar.gz) | -| cuda10.2-cudnn8-TensorRT7 | [paddle_serving_server_gpu-0.0.0.post1028-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post102-py3-none-any.whl) | [ serving-gpu-1028-0.0.0.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-1028-0.0.0.tar.gz ) | [paddle_serving_server_gpu-0.8.2.post1028-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.2.post102-py3-none-any.whl) | [serving-gpu-1028-0.8.2.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-1028-0.8.2.tar.gz ) | -| cuda11.2-cudnn8-TensorRT8 | [paddle_serving_server_gpu-0.0.0.post112-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post112-py3-none-any.whl) | [ serving-gpu-112-0.0.0.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-112-0.0.0.tar.gz ) | [paddle_serving_server_gpu-0.8.2.post112-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.2.post112-py3-none-any.whl) | [serving-gpu-112-0.8.2.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-112-0.8.2.tar.gz ) | +| cpu-avx-mkl | [paddle_serving_server-0.0.0-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl) | [serving-cpu-avx-mkl-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-mkl-0.0.0.tar.gz) | [paddle_serving_server-0.8.3-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.3-py3-none-any.whl) | [serving-cpu-avx-mkl-0.8.3.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-mkl-0.8.3.tar.gz) | +| cpu-avx-openblas | [paddle_serving_server-0.0.0-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl) | [serving-cpu-avx-openblas-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-openblas-0.0.0.tar.gz) | [paddle_serving_server-0.8.3-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.3-py3-none-any.whl) | [serving-cpu-avx-openblas-0.8.3.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-openblas-0.8.3.tar.gz) | +| cpu-noavx-openblas | [paddle_serving_server-0.0.0-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl) | [ serving-cpu-noavx-openblas-0.0.0.tar.gz ]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-noavx-openblas-0.0.0.tar.gz) | [paddle_serving_server-0.8.3-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.3-py3-none-any.whl) | [serving-cpu-noavx-openblas-0.8.3.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-noavx-openblas-0.8.3.tar.gz) | +| cuda10.1-cudnn7-TensorRT6 | [paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl) | [serving-gpu-101-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-101-0.0.0.tar.gz) | [paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl) | [serving-gpu-101-0.8.3.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-101-0.8.3.tar.gz) | +| cuda10.2-cudnn7-TensorRT6 | [paddle_serving_server_gpu-0.0.0.post102-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post102-py3-none-any.whl) | [serving-gpu-102-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-102-0.0.0.tar.gz) | [paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl) | [serving-gpu-102-0.8.3.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-102-0.8.3.tar.gz) | +| cuda10.2-cudnn8-TensorRT7 | [paddle_serving_server_gpu-0.0.0.post1028-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post102-py3-none-any.whl) | [ serving-gpu-1028-0.0.0.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-1028-0.0.0.tar.gz ) | [paddle_serving_server_gpu-0.8.3.post1028-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl) | [serving-gpu-1028-0.8.3.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-1028-0.8.3.tar.gz ) | +| cuda11.2-cudnn8-TensorRT8 | [paddle_serving_server_gpu-0.0.0.post112-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post112-py3-none-any.whl) | [ serving-gpu-112-0.0.0.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-112-0.0.0.tar.gz ) | [paddle_serving_server_gpu-0.8.3.post112-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post112-py3-none-any.whl) | [serving-gpu-112-0.8.3.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-112-0.8.3.tar.gz ) | -### Binary Package -for most users, we do not need to read this section. But if you deploy your Paddle Serving on a machine without network, you will encounter a problem that the binary executable tar file cannot be downloaded. Therefore, here we give you all the download links for various environment. +### 二进制包(Binary Package) +大多数用户不会用到此章节。但是如果你在无网络的环境下部署Paddle Serving,在首次启动Serving时,无法下载二进制tar文件。因此,提供多种环境二进制包的下载链接,下载后传到无网络环境的指定目录下,即可使用。 -### How to setup SERVING_BIN offline? +### 如何离线设置SERVING_BIN? -- download the serving server whl package and bin package, and make sure they are for the same environment -- download the serving client whl and serving app whl, pay attention to the Python version. -- `pip install ` the serving and `tar xf ` the binary package, then `export SERVING_BIN=$PWD/serving-gpu-cuda11-0.0.0/serving` (take Cuda 11 as the example) +- 下载Serving Server Wheel包和二进制tar包,确保它们与环境是一致的 +- 下载Serving Client Wheel包和Serving App wheel包, 同时注意Python版本要一致. +- `pip install ` 所有Wheel包 and `tar xf ` 二进制tar包, 然后`export SERVING_BIN=$PWD/serving-gpu-cuda11-0.0.0/serving` (以Cuda 11为例) -## paddle-serving-client +## paddle-serving-client Wheel包 | | develop whl | stable whl | |-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------| -| Python3.6 | [paddle_serving_client-0.0.0-cp36-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp36-none-any.whl) | [paddle_serving_client-0.8.2-cp36-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.2-cp36-none-any.whl) | -| Python3.7 | [paddle_serving_client-0.0.0-cp37-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp37-none-any.whl) | [paddle_serving_client-0.8.2-cp37-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.2-cp37-none-any.whl) | -| Python3.8 | [paddle_serving_client-0.0.0-cp38-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp38-none-any.whl) | [paddle_serving_client-0.8.2-cp38-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.2-cp38-none-any.whl) | -| Python3.9 | [paddle_serving_client-0.0.0-cp39-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp39-none-any.whl) | [paddle_serving_client-0.8.2-cp39-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.2-cp38-none-any.whl) | -## paddle-serving-app +| Python3.6 | [paddle_serving_client-0.0.0-cp36-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp36-none-any.whl) | [paddle_serving_client-0.8.3-cp36-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp36-none-any.whl) | +| Python3.7 | [paddle_serving_client-0.0.0-cp37-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp37-none-any.whl) | [paddle_serving_client-0.8.3-cp37-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl) | +| Python3.8 | [paddle_serving_client-0.0.0-cp38-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp38-none-any.whl) | [paddle_serving_client-0.8.3-cp38-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp38-none-any.whl) | +| Python3.9 | [paddle_serving_client-0.0.0-cp39-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp39-none-any.whl) | [paddle_serving_client-0.8.3-cp39-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp38-none-any.whl) | + +## paddle-serving-app Wheel包 | | develop whl | stable whl | |---------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------| -| Python3 | [paddle_serving_app-0.0.0-py3-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.0.0-py3-none-any.whl) | [ paddle_serving_app-0.8.2-py3-none-any.whl ]( https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.2-py3-none-any.whl) | +| Python3 | [paddle_serving_app-0.0.0-py3-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.0.0-py3-none-any.whl) | [ paddle_serving_app-0.8.3-py3-none-any.whl ]( https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl) | -## Baidu Kunlun user -for kunlun user who uses arm-xpu or x86-xpu can download the wheel packages as follows. Users should use the xpu-beta docker [DOCKER IMAGES](./Docker_Images_CN.md) -**We only support Python 3.6 for Kunlun Users.** +## 百度昆仑芯片 +对于使用百度昆仑芯片的用户, 通过以下方式下载arm-xpu 或 x86-xpu Wheel包。选择 xpu-beta docker [DOCKER镜像](./Docker_Images_CN.md) +**昆仑环境仅支持python36** -### Wheel Package Links +### Wheel包链接 -for arm kunlun user +适用ARM CPU环境的昆仑Wheel包: ``` # paddle-serving-server https://paddle-serving.bj.bcebos.com/whl/xpu/arm/paddle_serving_server_xpu-0.0.0.post2-py3-none-any.whl @@ -57,9 +60,9 @@ https://paddle-serving.bj.bcebos.com/whl/xpu/arm/paddle_serving_app-0.0.0-py3-no https://paddle-serving.bj.bcebos.com/bin/serving-xpu-aarch64-0.0.0.tar.gz ``` -for x86 kunlun user +适用于x86 CPU环境的昆仑Wheel包: ``` -https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_xpu-0.8.2.post2-py3-none-any.whl +https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_xpu-0.8.3.post2-py3-none-any.whl ``` diff --git a/doc/Latest_Packages_EN.md b/doc/Latest_Packages_EN.md new file mode 100644 index 0000000000000000000000000000000000000000..68f6f6d6805e1d14ae93e4d7c80e7ed0a1bbc506 --- /dev/null +++ b/doc/Latest_Packages_EN.md @@ -0,0 +1,68 @@ +# Download Wheel Packages + +(English|[简体中文](./Latest_Packages_CN.md)) + +## Paddle-Serving-Server (x86 CPU/GPU) + +Check the following table, and copy the address of hyperlink then run `pip3 install`. For example, if you want to install `paddle-serving-server-0.0.0-py3-non-any.whl`, right click the hyper link and copy the link address, the final command is `pip3 install https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl`. + +| | develop whl | develop bin | stable whl | stable bin | +|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------| +| cpu-avx-mkl | [paddle_serving_server-0.0.0-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl) | [serving-cpu-avx-mkl-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-mkl-0.0.0.tar.gz) | [paddle_serving_server-0.8.3-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.3-py3-none-any.whl) | [serving-cpu-avx-mkl-0.8.3.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-mkl-0.8.3.tar.gz) | +| cpu-avx-openblas | [paddle_serving_server-0.0.0-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl) | [serving-cpu-avx-openblas-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-openblas-0.0.0.tar.gz) | [paddle_serving_server-0.8.3-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.3-py3-none-any.whl) | [serving-cpu-avx-openblas-0.8.3.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-openblas-0.8.3.tar.gz) | +| cpu-noavx-openblas | [paddle_serving_server-0.0.0-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.0.0-py3-none-any.whl) | [ serving-cpu-noavx-openblas-0.0.0.tar.gz ]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-noavx-openblas-0.0.0.tar.gz) | [paddle_serving_server-0.8.3-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server-0.8.3-py3-none-any.whl) | [serving-cpu-noavx-openblas-0.8.3.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-noavx-openblas-0.8.3.tar.gz) | +| cuda10.1-cudnn7-TensorRT6 | [paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post101-py3-none-any.whl) | [serving-gpu-101-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-101-0.0.0.tar.gz) | [paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post101-py3-none-any.whl) | [serving-gpu-101-0.8.3.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-101-0.8.3.tar.gz) | +| cuda10.2-cudnn7-TensorRT6 | [paddle_serving_server_gpu-0.0.0.post102-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post102-py3-none-any.whl) | [serving-gpu-102-0.0.0.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-102-0.0.0.tar.gz) | [paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl) | [serving-gpu-102-0.8.3.tar.gz](https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-102-0.8.3.tar.gz) | +| cuda10.2-cudnn8-TensorRT7 | [paddle_serving_server_gpu-0.0.0.post1028-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post102-py3-none-any.whl) | [ serving-gpu-1028-0.0.0.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-1028-0.0.0.tar.gz ) | [paddle_serving_server_gpu-0.8.3.post1028-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl) | [serving-gpu-1028-0.8.3.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-1028-0.8.3.tar.gz ) | +| cuda11.2-cudnn8-TensorRT8 | [paddle_serving_server_gpu-0.0.0.post112-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.0.0.post112-py3-none-any.whl) | [ serving-gpu-112-0.0.0.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-112-0.0.0.tar.gz ) | [paddle_serving_server_gpu-0.8.3.post112-py3-none-any.whl ](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post112-py3-none-any.whl) | [serving-gpu-112-0.8.3.tar.gz]( https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-112-0.8.3.tar.gz ) | + +### Binary Package +for most users, we do not need to read this section. But if you deploy your Paddle Serving on a machine without network, you will encounter a problem that the binary executable tar file cannot be downloaded. Therefore, here we give you all the download links for various environment. + +### How to setup SERVING_BIN offline? + +- download the serving server whl package and bin package, and make sure they are for the same environment +- download the serving client whl and serving app whl, pay attention to the Python version. +- `pip install ` the serving and `tar xf ` the binary package, then `export SERVING_BIN=$PWD/serving-gpu-cuda11-0.0.0/serving` (take Cuda 11 as the example) + +## paddle-serving-client + +| | develop whl | stable whl | +|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------| +| Python3.6 | [paddle_serving_client-0.0.0-cp36-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp36-none-any.whl) | [paddle_serving_client-0.8.3-cp36-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp36-none-any.whl) | +| Python3.7 | [paddle_serving_client-0.0.0-cp37-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp37-none-any.whl) | [paddle_serving_client-0.8.3-cp37-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp37-none-any.whl) | +| Python3.8 | [paddle_serving_client-0.0.0-cp38-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp38-none-any.whl) | [paddle_serving_client-0.8.3-cp38-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp38-none-any.whl) | +| Python3.9 | [paddle_serving_client-0.0.0-cp39-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp39-none-any.whl) | [paddle_serving_client-0.8.3-cp39-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp38-none-any.whl) | +## paddle-serving-app + +| | develop whl | stable whl | +|---------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------| +| Python3 | [paddle_serving_app-0.0.0-py3-none-any.whl](https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.0.0-py3-none-any.whl) | [ paddle_serving_app-0.8.3-py3-none-any.whl ]( https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl) | + + +## Baidu Kunlun user +for kunlun user who uses arm-xpu or x86-xpu can download the wheel packages as follows. Users should use the xpu-beta docker [DOCKER IMAGES](./Docker_Images_CN.md) +**We only support Python 3.6 for Kunlun Users.** + +### Wheel Package Links + +for arm kunlun user +``` +# paddle-serving-server +https://paddle-serving.bj.bcebos.com/whl/xpu/arm/paddle_serving_server_xpu-0.0.0.post2-py3-none-any.whl +# paddle-serving-client +https://paddle-serving.bj.bcebos.com/whl/xpu/arm/paddle_serving_client-0.0.0-cp36-none-any.whl +# paddle-serving-app +https://paddle-serving.bj.bcebos.com/whl/xpu/arm/paddle_serving_app-0.0.0-py3-none-any.whl + +# SERVING BIN +https://paddle-serving.bj.bcebos.com/bin/serving-xpu-aarch64-0.0.0.tar.gz +``` + +for x86 kunlun user +``` +https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_xpu-0.8.3.post2-py3-none-any.whl + +``` + + diff --git a/doc/Model_Zoo_CN.md b/doc/Model_Zoo_CN.md index 23472f26c8a60ad1113c3fcebcaeda7dc79d57c3..53db1d7752e2c46cc3deaa63d80f4dc07421dfad 100755 --- a/doc/Model_Zoo_CN.md +++ b/doc/Model_Zoo_CN.md @@ -55,6 +55,7 @@ | ch_ppocr_server_v2.0 | PaddleOCR | [Pipeline Serving](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/deploy/pdserving/README.md) | [model](https://github.com/PaddlePaddle/PaddleOCR) | | deeplabv3 | PaddleSeg | [C++ Serving](../examples/C++/PaddleSeg/deeplabv3) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageSegmentation/deeplabv3.tar.gz) | | unet | PaddleSeg | [C++ Serving](../examples/C++/PaddleSeg/unet_for_image_seg) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageSegmentation/unet.tar.gz) | +| PPTSN_K400 | PaddleVideo | [Pipeline Serving](../examples/Pipeline/PaddleVideo/PPTSN_K400) | [model](https://paddle-serving.bj.bcebos.com/model/PaddleVideo/PPTSN_K400.tar) | - 请参考 [example](../examples) 查看详情 @@ -69,3 +70,4 @@ - [PaddleRec](https://github.com/PaddlePaddle/PaddleRec) - [PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg) - [PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN) + - [PaddleVideo](https://github.com/PaddlePaddle/PaddleVideo) diff --git a/doc/Model_Zoo_EN.md b/doc/Model_Zoo_EN.md index 10baea39c3333f295c9be3b15a0f093ef1b5d0af..1ba48b3089510e197833cdc1a3069bdc51cd8101 100755 --- a/doc/Model_Zoo_EN.md +++ b/doc/Model_Zoo_EN.md @@ -53,6 +53,7 @@ Special thanks to the [Padddle wholechain](https://www.paddlepaddle.org.cn/whole | ch_ppocr_server_v2.0 | PaddleOCR | [Pipeline Serving](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/deploy/pdserving/README.md) | [model](https://github.com/PaddlePaddle/PaddleOCR) | | deeplabv3 | PaddleSeg | [C++ Serving](../examples/C++/PaddleSeg/deeplabv3) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageSegmentation/deeplabv3.tar.gz) | | unet | PaddleSeg | [C++ Serving](../examples/C++/PaddleSeg/unet_for_image_seg) | [.tar.gz](https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageSegmentation/unet.tar.gz) | +| PPTSN_K400 | PaddleVideo | [Pipeline Serving](../examples/Pipeline/PaddleVideo/PPTSN_K400) | [model](https://paddle-serving.bj.bcebos.com/model/PaddleVideo/PPTSN_K400.tar) | - Refer [example](../examples) for more details on above models. @@ -66,3 +67,4 @@ Special thanks to the [Padddle wholechain](https://www.paddlepaddle.org.cn/whole - [PaddleRec](https://github.com/PaddlePaddle/PaddleRec) - [PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg) - [PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN) + - [PaddleVideo](https://github.com/PaddlePaddle/PaddleVideo) diff --git a/doc/Offical_Docs/1-0_Introduction_CN.md b/doc/Offical_Docs/1-0_Introduction_CN.md new file mode 100644 index 0000000000000000000000000000000000000000..f7a42558bc95c6c0fc7f40fc40fdd5b5b4d55a5b --- /dev/null +++ b/doc/Offical_Docs/1-0_Introduction_CN.md @@ -0,0 +1,58 @@ +# Serving介绍、概述 + +Paddle Serving 是飞桨官方推荐的服务化部署框架,围绕 AI 落地的最后一公里提供专业、可靠、易用的在线模型服务框架。 + +## 主要特性 +- 支持深度学习平台:支持 Paddle 框架训练模型,其他机器学习平台(Caffe、TensorFlow、ONNX、PyTorch)可通过 x2paddle 工具迁移模型。 +- 支持多种网络协议:HTTP、gRPC、bRPC等多种协议。 +- 支持多种语言 SDK:C++、Python、Java。 +- 适配多种计算硬件:x86(Intel) CPU、ARM CPU、Nvidia GPU、昆仑 XPU、华为昇腾 310/910、海光 DCU、Nvidia Jetson等多种硬件。 +- 部署平台:支持 Docker 和 Kubernetes 云端部署,提供多种环境的 Docker 开发镜像和云端部署案例。 +- 具有高性能设计:基于有向无环图(DAG)的异步流水线构建高性能服务化推理框架,具有多模型组合、异步调度、并发推理、动态批量和多卡多流等设计。 +- 提供模型安全部署解决方案:加密模型部署、鉴权校验、HTTPs 安全网关,并在实际项目中应用。 +- 提供大规模稀疏参数模型服务化部署方案:如推荐、广告等场景,具有高性能、大批量在线查询、离线增量版本更新、多版本管理和多表横向扩展能力。 +- 提供丰富的经典模型示例:如 PaddleOCR、PaddleClas、PaddleDetection、PaddleSeg、PaddleNLP、PaddleRec 等套件,共计40+个预训练精品模型,更多模型持续扩展。 + +## 开发流程 + +**一.环境安装** + +根据计算硬件、操作系统和软件驱动版本等环境差异,要选择正确的安装程序。提供多种系统环境安装、PIP 程序安装和源码编译安装三种方案,安装完成后可使用环境检查命令验证。 + +#### 1.标准环境安装方案,请参考[标准环境安装]() +#### 2.使用 PIP 安装,请参考[使用 PIP 安装]() +#### 3.源码编译安装,请参考[源码编译]() +#### 4.安装环境检查,请参考[环境检查]() + +**二.快速开发** + +环境安装完成后,参考二种模型开发示例快速开发程序,更多模型示例请参考[模型库]()。 + +#### 1.基于 C++ Serving 的单模型 Resnet_v2_50 部署示例,请参考[Resnet_v2_50]() +#### 2.基于 Python Pipeline 多模型组合 OCR_v2 部署示例,请参考[OCR]() + +**三.服务部署** + +经过开发和测试后,程序要在服务器上部署,Paddle Serving 提供基于Kubernetes集群部署案例,请参考[Kubernetes集群部署]() + +多个服务入口安全网关部署,请参考[安全网关]() + + +## 功能说明 + +**一.基础功能** + +本章节系统介绍 Paddle Serving 提供的基础功能,每种功能的使用方法和功能选项,详情请参考[基础功能]() + +**二.进阶 C++ Serving** + +本章节详细介绍 C++ Serving 的多种高级功能特性,以及设计方案、使用方法和性能调优等,详情请参考[进阶 C++ Serving]() + +**三.进阶 Python Pipeline** + +本章节详细介绍 Python Pipeline 的多种高级功能特性,以及设计方案、使用方法和性能调优等,详情请参考[进阶 Python Pipeline]() + +**四.大规模稀疏参数索引服务** + +本章节介绍稀疏参数索引场景,如推荐、广告系统中大规模 Embedding 查询的设计与使用方案,详情请参考[大规模稀疏参数索引服务]() + diff --git a/doc/Offical_Docs/1-1_Architecture_CN.md b/doc/Offical_Docs/1-1_Architecture_CN.md new file mode 100644 index 0000000000000000000000000000000000000000..032d7a2c66e6fbf4f1502a6ffcb76832cbb5f3b7 --- /dev/null +++ b/doc/Offical_Docs/1-1_Architecture_CN.md @@ -0,0 +1,45 @@ +# 技术架构 + +## 设计目标 + +- 实现高性能的在线服务化推理框架。既能满足同步请求低延时快速响应,又能满足异步高吞吐的批量处理,大幅提高计算资源利用率。与同类竞品相比有性能优势。 + +- 覆盖工业级 AI 应用场景。工业场景对基础功能和模型有更高的要求,进阶功能包括模型安全、授权访问、适配多种计算硬件和系统环境、云端集群化部署和弹性伸缩能力等;另外,要求服务化框架支持种类型的深度学习模型,如 CV、NLP、推荐系统等 + +- 具备良好的服务可靠性。服务可靠性是服务运行稳定程度的一项重要指标,是对服务质量的一种测量,也是满足工业级场景使用的前提。 + +- 简单易用。以极低的成本部署模型,能与训练框架无缝打通的预测部署 API。通过参考大量的部署示例快速上手。 + +## 技术栈 +Paddle Serving 的技术体系有7个层级,计算硬件、安装部署、操作系统、高性能计算库、推理引擎、Paddle Serving 框架与产业应用。Serving 集成 Paddle Inference 和 Paddle Lite 高性能推理框架,支持在多种异构硬件和多种操作中部署。 +
+
+
+
+
+ +Paddle Serving 框架提供多种编程语言客户端 SDK 方便调用和系统集成,包括 Python、C++ 和 Java 语言。使用3种协议 HTTP、gRPC 和 bRPC 与服务端交互。 + +
+
+
+
+
+ +为了满足不同场景的用户需求,服务端设计了2种框架 C++ Serving 和 Python Pipeline。技术选型方法参见下表: + +| 框架 | 响应时间 | 吞吐 | 开发效率 | 资源利用率 | 应用场景| +|-----|------|-----|-----|------|------| +|C++ Serving | 低 | 高 | 低 | 高 | 高并发低延时场景,功能完善,适合大型服务架构| +|Python Pipeline | 高 | 较高 | 高 | 高 | 开发效率高,吞吐量较高,适合单算子多模型组合场景| + + +性能指标说明: +1. 响应时间(ms):单次请求平均响应时间,计算50、90、95、99分位响应时长,数值越低越好。 +2. 吞吐(QPS):服务处理请求的效率,单位时间内处理请求数量,越高越好。 +3. 开发效率:使用不同开发语言完成相同工作时间不同,包括开发、调试、维护的效率等,越高越好。 +4. 资源利用率:部署一个服务对资源利用率,资源利用率低是对资源的浪费,数值越高越好。 + +C++ Serving 完整设计与功能参见[C++ Serving 设计与实现](../C++_Serving/Introduction_CN.md) + +Python Pipeline 完整设计与功能参见[Python Pipeline 设计与实现](../Python_Pipeline/Pipeline_Design_CN.md) diff --git a/doc/Offical_Docs/1-2_Benchmark.md b/doc/Offical_Docs/1-2_Benchmark.md new file mode 100644 index 0000000000000000000000000000000000000000..10577387f4ea0d8ec9598722fc6ebf46812c01f2 --- /dev/null +++ b/doc/Offical_Docs/1-2_Benchmark.md @@ -0,0 +1,59 @@ +# Benchmark + +## C++ Serving 性能测试 + +**一.测试环境** +- 机器型号:4 × Tesla P4-8GB ,48 core Intel(R) Xeon(R) Gold 5117 @ 2.00GHz +- CUDA:11.0,cuDNN:v8.0.4 +- Serving:v0.7.0 +- Paddle:v2.2.0 +- 模型:ResNet_v2_50 +- batch:1 +- 使用的测试代码和使用的数据集:[resnet_v2_50](../../examples/C++/PaddleClas/resnet_v2_50) + +**二.测试方法** +- 请求数量递增:不断增加 client 数量,指标稳定后统计 client 的耗时信息 +- 竞品对比:C++ Serving(蓝色) 与 Tenserflow Serving(灰色)都是 C++ 实现,且同为业界主流 Serving 框架 +- 吞吐性能(QPS):折线图,数值越大表示每秒钟处理的请求数量越大,性能就越好 +- 平均处理时延(ms):柱状图,数值越大表示单个请求处理时间越长,性能就越差 +- 同步模式:网络线程同步处理,保证显存占用相同的情况下,开启最大线程数 +- 异步模式:异步线程处理方式,保证显存占用相同,最大批量为32,异步线程数为2 + +**三.同步模式** + +结论:同步模型默认参数配置情况下,C++ Serving 吞吐和平均时延指标均优于 Tensorflow Serving。 + +
+
+
+
+
+ +|client_num | model_name | qps(samples/s) | mean(ms) | model_name | qps(samples/s) | mean(ms) | +| --- | --- | --- | --- | --- | --- | --- | +| 10 | pd-serving | 111.336 | 89.787| tf-serving| 84.632| 118.13| +|30 |pd-serving |165.928 |180.761 |tf-serving |106.572 |281.473| +|50| pd-serving| 207.244| 241.211| tf-serving| 80.002 |624.959| +|70 |pd-serving |214.769 |325.894 |tf-serving |105.17 |665.561| +|100| pd-serving| 235.405| 424.759| tf-serving| 93.664 |1067.619| +|150 |pd-serving |239.114 |627.279 |tf-serving |86.312 |1737.848| + +**四.异步模式** + +结论:client数据较少时,Tensorflow Serving 性能略优于 C++ Serving ,但当 client 并发数超过70后,Tensorflow Serving 服务出现大量超时,而 C++ Serving 仍能正常运行 + +
+
+
+
+
+
+|client_num | model_name | qps(samples/s) | mean(ms) | model_name | qps(samples/s) | mean(ms) |
+| --- | --- | --- | --- | --- | --- | --- |
+|10| pd-serving| 130.631| 76.502| tf-serving |172.64 |57.916|
+|30| pd-serving| 201.062| 149.168| tf-serving| 241.669| 124.128|
+|50| pd-serving| 286.01| 174.764| tf-serving |278.744 |179.367|
+|70| pd-serving| 313.58| 223.187| tf-serving| 298.241| 234.7|
+|100| pd-serving| 323.369| 309.208| tf-serving| 0| ∞|
+|150| pd-serving| 328.248| 456.933| tf-serving| 0| ∞|
+
diff --git a/doc/Offical_Docs/Index_CN.md b/doc/Offical_Docs/Index_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..5d57a91449ef87d606df6761b2f4c9c667c1b82f
--- /dev/null
+++ b/doc/Offical_Docs/Index_CN.md
@@ -0,0 +1,111 @@
+# 安装指南
+
+## 安装说明
+
+本说明将指导您在64位操作系统编译和安装 PaddleServing。
+**强烈建议**您在**Docker 内构建** Paddle Serving,更多镜像请查看[Docker镜像列表](Docker_Images_CN.md)。
+
+**一. Python 和 pip 版本:**
+
+* Python 的版本支持 3.6/3.7/3.8/3.9
+* Python 具有 pip, 且 pip 的版本要求 20.2.2+
+* Python 和 pip 要求是 64 位版本
+
+**二. PaddleServing 对 GPU 支持情况:**
+
+* 目前 **PaddleServing** 支持 **NVIDIA** 显卡的 **CUDA** 驱动和 **AMD** 显卡的 **ROCm** 架构
+* 目前支持CUDA 10.1/10.2/11.2
+
+
+**第一种安装方式:使用 pip 安装**
+
+您可以选择“使用 pip 安装”、“从源码编译安装” 两种方式中的任意一种方式进行安装。
+
+本节将介绍使用 pip 的安装方式。
+以下示例中 GPU 环境均为 cuda10.2-cudnn7
+
+1. 启动开发镜像
+
+ **CPU:**
+ ```
+ # 启动 CPU Docker
+ docker pull paddlepaddle/serving:0.8.0-devel
+ docker run -p 9292:9292 --name test -dit paddlepaddle/serving:0.8.0-devel bash
+ docker exec -it test bash
+ git clone https://github.com/PaddlePaddle/Serving
+ ```
+ **GPU:**
+ ```
+ # 启动 GPU Docker
+ docker pull paddlepaddle/serving:0.8.0-cuda10.2-cudnn7-devel
+ nvidia-docker run -p 9292:9292 --name test -dit paddlepaddle/serving:0.8.0-cuda10.2-cudnn7-devel bash
+ nvidia-docker exec -it test bash
+ git clone https://github.com/PaddlePaddle/Serving
+ ```
+
+2. 检查 Python 的版本
+
+ 使用以下命令确认是 3.6/3.7/3.8/3.9
+
+ python3 --version
+
+3. 检查 pip 的版本,确认是 20.2.2+
+
+ python3 -m ensurepip
+ python3 -m pip --version
+
+4. 安装所需的 pip 依赖
+
+ ```
+ cd Serving
+ pip3 install -r python/requirements.txt
+ ```
+
+5. 安装服务 whl 包,共有3种 client、app、server,Server 分为 CPU 和 GPU,GPU 包根据您的环境选择一种安装
+
+ - post102 = CUDA10.2 + Cudnn7 + TensorRT6(推荐)
+ - post101 = CUDA10.1 + TensorRT6
+ - post112 = CUDA11.2 + TensorRT8
+
+ ```shell
+ pip3 install paddle-serving-client==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
+ pip3 install paddle-serving-app==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
+
+ # CPU Server
+ pip3 install paddle-serving-server==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
+
+ # GPU Server,需要确认环境再选择执行哪一条,推荐使用CUDA 10.2的包
+ pip3 install paddle-serving-server-gpu==0.8.2.post102 -i https://pypi.tuna.tsinghua.edu.cn/simple
+ pip3 install paddle-serving-server-gpu==0.8.2.post101 -i https://pypi.tuna.tsinghua.edu.cn/simple
+ pip3 install paddle-serving-server-gpu==0.8.2.post112 -i https://pypi.tuna.tsinghua.edu.cn/simple
+ ```
+
+ 默认开启国内清华镜像源来加速下载,如果您使用 HTTP 代理可以关闭(`-i https://pypi.tuna.tsinghua.edu.cn/simple`)
+
+6. 安装 Paddle 相关 Python 库
+ **当您使用`paddle_serving_client.convert`命令或者`Python Pipeline 框架`时才需要安装。**
+ ```
+ # CPU 环境请执行
+ pip3 install paddlepaddle==2.2.2
+
+ # GPU CUDA 10.2环境请执行
+ pip3 install paddlepaddle-gpu==2.2.2
+ ```
+ **注意**: 如果您的 Cuda 版本不是10.2,或者您需要在 GPU 环境上使用 TensorRT,请勿直接执行上述命令,需要参考[Paddle-Inference官方文档-下载安装Linux预测库](https://paddleinference.paddlepaddle.org.cn/master/user_guides/download_lib.html#python)选择相应的 GPU 环境的 url 链接并进行安装。
+
+7. 安装完成后的环境检查
+ 当以上步骤均完成后可使用命令行运行环境检查功能,自动运行 Paddle Serving 相关示例,进行环境相关配置校验。
+ ```
+ python3 -m paddle_serving_server.serve check
+ ```
+ 详情请参考[环境检查文档](./Check_Env_CN.md)
+
+8. 更多帮助信息请参考:
+
+
+
+
+**第二种安装方式:使用源代码编译安装**
+
+- 如果您只是使用 PaddleServing ,建议使用 **pip** 安装即可。
+- 如果您有开发 PaddleServing 的需求,请参考:[从源码编译]
\ No newline at end of file
diff --git a/doc/Run_On_Kubernetes_CN.md b/doc/Run_On_Kubernetes_CN.md
index 20de18aa800e46eeb90aed6f3c1c3d77f65a5fad..0194ae87a13da0328785bfee1e5293e16efa147b 100644
--- a/doc/Run_On_Kubernetes_CN.md
+++ b/doc/Run_On_Kubernetes_CN.md
@@ -29,7 +29,7 @@ kubectl apply -f https://bit.ly/kong-ingress-dbless
bash tools/generate_runtime_docker.sh --env cuda10.1 --python 3.7 --image_name serving_runtime:cuda10.1-py37 --paddle 2.2.0 --serving 0.8.0
```
-会生成 cuda10.1,python 3.7,serving版本0.7.0 还有 paddle版本2.2.0的运行镜像。如果有其他疑问,可以执行下列语句得到帮助信息。强烈建议您使用最新的paddle和serving的版本(2个版本是对应的如paddle 2.2.x 与serving 0.7.0对应,paddle 2.1.x 与 serving 0.6.x对应),因为更早的版本上出现的错误只在最新版本修复,无法在历史版本中修复。
+会生成 cuda10.1,python 3.7,serving版本0.8.0 还有 paddle版本2.2.2的运行镜像。如果有其他疑问,可以执行下列语句得到帮助信息。强烈建议您使用最新的paddle和serving的版本(2个版本是对应的如paddle 2.2.0 与serving 0.7.x对应,paddle 2.2.2 与 serving 0.8.x对应),因为更早的版本上出现的错误只在最新版本修复,无法在历史版本中修复。
```
bash tools/generate_runtime_docker.sh --help
diff --git a/doc/Serving_Auth_Docker_CN.md b/doc/Serving_Auth_Docker_CN.md
index d54468c93b92ef1e8f5813ef4256de74562f9f25..c05a5e82f6c6235a60ef12f4674cf61b2b35acc3 100644
--- a/doc/Serving_Auth_Docker_CN.md
+++ b/doc/Serving_Auth_Docker_CN.md
@@ -30,8 +30,8 @@ ee59a3dd4806 registry.baidubce.com/serving_dev/serving-runtime:cpu-py36
665fd8a34e15 redis:latest "docker-entrypoint.s…" About an hour ago Up About an hour 0.0.0.0:6379->6379/tcp anquan_redis_1
```
-其中我们之前serving容器 以 9393端口暴露,KONG网关的端口是8443, KONG的Web控制台的端口是8001。接下来我们在浏览器访问 `https://$IP_ADDR:8001`, 其中 IP_ADDR就是宿主机的IP。
-
+其中我们之前serving容器 以 9393端口暴露,KONG网关的端口是8443, KONG的Web控制台的端口是8001。接下来我们在浏览器访问 `https://$IP_ADDR:8005`, 其中 IP_ADDR就是宿主机的IP。
+>> **注意**: 第一次登录的时候可能需要输入 Name : admin 以及 Kong Admin URL : http://kong:8001
可以看到在注册结束后,登陆,看到了 DASHBOARD,我们先看SERVICES,可以看到`serving_service`,这意味着我们端口在9393的Serving服务已经在KONG当中被注册。
diff --git a/doc/images/tech_stack.png b/doc/images/tech_stack.png
new file mode 100644
index 0000000000000000000000000000000000000000..1c163ba580221022562602b581f40fb79af36a8d
Binary files /dev/null and b/doc/images/tech_stack.png differ
diff --git a/doc/images/wechat_group_1.jpeg b/doc/images/wechat_group_1.jpeg
index 9173def0c6bc0fda44c268e1e00b4dcb0c667fd8..eb58bfe81ce5bd2694ac5de20518c53c6ae23a8e 100644
Binary files a/doc/images/wechat_group_1.jpeg and b/doc/images/wechat_group_1.jpeg differ
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/README.md b/examples/Pipeline/PaddleClas/DarkNet53-encryption/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..4d6ee01e9b5302839d2a92b475cf50a8d7f24a8e
--- /dev/null
+++ b/examples/Pipeline/PaddleClas/DarkNet53-encryption/README.md
@@ -0,0 +1,23 @@
+# Imagenet Pipeline WebService
+
+This document will takes Imagenet service as an example to introduce how to use Pipeline WebService.
+
+## Get model
+```
+sh get_model.sh
+python encrypt.py
+```
+
+## Start server
+
+```
+python -m paddle_serving_server.serve --model encrypt_server/ --port 9400 --encryption_rpc_port 9401 --use_encryption_model &
+python web_service.py &>log.txt &
+```
+
+## client test
+```
+python http_client.py
+```
+
+if you configure the api gateway, you can use `https_client.py`
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/README_CN.md b/examples/Pipeline/PaddleClas/DarkNet53-encryption/README_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..b3bc900b8d5293a90a1b773aa3995c66715ee3ee
--- /dev/null
+++ b/examples/Pipeline/PaddleClas/DarkNet53-encryption/README_CN.md
@@ -0,0 +1,24 @@
+# Imagenet Pipeline WebService
+
+这里以 Imagenet 服务为例来介绍 Pipeline WebService 的使用。
+
+## 获取模型
+```
+sh get_model.sh
+python encrypt.py
+```
+
+## 启动服务
+
+```
+python -m paddle_serving_server.serve --model encrypt_server/ --port 9400 --encryption_rpc_port 9401 --use_encryption_model &
+python web_service.py &>log.txt &
+```
+
+## 测试
+```
+python http_client.py
+```
+如果您已经配置好了api gateway, 您可以使用 `https_client.py`
+
+~
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/config.yml b/examples/Pipeline/PaddleClas/DarkNet53-encryption/config.yml
new file mode 100644
index 0000000000000000000000000000000000000000..8ea7f08df7b19f1dcb77a9684e391320f4a153e3
--- /dev/null
+++ b/examples/Pipeline/PaddleClas/DarkNet53-encryption/config.yml
@@ -0,0 +1,25 @@
+#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
+##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
+worker_num: 1
+
+#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
+http_port: 18080
+rpc_port: 9993
+
+dag:
+ #op资源类型, True, 为线程模型;False,为进程模型
+ is_thread_op: False
+op:
+ imagenet:
+ #并发数,is_thread_op=True时,为线程并发;否则为进程并发
+ concurrency: 1
+ client_type: brpc
+ retry: 1
+ timeout: 3000
+ server_endpoints: ["127.0.0.1:9400"]
+ client_config: "encrypt_client"
+ fetch_list: ["save_infer_model/scale_0.tmp_0"]
+ batch_size: 1
+ auto_batching_timeout: 2000
+ use_encryption_model: True
+ encryption_key: "./key"
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/daisy.jpg b/examples/Pipeline/PaddleClas/DarkNet53-encryption/daisy.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7edeca63e5f32e68550ef720d81f59df58a8eabc
Binary files /dev/null and b/examples/Pipeline/PaddleClas/DarkNet53-encryption/daisy.jpg differ
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/encrypt.py b/examples/Pipeline/PaddleClas/DarkNet53-encryption/encrypt.py
new file mode 100644
index 0000000000000000000000000000000000000000..403d1cb330d7f09f38d00cc1f3993dacac4367ef
--- /dev/null
+++ b/examples/Pipeline/PaddleClas/DarkNet53-encryption/encrypt.py
@@ -0,0 +1,15 @@
+from paddle_serving_client.io import inference_model_to_serving
+
+
+def serving_encryption():
+ inference_model_to_serving(
+ dirname="./DarkNet53/ppcls_model/",
+ model_filename="__model__",
+ params_filename="./__params__",
+ serving_server="encrypt_server",
+ serving_client="encrypt_client",
+ encryption=True)
+
+
+if __name__ == "__main__":
+ serving_encryption()
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/get_model.sh b/examples/Pipeline/PaddleClas/DarkNet53-encryption/get_model.sh
new file mode 100644
index 0000000000000000000000000000000000000000..b19bd02d24ad82188a788c0a825616d21b6807b8
--- /dev/null
+++ b/examples/Pipeline/PaddleClas/DarkNet53-encryption/get_model.sh
@@ -0,0 +1,5 @@
+wget --no-check-certificate https://paddle-serving.bj.bcebos.com/model/DarkNet53.tar
+tar -xf DarkNet53.tar
+
+wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imagenet-example/image_data.tar.gz
+tar -xzvf image_data.tar.gz
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/http_client.py b/examples/Pipeline/PaddleClas/DarkNet53-encryption/http_client.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1507a907ee5f49ffbe8b04af0c154ed4e5938d0
--- /dev/null
+++ b/examples/Pipeline/PaddleClas/DarkNet53-encryption/http_client.py
@@ -0,0 +1,19 @@
+import numpy as np
+import requests
+import json
+import cv2
+import base64
+import os
+
+def cv2_to_base64(image):
+ return base64.b64encode(image).decode('utf8')
+
+if __name__ == "__main__":
+ url = "http://127.0.0.1:18080/imagenet/prediction"
+ with open(os.path.join(".", "daisy.jpg"), 'rb') as file:
+ image_data1 = file.read()
+ image = cv2_to_base64(image_data1)
+ data = {"key": ["image"], "value": [image]}
+ for i in range(1):
+ r = requests.post(url=url, data=json.dumps(data))
+ print(r.json())
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/https_client.py b/examples/Pipeline/PaddleClas/DarkNet53-encryption/https_client.py
new file mode 100644
index 0000000000000000000000000000000000000000..f963d93dcf87bf0c2e93755953f99ee27a531aa8
--- /dev/null
+++ b/examples/Pipeline/PaddleClas/DarkNet53-encryption/https_client.py
@@ -0,0 +1,20 @@
+import numpy as np
+import requests
+import json
+import cv2
+import base64
+import os
+
+def cv2_to_base64(image):
+ return base64.b64encode(image).decode('utf8')
+
+if __name__ == "__main__":
+ url = "https://10.21.8.132:8443/image-clas/imagenet/prediction"
+ with open(os.path.join(".", "daisy.jpg"), 'rb') as file:
+ image_data1 = file.read()
+ image = cv2_to_base64(image_data1)
+ headers = {"Content-Type":"application/json", "apikey":"BlfvO08Z9mQpFjcMagl2dxOIA8h2UVdp", "X-INSTANCE-ID" : "kong_ins10"}
+ data = {"key": ["image"], "value": [image]}
+ for i in range(1):
+ r = requests.post(url=url, headers=headers, data=json.dumps(data),verify=False)
+ print(r.json())
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/imagenet.label b/examples/Pipeline/PaddleClas/DarkNet53-encryption/imagenet.label
new file mode 100644
index 0000000000000000000000000000000000000000..d7146735146ea1894173d6d0e20fb90af36be849
--- /dev/null
+++ b/examples/Pipeline/PaddleClas/DarkNet53-encryption/imagenet.label
@@ -0,0 +1,1000 @@
+tench, Tinca tinca,
+goldfish, Carassius auratus,
+great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias,
+tiger shark, Galeocerdo cuvieri,
+hammerhead, hammerhead shark,
+electric ray, crampfish, numbfish, torpedo,
+stingray,
+cock,
+hen,
+ostrich, Struthio camelus,
+brambling, Fringilla montifringilla,
+goldfinch, Carduelis carduelis,
+house finch, linnet, Carpodacus mexicanus,
+junco, snowbird,
+indigo bunting, indigo finch, indigo bird, Passerina cyanea,
+robin, American robin, Turdus migratorius,
+bulbul,
+jay,
+magpie,
+chickadee,
+water ouzel, dipper,
+kite,
+bald eagle, American eagle, Haliaeetus leucocephalus,
+vulture,
+great grey owl, great gray owl, Strix nebulosa,
+European fire salamander, Salamandra salamandra,
+common newt, Triturus vulgaris,
+eft,
+spotted salamander, Ambystoma maculatum,
+axolotl, mud puppy, Ambystoma mexicanum,
+bullfrog, Rana catesbeiana,
+tree frog, tree-frog,
+tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui,
+loggerhead, loggerhead turtle, Caretta caretta,
+leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea,
+mud turtle,
+terrapin,
+box turtle, box tortoise,
+banded gecko,
+common iguana, iguana, Iguana iguana,
+American chameleon, anole, Anolis carolinensis,
+whiptail, whiptail lizard,
+agama,
+frilled lizard, Chlamydosaurus kingi,
+alligator lizard,
+Gila monster, Heloderma suspectum,
+green lizard, Lacerta viridis,
+African chameleon, Chamaeleo chamaeleon,
+Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis,
+African crocodile, Nile crocodile, Crocodylus niloticus,
+American alligator, Alligator mississipiensis,
+triceratops,
+thunder snake, worm snake, Carphophis amoenus,
+ringneck snake, ring-necked snake, ring snake,
+hognose snake, puff adder, sand viper,
+green snake, grass snake,
+king snake, kingsnake,
+garter snake, grass snake,
+water snake,
+vine snake,
+night snake, Hypsiglena torquata,
+boa constrictor, Constrictor constrictor,
+rock python, rock snake, Python sebae,
+Indian cobra, Naja naja,
+green mamba,
+sea snake,
+horned viper, cerastes, sand viper, horned asp, Cerastes cornutus,
+diamondback, diamondback rattlesnake, Crotalus adamanteus,
+sidewinder, horned rattlesnake, Crotalus cerastes,
+trilobite,
+harvestman, daddy longlegs, Phalangium opilio,
+scorpion,
+black and gold garden spider, Argiope aurantia,
+barn spider, Araneus cavaticus,
+garden spider, Aranea diademata,
+black widow, Latrodectus mactans,
+tarantula,
+wolf spider, hunting spider,
+tick,
+centipede,
+black grouse,
+ptarmigan,
+ruffed grouse, partridge, Bonasa umbellus,
+prairie chicken, prairie grouse, prairie fowl,
+peacock,
+quail,
+partridge,
+African grey, African gray, Psittacus erithacus,
+macaw,
+sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita,
+lorikeet,
+coucal,
+bee eater,
+hornbill,
+hummingbird,
+jacamar,
+toucan,
+drake,
+red-breasted merganser, Mergus serrator,
+goose,
+black swan, Cygnus atratus,
+tusker,
+echidna, spiny anteater, anteater,
+platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus,
+wallaby, brush kangaroo,
+koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus,
+wombat,
+jellyfish,
+sea anemone, anemone,
+brain coral,
+flatworm, platyhelminth,
+nematode, nematode worm, roundworm,
+conch,
+snail,
+slug,
+sea slug, nudibranch,
+chiton, coat-of-mail shell, sea cradle, polyplacophore,
+chambered nautilus, pearly nautilus, nautilus,
+Dungeness crab, Cancer magister,
+rock crab, Cancer irroratus,
+fiddler crab,
+king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica,
+American lobster, Northern lobster, Maine lobster, Homarus americanus,
+spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish,
+crayfish, crawfish, crawdad, crawdaddy,
+hermit crab,
+isopod,
+white stork, Ciconia ciconia,
+black stork, Ciconia nigra,
+spoonbill,
+flamingo,
+little blue heron, Egretta caerulea,
+American egret, great white heron, Egretta albus,
+bittern,
+crane,
+limpkin, Aramus pictus,
+European gallinule, Porphyrio porphyrio,
+American coot, marsh hen, mud hen, water hen, Fulica americana,
+bustard,
+ruddy turnstone, Arenaria interpres,
+red-backed sandpiper, dunlin, Erolia alpina,
+redshank, Tringa totanus,
+dowitcher,
+oystercatcher, oyster catcher,
+pelican,
+king penguin, Aptenodytes patagonica,
+albatross, mollymawk,
+grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus,
+killer whale, killer, orca, grampus, sea wolf, Orcinus orca,
+dugong, Dugong dugon,
+sea lion,
+Chihuahua,
+Japanese spaniel,
+Maltese dog, Maltese terrier, Maltese,
+Pekinese, Pekingese, Peke,
+Shih-Tzu,
+Blenheim spaniel,
+papillon,
+toy terrier,
+Rhodesian ridgeback,
+Afghan hound, Afghan,
+basset, basset hound,
+beagle,
+bloodhound, sleuthhound,
+bluetick,
+black-and-tan coonhound,
+Walker hound, Walker foxhound,
+English foxhound,
+redbone,
+borzoi, Russian wolfhound,
+Irish wolfhound,
+Italian greyhound,
+whippet,
+Ibizan hound, Ibizan Podenco,
+Norwegian elkhound, elkhound,
+otterhound, otter hound,
+Saluki, gazelle hound,
+Scottish deerhound, deerhound,
+Weimaraner,
+Staffordshire bullterrier, Staffordshire bull terrier,
+American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier,
+Bedlington terrier,
+Border terrier,
+Kerry blue terrier,
+Irish terrier,
+Norfolk terrier,
+Norwich terrier,
+Yorkshire terrier,
+wire-haired fox terrier,
+Lakeland terrier,
+Sealyham terrier, Sealyham,
+Airedale, Airedale terrier,
+cairn, cairn terrier,
+Australian terrier,
+Dandie Dinmont, Dandie Dinmont terrier,
+Boston bull, Boston terrier,
+miniature schnauzer,
+giant schnauzer,
+standard schnauzer,
+Scotch terrier, Scottish terrier, Scottie,
+Tibetan terrier, chrysanthemum dog,
+silky terrier, Sydney silky,
+soft-coated wheaten terrier,
+West Highland white terrier,
+Lhasa, Lhasa apso,
+flat-coated retriever,
+curly-coated retriever,
+golden retriever,
+Labrador retriever,
+Chesapeake Bay retriever,
+German short-haired pointer,
+vizsla, Hungarian pointer,
+English setter,
+Irish setter, red setter,
+Gordon setter,
+Brittany spaniel,
+clumber, clumber spaniel,
+English springer, English springer spaniel,
+Welsh springer spaniel,
+cocker spaniel, English cocker spaniel, cocker,
+Sussex spaniel,
+Irish water spaniel,
+kuvasz,
+schipperke,
+groenendael,
+malinois,
+briard,
+kelpie,
+komondor,
+Old English sheepdog, bobtail,
+Shetland sheepdog, Shetland sheep dog, Shetland,
+collie,
+Border collie,
+Bouvier des Flandres, Bouviers des Flandres,
+Rottweiler,
+German shepherd, German shepherd dog, German police dog, alsatian,
+Doberman, Doberman pinscher,
+miniature pinscher,
+Greater Swiss Mountain dog,
+Bernese mountain dog,
+Appenzeller,
+EntleBucher,
+boxer,
+bull mastiff,
+Tibetan mastiff,
+French bulldog,
+Great Dane,
+Saint Bernard, St Bernard,
+Eskimo dog, husky,
+malamute, malemute, Alaskan malamute,
+Siberian husky,
+dalmatian, coach dog, carriage dog,
+affenpinscher, monkey pinscher, monkey dog,
+basenji,
+pug, pug-dog,
+Leonberg,
+Newfoundland, Newfoundland dog,
+Great Pyrenees,
+Samoyed, Samoyede,
+Pomeranian,
+chow, chow chow,
+keeshond,
+Brabancon griffon,
+Pembroke, Pembroke Welsh corgi,
+Cardigan, Cardigan Welsh corgi,
+toy poodle,
+miniature poodle,
+standard poodle,
+Mexican hairless,
+timber wolf, grey wolf, gray wolf, Canis lupus,
+white wolf, Arctic wolf, Canis lupus tundrarum,
+red wolf, maned wolf, Canis rufus, Canis niger,
+coyote, prairie wolf, brush wolf, Canis latrans,
+dingo, warrigal, warragal, Canis dingo,
+dhole, Cuon alpinus,
+African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus,
+hyena, hyaena,
+red fox, Vulpes vulpes,
+kit fox, Vulpes macrotis,
+Arctic fox, white fox, Alopex lagopus,
+grey fox, gray fox, Urocyon cinereoargenteus,
+tabby, tabby cat,
+tiger cat,
+Persian cat,
+Siamese cat, Siamese,
+Egyptian cat,
+cougar, puma, catamount, mountain lion, painter, panther, Felis concolor,
+lynx, catamount,
+leopard, Panthera pardus,
+snow leopard, ounce, Panthera uncia,
+jaguar, panther, Panthera onca, Felis onca,
+lion, king of beasts, Panthera leo,
+tiger, Panthera tigris,
+cheetah, chetah, Acinonyx jubatus,
+brown bear, bruin, Ursus arctos,
+American black bear, black bear, Ursus americanus, Euarctos americanus,
+ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus,
+sloth bear, Melursus ursinus, Ursus ursinus,
+mongoose,
+meerkat, mierkat,
+tiger beetle,
+ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle,
+ground beetle, carabid beetle,
+long-horned beetle, longicorn, longicorn beetle,
+leaf beetle, chrysomelid,
+dung beetle,
+rhinoceros beetle,
+weevil,
+fly,
+bee,
+ant, emmet, pismire,
+grasshopper, hopper,
+cricket,
+walking stick, walkingstick, stick insect,
+cockroach, roach,
+mantis, mantid,
+cicada, cicala,
+leafhopper,
+lacewing, lacewing fly,
+"dragonfly, darning needle, devils darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
+damselfly,
+admiral,
+ringlet, ringlet butterfly,
+monarch, monarch butterfly, milkweed butterfly, Danaus plexippus,
+cabbage butterfly,
+sulphur butterfly, sulfur butterfly,
+lycaenid, lycaenid butterfly,
+starfish, sea star,
+sea urchin,
+sea cucumber, holothurian,
+wood rabbit, cottontail, cottontail rabbit,
+hare,
+Angora, Angora rabbit,
+hamster,
+porcupine, hedgehog,
+fox squirrel, eastern fox squirrel, Sciurus niger,
+marmot,
+beaver,
+guinea pig, Cavia cobaya,
+sorrel,
+zebra,
+hog, pig, grunter, squealer, Sus scrofa,
+wild boar, boar, Sus scrofa,
+warthog,
+hippopotamus, hippo, river horse, Hippopotamus amphibius,
+ox,
+water buffalo, water ox, Asiatic buffalo, Bubalus bubalis,
+bison,
+ram, tup,
+bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis,
+ibex, Capra ibex,
+hartebeest,
+impala, Aepyceros melampus,
+gazelle,
+Arabian camel, dromedary, Camelus dromedarius,
+llama,
+weasel,
+mink,
+polecat, fitch, foulmart, foumart, Mustela putorius,
+black-footed ferret, ferret, Mustela nigripes,
+otter,
+skunk, polecat, wood pussy,
+badger,
+armadillo,
+three-toed sloth, ai, Bradypus tridactylus,
+orangutan, orang, orangutang, Pongo pygmaeus,
+gorilla, Gorilla gorilla,
+chimpanzee, chimp, Pan troglodytes,
+gibbon, Hylobates lar,
+siamang, Hylobates syndactylus, Symphalangus syndactylus,
+guenon, guenon monkey,
+patas, hussar monkey, Erythrocebus patas,
+baboon,
+macaque,
+langur,
+colobus, colobus monkey,
+proboscis monkey, Nasalis larvatus,
+marmoset,
+capuchin, ringtail, Cebus capucinus,
+howler monkey, howler,
+titi, titi monkey,
+spider monkey, Ateles geoffroyi,
+squirrel monkey, Saimiri sciureus,
+Madagascar cat, ring-tailed lemur, Lemur catta,
+indri, indris, Indri indri, Indri brevicaudatus,
+Indian elephant, Elephas maximus,
+African elephant, Loxodonta africana,
+lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens,
+giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca,
+barracouta, snoek,
+eel,
+coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch,
+rock beauty, Holocanthus tricolor,
+anemone fish,
+sturgeon,
+gar, garfish, garpike, billfish, Lepisosteus osseus,
+lionfish,
+puffer, pufferfish, blowfish, globefish,
+abacus,
+abaya,
+"academic gown, academic robe, judges robe",
+accordion, piano accordion, squeeze box,
+acoustic guitar,
+aircraft carrier, carrier, flattop, attack aircraft carrier,
+airliner,
+airship, dirigible,
+altar,
+ambulance,
+amphibian, amphibious vehicle,
+analog clock,
+apiary, bee house,
+apron,
+ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin,
+assault rifle, assault gun,
+backpack, back pack, knapsack, packsack, rucksack, haversack,
+bakery, bakeshop, bakehouse,
+balance beam, beam,
+balloon,
+ballpoint, ballpoint pen, ballpen, Biro,
+Band Aid,
+banjo,
+bannister, banister, balustrade, balusters, handrail,
+barbell,
+barber chair,
+barbershop,
+barn,
+barometer,
+barrel, cask,
+barrow, garden cart, lawn cart, wheelbarrow,
+baseball,
+basketball,
+bassinet,
+bassoon,
+bathing cap, swimming cap,
+bath towel,
+bathtub, bathing tub, bath, tub,
+beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon,
+beacon, lighthouse, beacon light, pharos,
+beaker,
+bearskin, busby, shako,
+beer bottle,
+beer glass,
+bell cote, bell cot,
+bib,
+bicycle-built-for-two, tandem bicycle, tandem,
+bikini, two-piece,
+binder, ring-binder,
+binoculars, field glasses, opera glasses,
+birdhouse,
+boathouse,
+bobsled, bobsleigh, bob,
+bolo tie, bolo, bola tie, bola,
+bonnet, poke bonnet,
+bookcase,
+bookshop, bookstore, bookstall,
+bottlecap,
+bow,
+bow tie, bow-tie, bowtie,
+brass, memorial tablet, plaque,
+brassiere, bra, bandeau,
+breakwater, groin, groyne, mole, bulwark, seawall, jetty,
+breastplate, aegis, egis,
+broom,
+bucket, pail,
+buckle,
+bulletproof vest,
+bullet train, bullet,
+butcher shop, meat market,
+cab, hack, taxi, taxicab,
+caldron, cauldron,
+candle, taper, wax light,
+cannon,
+canoe,
+can opener, tin opener,
+cardigan,
+car mirror,
+carousel, carrousel, merry-go-round, roundabout, whirligig,
+"carpenters kit, tool kit",
+carton,
+car wheel,
+cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM,
+cassette,
+cassette player,
+castle,
+catamaran,
+CD player,
+cello, violoncello,
+cellular telephone, cellular phone, cellphone, cell, mobile phone,
+chain,
+chainlink fence,
+chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour,
+chain saw, chainsaw,
+chest,
+chiffonier, commode,
+chime, bell, gong,
+china cabinet, china closet,
+Christmas stocking,
+church, church building,
+cinema, movie theater, movie theatre, movie house, picture palace,
+cleaver, meat cleaver, chopper,
+cliff dwelling,
+cloak,
+clog, geta, patten, sabot,
+cocktail shaker,
+coffee mug,
+coffeepot,
+coil, spiral, volute, whorl, helix,
+combination lock,
+computer keyboard, keypad,
+confectionery, confectionary, candy store,
+container ship, containership, container vessel,
+convertible,
+corkscrew, bottle screw,
+cornet, horn, trumpet, trump,
+cowboy boot,
+cowboy hat, ten-gallon hat,
+cradle,
+crane,
+crash helmet,
+crate,
+crib, cot,
+Crock Pot,
+croquet ball,
+crutch,
+cuirass,
+dam, dike, dyke,
+desk,
+desktop computer,
+dial telephone, dial phone,
+diaper, nappy, napkin,
+digital clock,
+digital watch,
+dining table, board,
+dishrag, dishcloth,
+dishwasher, dish washer, dishwashing machine,
+disk brake, disc brake,
+dock, dockage, docking facility,
+dogsled, dog sled, dog sleigh,
+dome,
+doormat, welcome mat,
+drilling platform, offshore rig,
+drum, membranophone, tympan,
+drumstick,
+dumbbell,
+Dutch oven,
+electric fan, blower,
+electric guitar,
+electric locomotive,
+entertainment center,
+envelope,
+espresso maker,
+face powder,
+feather boa, boa,
+file, file cabinet, filing cabinet,
+fireboat,
+fire engine, fire truck,
+fire screen, fireguard,
+flagpole, flagstaff,
+flute, transverse flute,
+folding chair,
+football helmet,
+forklift,
+fountain,
+fountain pen,
+four-poster,
+freight car,
+French horn, horn,
+frying pan, frypan, skillet,
+fur coat,
+garbage truck, dustcart,
+gasmask, respirator, gas helmet,
+gas pump, gasoline pump, petrol pump, island dispenser,
+goblet,
+go-kart,
+golf ball,
+golfcart, golf cart,
+gondola,
+gong, tam-tam,
+gown,
+grand piano, grand,
+greenhouse, nursery, glasshouse,
+grille, radiator grille,
+grocery store, grocery, food market, market,
+guillotine,
+hair slide,
+hair spray,
+half track,
+hammer,
+hamper,
+hand blower, blow dryer, blow drier, hair dryer, hair drier,
+hand-held computer, hand-held microcomputer,
+handkerchief, hankie, hanky, hankey,
+hard disc, hard disk, fixed disk,
+harmonica, mouth organ, harp, mouth harp,
+harp,
+harvester, reaper,
+hatchet,
+holster,
+home theater, home theatre,
+honeycomb,
+hook, claw,
+hoopskirt, crinoline,
+horizontal bar, high bar,
+horse cart, horse-cart,
+hourglass,
+iPod,
+iron, smoothing iron,
+"jack-o-lantern",
+jean, blue jean, denim,
+jeep, landrover,
+jersey, T-shirt, tee shirt,
+jigsaw puzzle,
+jinrikisha, ricksha, rickshaw,
+joystick,
+kimono,
+knee pad,
+knot,
+lab coat, laboratory coat,
+ladle,
+lampshade, lamp shade,
+laptop, laptop computer,
+lawn mower, mower,
+lens cap, lens cover,
+letter opener, paper knife, paperknife,
+library,
+lifeboat,
+lighter, light, igniter, ignitor,
+limousine, limo,
+liner, ocean liner,
+lipstick, lip rouge,
+Loafer,
+lotion,
+loudspeaker, speaker, speaker unit, loudspeaker system, speaker system,
+"loupe, jewelers loupe",
+lumbermill, sawmill,
+magnetic compass,
+mailbag, postbag,
+mailbox, letter box,
+maillot,
+maillot, tank suit,
+manhole cover,
+maraca,
+marimba, xylophone,
+mask,
+matchstick,
+maypole,
+maze, labyrinth,
+measuring cup,
+medicine chest, medicine cabinet,
+megalith, megalithic structure,
+microphone, mike,
+microwave, microwave oven,
+military uniform,
+milk can,
+minibus,
+miniskirt, mini,
+minivan,
+missile,
+mitten,
+mixing bowl,
+mobile home, manufactured home,
+Model T,
+modem,
+monastery,
+monitor,
+moped,
+mortar,
+mortarboard,
+mosque,
+mosquito net,
+motor scooter, scooter,
+mountain bike, all-terrain bike, off-roader,
+mountain tent,
+mouse, computer mouse,
+mousetrap,
+moving van,
+muzzle,
+nail,
+neck brace,
+necklace,
+nipple,
+notebook, notebook computer,
+obelisk,
+oboe, hautboy, hautbois,
+ocarina, sweet potato,
+odometer, hodometer, mileometer, milometer,
+oil filter,
+organ, pipe organ,
+oscilloscope, scope, cathode-ray oscilloscope, CRO,
+overskirt,
+oxcart,
+oxygen mask,
+packet,
+paddle, boat paddle,
+paddlewheel, paddle wheel,
+padlock,
+paintbrush,
+"pajama, pyjama, pjs, jammies",
+palace,
+panpipe, pandean pipe, syrinx,
+paper towel,
+parachute, chute,
+parallel bars, bars,
+park bench,
+parking meter,
+passenger car, coach, carriage,
+patio, terrace,
+pay-phone, pay-station,
+pedestal, plinth, footstall,
+pencil box, pencil case,
+pencil sharpener,
+perfume, essence,
+Petri dish,
+photocopier,
+pick, plectrum, plectron,
+pickelhaube,
+picket fence, paling,
+pickup, pickup truck,
+pier,
+piggy bank, penny bank,
+pill bottle,
+pillow,
+ping-pong ball,
+pinwheel,
+pirate, pirate ship,
+pitcher, ewer,
+"plane, carpenters plane, woodworking plane",
+planetarium,
+plastic bag,
+plate rack,
+plow, plough,
+"plunger, plumbers helper",
+Polaroid camera, Polaroid Land camera,
+pole,
+police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria,
+poncho,
+pool table, billiard table, snooker table,
+pop bottle, soda bottle,
+pot, flowerpot,
+"potters wheel",
+power drill,
+prayer rug, prayer mat,
+printer,
+prison, prison house,
+projectile, missile,
+projector,
+puck, hockey puck,
+punching bag, punch bag, punching ball, punchball,
+purse,
+quill, quill pen,
+quilt, comforter, comfort, puff,
+racer, race car, racing car,
+racket, racquet,
+radiator,
+radio, wireless,
+radio telescope, radio reflector,
+rain barrel,
+recreational vehicle, RV, R.V.,
+reel,
+reflex camera,
+refrigerator, icebox,
+remote control, remote,
+restaurant, eating house, eating place, eatery,
+revolver, six-gun, six-shooter,
+rifle,
+rocking chair, rocker,
+rotisserie,
+rubber eraser, rubber, pencil eraser,
+rugby ball,
+rule, ruler,
+running shoe,
+safe,
+safety pin,
+saltshaker, salt shaker,
+sandal,
+sarong,
+sax, saxophone,
+scabbard,
+scale, weighing machine,
+school bus,
+schooner,
+scoreboard,
+screen, CRT screen,
+screw,
+screwdriver,
+seat belt, seatbelt,
+sewing machine,
+shield, buckler,
+shoe shop, shoe-shop, shoe store,
+shoji,
+shopping basket,
+shopping cart,
+shovel,
+shower cap,
+shower curtain,
+ski,
+ski mask,
+sleeping bag,
+slide rule, slipstick,
+sliding door,
+slot, one-armed bandit,
+snorkel,
+snowmobile,
+snowplow, snowplough,
+soap dispenser,
+soccer ball,
+sock,
+solar dish, solar collector, solar furnace,
+sombrero,
+soup bowl,
+space bar,
+space heater,
+space shuttle,
+spatula,
+speedboat,
+"spider web, spiders web",
+spindle,
+sports car, sport car,
+spotlight, spot,
+stage,
+steam locomotive,
+steel arch bridge,
+steel drum,
+stethoscope,
+stole,
+stone wall,
+stopwatch, stop watch,
+stove,
+strainer,
+streetcar, tram, tramcar, trolley, trolley car,
+stretcher,
+studio couch, day bed,
+stupa, tope,
+submarine, pigboat, sub, U-boat,
+suit, suit of clothes,
+sundial,
+sunglass,
+sunglasses, dark glasses, shades,
+sunscreen, sunblock, sun blocker,
+suspension bridge,
+swab, swob, mop,
+sweatshirt,
+swimming trunks, bathing trunks,
+swing,
+switch, electric switch, electrical switch,
+syringe,
+table lamp,
+tank, army tank, armored combat vehicle, armoured combat vehicle,
+tape player,
+teapot,
+teddy, teddy bear,
+television, television system,
+tennis ball,
+thatch, thatched roof,
+theater curtain, theatre curtain,
+thimble,
+thresher, thrasher, threshing machine,
+throne,
+tile roof,
+toaster,
+tobacco shop, tobacconist shop, tobacconist,
+toilet seat,
+torch,
+totem pole,
+tow truck, tow car, wrecker,
+toyshop,
+tractor,
+trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi,
+tray,
+trench coat,
+tricycle, trike, velocipede,
+trimaran,
+tripod,
+triumphal arch,
+trolleybus, trolley coach, trackless trolley,
+trombone,
+tub, vat,
+turnstile,
+typewriter keyboard,
+umbrella,
+unicycle, monocycle,
+upright, upright piano,
+vacuum, vacuum cleaner,
+vase,
+vault,
+velvet,
+vending machine,
+vestment,
+viaduct,
+violin, fiddle,
+volleyball,
+waffle iron,
+wall clock,
+wallet, billfold, notecase, pocketbook,
+wardrobe, closet, press,
+warplane, military plane,
+washbasin, handbasin, washbowl, lavabo, wash-hand basin,
+washer, automatic washer, washing machine,
+water bottle,
+water jug,
+water tower,
+whiskey jug,
+whistle,
+wig,
+window screen,
+window shade,
+Windsor tie,
+wine bottle,
+wing,
+wok,
+wooden spoon,
+wool, woolen, woollen,
+worm fence, snake fence, snake-rail fence, Virginia fence,
+wreck,
+yawl,
+yurt,
+web site, website, internet site, site,
+comic book,
+crossword puzzle, crossword,
+street sign,
+traffic light, traffic signal, stoplight,
+book jacket, dust cover, dust jacket, dust wrapper,
+menu,
+plate,
+guacamole,
+consomme,
+hot pot, hotpot,
+trifle,
+ice cream, icecream,
+ice lolly, lolly, lollipop, popsicle,
+French loaf,
+bagel, beigel,
+pretzel,
+cheeseburger,
+hotdog, hot dog, red hot,
+mashed potato,
+head cabbage,
+broccoli,
+cauliflower,
+zucchini, courgette,
+spaghetti squash,
+acorn squash,
+butternut squash,
+cucumber, cuke,
+artichoke, globe artichoke,
+bell pepper,
+cardoon,
+mushroom,
+Granny Smith,
+strawberry,
+orange,
+lemon,
+fig,
+pineapple, ananas,
+banana,
+jackfruit, jak, jack,
+custard apple,
+pomegranate,
+hay,
+carbonara,
+chocolate sauce, chocolate syrup,
+dough,
+meat loaf, meatloaf,
+pizza, pizza pie,
+potpie,
+burrito,
+red wine,
+espresso,
+cup,
+eggnog,
+alp,
+bubble,
+cliff, drop, drop-off,
+coral reef,
+geyser,
+lakeside, lakeshore,
+promontory, headland, head, foreland,
+sandbar, sand bar,
+seashore, coast, seacoast, sea-coast,
+valley, vale,
+volcano,
+ballplayer, baseball player,
+groom, bridegroom,
+scuba diver,
+rapeseed,
+daisy,
+"yellow ladys slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
+corn,
+acorn,
+hip, rose hip, rosehip,
+buckeye, horse chestnut, conker,
+coral fungus,
+agaric,
+gyromitra,
+stinkhorn, carrion fungus,
+earthstar,
+hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa,
+bolete,
+ear, spike, capitulum,
+toilet tissue, toilet paper, bathroom tissue
diff --git a/examples/Pipeline/PaddleClas/DarkNet53-encryption/web_service.py b/examples/Pipeline/PaddleClas/DarkNet53-encryption/web_service.py
new file mode 100644
index 0000000000000000000000000000000000000000..11abe19520de6ecd09473f537d30773e454b0771
--- /dev/null
+++ b/examples/Pipeline/PaddleClas/DarkNet53-encryption/web_service.py
@@ -0,0 +1,71 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import sys
+from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage
+from paddle_serving_server.web_service import WebService, Op
+import logging
+import numpy as np
+import base64, cv2
+
+
+class ImagenetOp(Op):
+ def init_op(self):
+ self.seq = Sequential([
+ Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
+ Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
+ True)
+ ])
+ self.label_dict = {}
+ label_idx = 0
+ with open("imagenet.label") as fin:
+ for line in fin:
+ self.label_dict[label_idx] = line.strip()
+ label_idx += 1
+
+ def preprocess(self, input_dicts, data_id, log_id):
+ (_, input_dict), = input_dicts.items()
+ batch_size = len(input_dict.keys())
+ imgs = []
+ for key in input_dict.keys():
+ data = base64.b64decode(input_dict[key].encode('utf8'))
+ data = np.fromstring(data, np.uint8)
+ im = cv2.imdecode(data, cv2.IMREAD_COLOR)
+ img = self.seq(im)
+ imgs.append(img[np.newaxis, :].copy())
+ input_imgs = np.concatenate(imgs, axis=0)
+ return {"image": input_imgs}, False, None, ""
+
+ def postprocess(self, input_dicts, fetch_dict, data_id=0, log_id=0):
+ score_list = fetch_dict["save_infer_model/scale_0.tmp_0"]
+ result = {"label": [], "prob": []}
+ for score in score_list:
+ score = score.tolist()
+ max_score = max(score)
+ result["label"].append(self.label_dict[score.index(max_score)]
+ .strip().replace(",", ""))
+ result["prob"].append(max_score)
+ result["label"] = str(result["label"])
+ result["prob"] = str(result["prob"])
+ return result, None, ""
+
+
+class ImageService(WebService):
+ def get_pipeline_response(self, read_op):
+ image_op = ImagenetOp(name="imagenet", input_ops=[read_op])
+ return image_op
+
+
+uci_service = ImageService(name="imagenet")
+uci_service.prepare_pipeline_config("config.yml")
+uci_service.run_service()
diff --git a/examples/Pipeline/PaddleVideo/PPTSN_K400/README_CN.md b/examples/Pipeline/PaddleVideo/PPTSN_K400/README_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..77c8854081d50d8509b00d01cccb1205ae0ab877
--- /dev/null
+++ b/examples/Pipeline/PaddleVideo/PPTSN_K400/README_CN.md
@@ -0,0 +1,28 @@
+# PP-TSN 视频分类模型
+
+## 模型简介
+PP-TSN模型是对TSN模型进行改进,在不增加参数量和计算量的情况下,得到了的更高精度的2D实用视频分类模型。
+
+## 获取模型
+```
+sh get_model.sh
+```
+
+## 部署模型并测试
+
+### 启动 server
+```
+python3 web_service.py &>log.txt &
+```
+
+## 启动 client
+
+**一. http client**
+```
+python3 pipeline_http_client.py
+```
+**二. rpc client**
+
+```
+python3 pipeline_rpc_client.py
+```
diff --git a/examples/Pipeline/PaddleVideo/PPTSN_K400/pipeline_http_client.py b/examples/Pipeline/PaddleVideo/PPTSN_K400/pipeline_http_client.py
index e1025598dabe9ea56c3c75ffdb9121af883ae249..9c61b5a0e8597e6978f81edde067bbea2ecfe39f 100644
--- a/examples/Pipeline/PaddleVideo/PPTSN_K400/pipeline_http_client.py
+++ b/examples/Pipeline/PaddleVideo/PPTSN_K400/pipeline_http_client.py
@@ -16,7 +16,7 @@ import requests
import json
url = "http://127.0.0.1:9999/ppTSN/prediction"
-video_url = "https://paddle-serving.bj.bcebos.com/huangjianhui04/example.avi"
+video_url = "https://paddle-serving.bj.bcebos.com/model/PaddleVideo/example.avi"
for i in range(4):
data = {"key": ["filename"], "value": [video_url]}
r = requests.post(url=url, data=json.dumps(data))
diff --git a/examples/Pipeline/PaddleVideo/PPTSN_K400/pipeline_rpc_client.py b/examples/Pipeline/PaddleVideo/PPTSN_K400/pipeline_rpc_client.py
new file mode 100644
index 0000000000000000000000000000000000000000..481f54f99d8ea31a6f52adadb6632e0f4e341e57
--- /dev/null
+++ b/examples/Pipeline/PaddleVideo/PPTSN_K400/pipeline_rpc_client.py
@@ -0,0 +1,31 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+try:
+ from paddle_serving_server.pipeline import PipelineClient
+except ImportError:
+ from paddle_serving_server.pipeline import PipelineClient
+import numpy as np
+import requests
+import json
+import cv2
+import base64
+import os
+
+client = PipelineClient()
+client.connect(['127.0.0.1:18090'])
+
+video_url = "https://paddle-serving.bj.bcebos.com/model/PaddleVideo/example.avi"
+for i in range(1):
+ ret = client.predict(feed_dict={"video_url": video_url}, fetch=["res"])
+ print(ret)
diff --git a/python/paddle_serving_server/env_check/run.py b/python/paddle_serving_server/env_check/run.py
index c3d5ce4ff8790626e18cb8d69a77c94fdc80e496..2c4216b22e464ab2e3fe4ec363b62eb2fe074540 100644
--- a/python/paddle_serving_server/env_check/run.py
+++ b/python/paddle_serving_server/env_check/run.py
@@ -44,8 +44,9 @@ def mv_log_to_new_dir(dir_path):
serving_log_path = os.environ['SERVING_LOG_PATH']
for file_name in log_files:
file_path = os.path.join(serving_log_path, file_name)
+ dir_path_temp = os.path.join(dir_path, file_name)
if os.path.exists(file_path):
- shutil.move(file_path, dir_path)
+ shutil.move(file_path, dir_path_temp)
def run_test_cases(cases_list, case_type, is_open_std):
diff --git a/python/paddle_serving_server/serve.py b/python/paddle_serving_server/serve.py
index f9a50ea37d4cc75b92cf2d62954c3c0de88e8094..09931dad80e19b364cb4e17a4b878662ec190aff 100755
--- a/python/paddle_serving_server/serve.py
+++ b/python/paddle_serving_server/serve.py
@@ -184,6 +184,12 @@ def serve_args():
default=False,
action="store_true",
help="Use encryption model")
+ parser.add_argument(
+ "--encryption_rpc_port",
+ type=int,
+ required=False,
+ default=12000,
+ help="Port of encryption model, only valid for arg.use_encryption_model")
parser.add_argument(
"--use_trt", default=False, action="store_true", help="Use TensorRT")
parser.add_argument(
@@ -352,8 +358,11 @@ def start_multi_card(args, serving_port=None): # pylint: disable=doc-string-mis
class MainService(BaseHTTPRequestHandler):
+ #def __init__(self):
+ # print("MainService ___init________\n")
def get_available_port(self):
- default_port = 12000
+ global encryption_rpc_port
+ default_port = encryption_rpc_port
for i in range(1000):
if port_is_available(default_port + i):
return default_port + i
@@ -553,7 +562,8 @@ if __name__ == "__main__":
p_flag = False
p = None
serving_port = 0
- server = HTTPServer(('0.0.0.0', int(args.port)), MainService)
+ encryption_rpc_port = args.encryption_rpc_port
+ server = HTTPServer(('localhost', int(args.port)), MainService)
print(
'Starting encryption server, waiting for key from client, use