未验证 提交 29e90b6a 编写于 作者: T TeslaZhao 提交者: GitHub

Merge pull request #27 from PaddlePaddle/v0.5.0

V0.5.0 merge
...@@ -20,88 +20,135 @@ ...@@ -20,88 +20,135 @@
<br> <br>
<p> <p>
- [Motivation](./README.md#motivation)
- [AIStudio Tutorial](./README.md#aistudio-tutorial)
- [Installation](./README.md#installation)
- [Quick Start Example](./README.md#quick-start-example)
- [Document](README.md#document)
- [Community](README.md#community)
<h2 align="center">Motivation</h2> <h2 align="center">Motivation</h2>
We consider deploying deep learning inference service online to be a user-facing application in the future. **The goal of this project**: When you have trained a deep neural net with [Paddle](https://github.com/PaddlePaddle/Paddle), you are also capable to deploy the model online easily. A demo of Paddle Serving is as follows: We consider deploying deep learning inference service online to be a user-facing application in the future. **The goal of this project**: When you have trained a deep neural net with [Paddle](https://github.com/PaddlePaddle/Paddle), you are also capable to deploy the model online easily. A demo of Paddle Serving is as follows:
<h3 align="center">Some Key Features of Paddle Serving</h3>
- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed **with one line command**.
- **Industrial serving features** supported, such as models management, online loading, online A/B testing etc.
- **Highly concurrent and efficient communication** between clients and servers supported.
- **Multiple programming languages** supported on client side, such as C++, python and Java.
***
- Any model trained by [PaddlePaddle](https://github.com/paddlepaddle/paddle) can be directly used or [Model Conversion Interface](./doc/SAVE_CN.md) for online deployment of Paddle Serving.
- Support [Multi-model Pipeline Deployment](./doc/PIPELINE_SERVING.md), and provide the requirements of the REST interface and RPC interface itself, [Pipeline example](./python/examples/pipeline).
- Support the model zoos from the Paddle ecosystem, such as [PaddleDetection](./python/examples/detection), [PaddleOCR](./python/examples/ocr), [PaddleRec](https://github.com/PaddlePaddle/PaddleRec/tree/master/tools/recserving/movie_recommender).
- Provide a variety of pre-processing and post-processing to facilitate users in training, deployment and other stages of related code, bridging the gap between AI developers and application developers, please refer to
[Serving Examples](./python/examples/).
<p align="center"> <p align="center">
<img src="doc/demo.gif" width="700"> <img src="doc/demo.gif" width="700">
</p> </p>
<h2 align="center">AIStudio Tutorial</h2>
Here we provide tutorial on AIStudio(Chinese Version) [AIStudio教程-Paddle Serving服务化部署框架](https://aistudio.baidu.com/aistudio/projectdetail/1550674)
The tutorial provides
<ul>
<li>Paddle Serving Environment Setup</li>
<ul>
<li>Running in docker images
<li>pip install Paddle Serving
</ul>
<li>Quick Experience of Paddle Serving</li>
<li>Advanced Tutorial of Model Deployment</li>
<ul>
<li>Save/Convert Models for Paddle Serving</li>
<li>Setup Online Inference Service</li>
</ul>
<li>Paddle Serving Examples</li>
<ul>
<li>Paddle Serving for Detections</li>
<li>Paddle Serving for OCR</li>
</ul>
</ul>
<h2 align="center">Installation</h2> <h2 align="center">Installation</h2>
We **highly recommend** you to **run Paddle Serving in Docker**, please visit [Run in Docker](https://github.com/PaddlePaddle/Serving/blob/develop/doc/RUN_IN_DOCKER.md). See the [document](doc/DOCKER_IMAGES.md) for more docker images. We **highly recommend** you to **run Paddle Serving in Docker**, please visit [Run in Docker](doc/RUN_IN_DOCKER.md). See the [document](doc/DOCKER_IMAGES.md) for more docker images.
**Attention:**: Currently, the default GPU environment of paddlepaddle 2.0 is Cuda 10.2, so the sample code of GPU Docker is based on Cuda 10.2. We also provides docker images and whl packages for other GPU environments. If users use other environments, they need to carefully check and select the appropriate version.
``` ```
# Run CPU Docker # Run CPU Docker
docker pull hub.baidubce.com/paddlepaddle/serving:latest docker pull registry.baidubce.com/paddlepaddle/serving:0.5.0-devel
docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:0.5.0-devel
docker exec -it test bash docker exec -it test bash
git clone https://github.com/PaddlePaddle/Serving
``` ```
``` ```
# Run GPU Docker # Run GPU Docker
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7 nvidia-docker pull registry.baidubce.com/paddlepaddle/serving:0.5.0-cuda10.2-cudnn8-devel
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7 nvidia-docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:0.5.0-cuda10.2-cudnn8-devel
nvidia-docker exec -it test bash nvidia-docker exec -it test bash
git clone https://github.com/PaddlePaddle/Serving
``` ```
```shell ```shell
pip install paddle-serving-client==0.4.0 pip install paddle-serving-client==0.5.0
pip install paddle-serving-server==0.4.0 # CPU pip install paddle-serving-server==0.5.0 # CPU
pip install paddle-serving-app==0.2.0 pip install paddle-serving-app==0.3.0
pip install paddle-serving-server-gpu==0.4.0.post9 # GPU with CUDA9.0 pip install paddle-serving-server-gpu==0.5.0.post102 #GPU with CUDA10.2 + TensorRT7
pip install paddle-serving-server-gpu==0.4.0.post10 # GPU with CUDA10.0 # DO NOT RUN ALL COMMANDS! check your GPU env and select the right one
pip install paddle-serving-server-gpu==0.4.0.100 # GPU with CUDA10.1+TensorRT pip install paddle-serving-server-gpu==0.5.0.post9 # GPU with CUDA9.0
pip install paddle-serving-server-gpu==0.5.0.post10 # GPU with CUDA10.0
pip install paddle-serving-server-gpu==0.5.0.post101 # GPU with CUDA10.1 + TensorRT6
pip install paddle-serving-server-gpu==0.5.0.post11 # GPU with CUDA10.1 + TensorRT7
``` ```
You may need to use a domestic mirror source (in China, you can use the Tsinghua mirror source, add `-i https://pypi.tuna.tsinghua.edu.cn/simple` to pip command) to speed up the download. You may need to use a domestic mirror source (in China, you can use the Tsinghua mirror source, add `-i https://pypi.tuna.tsinghua.edu.cn/simple` to pip command) to speed up the download.
If you need install modules compiled with develop branch, please download packages from [latest packages list](./doc/LATEST_PACKAGES.md) and install with `pip install` command. If you need install modules compiled with develop branch, please download packages from [latest packages list](./doc/LATEST_PACKAGES.md) and install with `pip install` command. If you want to compile by yourself, please refer to [How to compile Paddle Serving?](./doc/COMPILE.md)
Packages of paddle-serving-server and paddle-serving-server-gpu support Centos 6/7, Ubuntu 16/18, Windows 10. Packages of paddle-serving-server and paddle-serving-server-gpu support Centos 6/7, Ubuntu 16/18, Windows 10.
Packages of paddle-serving-client and paddle-serving-app support Linux and Windows, but paddle-serving-client only support python2.7/3.5/3.6/3.7. Packages of paddle-serving-client and paddle-serving-app support Linux and Windows, but paddle-serving-client only support python2.7/3.5/3.6/3.7/3.8.
Recommended to install paddle >= 1.8.4.
For **Windows Users**, please read the document [Paddle Serving for Windows Users](./doc/WINDOWS_TUTORIAL.md)
<h2 align="center"> Pre-built services with Paddle Serving</h2> Recommended to install paddle >= 2.0.0
<h3 align="center">Chinese Word Segmentation</h4> ```
# CPU users, please run
pip install paddlepaddle==2.0.0
``` shell # GPU Cuda10.2 please run
> python -m paddle_serving_app.package --get_model lac pip install paddlepaddle-gpu==2.0.0
> tar -xzf lac.tar.gz
> python lac_web_service.py lac_model/ lac_workdir 9393 &
> curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "我爱北京天安门"}], "fetch":["word_seg"]}' http://127.0.0.1:9393/lac/prediction
{"result":[{"word_seg":"我|爱|北京|天安门"}]}
``` ```
<h3 align="center">Image Classification</h4> **Note**: If your Cuda version is not 10.2, please do not execute the above commands directly, you need to refer to [Paddle official documentation-multi-version whl package list
](https://www.paddlepaddle.org.cn/documentation/docs/en/install/Tables_en.html#multi-version-whl-package-list-release)
<p align="center"> Select the url link of the corresponding GPU environment and install it. For example, for Python2.7 users of Cuda 9.0, please select `cp27-cp27mu` and
<br> The url corresponding to `cuda9.0_cudnn7-mkl`, copy it and run
<img src='https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg' width = "200" height = "200"> ```
<br> pip install https://paddle-wheel.bj.bcebos.com/2.0.0-gpu-cuda9-cudnn7-mkl/paddlepaddle_gpu-2.0.0.post90-cp27-cp27mu-linux_x86_64.whl
<p>
``` shell
> python -m paddle_serving_app.package --get_model resnet_v2_50_imagenet
> tar -xzf resnet_v2_50_imagenet.tar.gz
> python resnet50_imagenet_classify.py resnet50_serving_model &
> curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"image": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"}], "fetch": ["score"]}' http://127.0.0.1:9292/image/prediction
{"result":{"label":["daisy"],"prob":[0.9341403245925903]}}
``` ```
If it is other environment and Python version, please find the corresponding link in the table and install it with pip.
For **Windows Users**, please read the document [Paddle Serving for Windows Users](./doc/WINDOWS_TUTORIAL.md)
<h2 align="center">Quick Start Example</h2> <h2 align="center">Quick Start Example</h2>
This quick start example is only for users who already have a model to deploy and we prepare a ready-to-deploy model here. If you want to know how to use paddle serving from offline training to online serving, please reference to [Train_To_Service](https://github.com/PaddlePaddle/Serving/blob/develop/doc/TRAIN_TO_SERVICE.md) This quick start example is mainly for those users who already have a model to deploy, and we also provide a model that can be used for deployment. in case if you want to know how to complete the process from offline training to online service, please refer to the AiStudio tutorial above.
### Boston House Price Prediction model ### Boston House Price Prediction model
get into the Serving git directory, and change dir to `fit_a_line`
``` shell ``` shell
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz cd Serving/python/examples/fit_a_line
tar -xzf uci_housing.tar.gz sh get_data.sh
``` ```
Paddle Serving provides HTTP and RPC based service for users to access Paddle Serving provides HTTP and RPC based service for users to access
...@@ -123,6 +170,8 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po ...@@ -123,6 +170,8 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
| `ir_optim` | - | - | Enable analysis and optimization of calculation graph | | `ir_optim` | - | - | Enable analysis and optimization of calculation graph |
| `use_mkl` (Only for cpu version) | - | - | Run inference with MKL | | `use_mkl` (Only for cpu version) | - | - | Run inference with MKL |
| `use_trt` (Only for trt version) | - | - | Run inference with TensorRT | | `use_trt` (Only for trt version) | - | - | Run inference with TensorRT |
| `use_lite` (Only for ARM) | - | - | Run PaddleLite inference |
| `use_xpu` (Only for ARM+XPU) | - | - | Run PaddleLite XPU inference |
</center> </center>
...@@ -145,26 +194,8 @@ Here, `client.predict` function has two arguments. `feed` is a `python dict` wit ...@@ -145,26 +194,8 @@ Here, `client.predict` function has two arguments. `feed` is a `python dict` wit
Users can also put the data format processing logic on the server side, so that they can directly use curl to access the service, refer to the following case whose path is `python/examples/fit_a_line` Users can also put the data format processing logic on the server side, so that they can directly use curl to access the service, refer to the following case whose path is `python/examples/fit_a_line`
```python ```
from paddle_serving_server.web_service import WebService python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci
import numpy as np
class UciService(WebService):
def preprocess(self, feed=[], fetch=[]):
feed_batch = []
is_batch = True
new_data = np.zeros((len(feed), 1, 13)).astype("float32")
for i, ins in enumerate(feed):
nums = np.array(ins["x"]).reshape(1, 1, 13)
new_data[i] = nums
feed = {"x": new_data}
return feed, fetch, is_batch
uci_service = UciService(name="uci")
uci_service.load_model_config("uci_housing_model")
uci_service.prepare_server(workdir="workdir", port=9292)
uci_service.run_rpc_service()
uci_service.run_web_service()
``` ```
for client side, for client side,
``` ```
...@@ -175,32 +206,17 @@ the response is ...@@ -175,32 +206,17 @@ the response is
{"result":{"price":[[18.901151657104492]]}} {"result":{"price":[[18.901151657104492]]}}
``` ```
<h2 align="center">Some Key Features of Paddle Serving</h2>
- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed **with one line command**.
- **Industrial serving features** supported, such as models management, online loading, online A/B testing etc.
- **Distributed Key-Value indexing** supported which is especially useful for large scale sparse features as model inputs.
- **Highly concurrent and efficient communication** between clients and servers supported.
- **Multiple programming languages** supported on client side, such as Golang, C++ and python.
<h2 align="center">Document</h2> <h2 align="center">Document</h2>
### New to Paddle Serving ### New to Paddle Serving
- [How to save a servable model?](doc/SAVE.md) - [How to save a servable model?](doc/SAVE.md)
- [An End-to-end tutorial from training to inference service deployment](doc/TRAIN_TO_SERVICE.md)
- [Write Bert-as-Service in 10 minutes](doc/BERT_10_MINS.md) - [Write Bert-as-Service in 10 minutes](doc/BERT_10_MINS.md)
- [Paddle Serving Examples](python/examples)
### Tutorial at AIStudio
- [Introduction to PaddleServing](https://aistudio.baidu.com/aistudio/projectdetail/605819)
- [Image Segmentation on Paddle Serving](https://aistudio.baidu.com/aistudio/projectdetail/457715)
- [Sentimental Analysis](https://aistudio.baidu.com/aistudio/projectdetail/509014)
### Developers ### Developers
- [How to config Serving native operators on server side?](doc/SERVER_DAG.md)
- [How to develop a new Serving operator?](doc/NEW_OPERATOR.md)
- [How to develop a new Web Service?](doc/NEW_WEB_SERVICE.md) - [How to develop a new Web Service?](doc/NEW_WEB_SERVICE.md)
- [Golang client](doc/IMDB_GO_CLIENT.md)
- [Compile from source code](doc/COMPILE.md) - [Compile from source code](doc/COMPILE.md)
- [Develop Pipeline Serving](doc/PIPELINE_SERVING.md)
- [Deploy Web Service with uWSGI](doc/UWSGI_DEPLOY.md) - [Deploy Web Service with uWSGI](doc/UWSGI_DEPLOY.md)
- [Hot loading for model file](doc/HOT_LOADING_IN_SERVING.md) - [Hot loading for model file](doc/HOT_LOADING_IN_SERVING.md)
...@@ -211,15 +227,13 @@ the response is ...@@ -211,15 +227,13 @@ the response is
- [CPU Benchmarks(Chinese)](doc/BENCHMARKING.md) - [CPU Benchmarks(Chinese)](doc/BENCHMARKING.md)
- [GPU Benchmarks(Chinese)](doc/GPU_BENCHMARKING.md) - [GPU Benchmarks(Chinese)](doc/GPU_BENCHMARKING.md)
### FAQ
- [FAQ(Chinese)](doc/FAQ.md)
### Design ### Design
- [Design Doc](doc/DESIGN_DOC.md) - [Design Doc](doc/DESIGN_DOC.md)
<h2 align="center">Community</h2> ### FAQ
- [FAQ(Chinese)](doc/FAQ.md)
<h2 align="center">Community</h2>
### Slack ### Slack
......
...@@ -20,91 +20,135 @@ ...@@ -20,91 +20,135 @@
<br> <br>
<p> <p>
- [动机](./README_CN.md#动机)
- [教程](./README_CN.md#教程)
- [安装](./README_CN.md#安装)
- [快速开始示例](./README_CN.md#快速开始示例)
- [文档](README_CN.md#文档)
- [社区](README_CN.md#社区)
<h2 align="center">动机</h2> <h2 align="center">动机</h2>
Paddle Serving 旨在帮助深度学习开发者轻易部署在线预测服务。 **本项目目标**: 当用户使用 [Paddle](https://github.com/PaddlePaddle/Paddle) 训练了一个深度神经网络,就同时拥有了该模型的预测服务。 Paddle Serving 旨在帮助深度学习开发者轻易部署在线预测服务。 **本项目目标**: 当用户使用 [Paddle](https://github.com/PaddlePaddle/Paddle) 训练了一个深度神经网络,就同时拥有了该模型的预测服务。
<h3 align="center">Paddle Serving的核心功能</h3>
- 与Paddle训练紧密连接,绝大部分Paddle模型可以 **一键部署**.
- 支持 **工业级的服务能力** 例如模型管理,在线加载,在线A/B测试等.
- 支持客户端和服务端之间 **高并发和高效通信**.
- 支持 **多种编程语言** 开发客户端,例如C++, Python和Java.
***
- 任何经过[PaddlePaddle](https://github.com/paddlepaddle/paddle)训练的模型,都可以经过直接保存或是[模型转换接口](./doc/SAVE_CN.md),用于Paddle Serving在线部署。
- 支持[多模型串联服务部署](./doc/PIPELINE_SERVING_CN.md), 同时提供Rest接口和RPC接口以满足您的需求,[Pipeline示例](./python/examples/pipeline)
- 支持Paddle生态的各大模型库, 例如[PaddleDetection](./python/examples/detection)[PaddleOCR](./python/examples/ocr)[PaddleRec](https://github.com/PaddlePaddle/PaddleRec/tree/master/tools/recserving/movie_recommender)
- 提供丰富多彩的前后处理,方便用户在训练、部署等各阶段复用相关代码,弥合AI开发者和应用开发者之间的鸿沟,详情参考[模型示例](./python/examples/)
<p align="center"> <p align="center">
<img src="doc/demo.gif" width="700"> <img src="doc/demo.gif" width="700">
</p> </p>
<h2 align="center">教程</h2>
Paddle Serving开发者为您提供了简单易用的[AIStudio教程-Paddle Serving服务化部署框架](https://aistudio.baidu.com/aistudio/projectdetail/1550674)
教程提供了如下内容
<ul>
<li>Paddle Serving环境安装</li>
<ul>
<li>Docker镜像启动方式
<li>pip安装Paddle Serving
</ul>
<li>快速体验部署在线推理服务</li>
<li>部署在线推理服务进阶流程</li>
<ul>
<li>获取可用于部署在线服务的模型</li>
<li>启动推理服务</li>
</ul>
<li>Paddle Serving在线部署实例</li>
<ul>
<li>使用Paddle Serving部署图像检测服务</li>
<li>使用Paddle Serving部署OCR Pipeline在线服务</li>
</ul>
</ul>
<h2 align="center">安装</h2> <h2 align="center">安装</h2>
**强烈建议**您在**Docker内构建**Paddle Serving,请查看[如何在Docker中运行PaddleServing](doc/RUN_IN_DOCKER_CN.md)。更多镜像请查看[Docker镜像列表](doc/DOCKER_IMAGES_CN.md) **强烈建议**您在**Docker内构建**Paddle Serving,请查看[如何在Docker中运行PaddleServing](doc/RUN_IN_DOCKER_CN.md)。更多镜像请查看[Docker镜像列表](doc/DOCKER_IMAGES_CN.md)
**提示**:目前paddlepaddle 2.0版本的默认GPU环境是Cuda 10.2,因此GPU Docker的示例代码以Cuda 10.2为准。镜像和pip安装包也提供了其余GPU环境,用户如果使用其他环境,需要仔细甄别并选择合适的版本。
``` ```
# 启动 CPU Docker # 启动 CPU Docker
docker pull hub.baidubce.com/paddlepaddle/serving:latest docker pull registry.baidubce.com/paddlepaddle/serving:0.5.0-devel
docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:0.5.0-devel
docker exec -it test bash docker exec -it test bash
git clone https://github.com/PaddlePaddle/Serving
``` ```
``` ```
# 启动 GPU Docker # 启动 GPU Docker
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7 nvidia-docker pull registry.baidubce.com/paddlepaddle/serving:0.5.0-cuda10.2-cudnn8-devel
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7 nvidia-docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:0.5.0-cuda10.2-cudnn8-devel
nvidia-docker exec -it test bash nvidia-docker exec -it test bash
git clone https://github.com/PaddlePaddle/Serving
``` ```
```shell ```shell
pip install paddle-serving-client==0.4.0 pip install paddle-serving-client==0.5.0
pip install paddle-serving-server==0.4.0 # CPU pip install paddle-serving-server==0.5.0 # CPU
pip install paddle-serving-app==0.2.0 pip install paddle-serving-app==0.3.0
pip install paddle-serving-server-gpu==0.4.0.post9 # GPU with CUDA9.0 pip install paddle-serving-server-gpu==0.5.0.post102 #GPU with CUDA10.2 + TensorRT7
pip install paddle-serving-server-gpu==0.4.0.post10 # GPU with CUDA10.0 # 其他GPU环境需要确认环境再选择执行哪一条
pip install paddle-serving-server-gpu==0.4.0.100 # GPU with CUDA10.1+TensorRT pip install paddle-serving-server-gpu==0.5.0.post9 # GPU with CUDA9.0
pip install paddle-serving-server-gpu==0.5.0.post10 # GPU with CUDA10.0
pip install paddle-serving-server-gpu==0.5.0.post101 # GPU with CUDA10.1 + TensorRT6
pip install paddle-serving-server-gpu==0.5.0.post11 # GPU with CUDA10.1 + TensorRT7
``` ```
您可能需要使用国内镜像源(例如清华源, 在pip命令中添加`-i https://pypi.tuna.tsinghua.edu.cn/simple`)来加速下载。 您可能需要使用国内镜像源(例如清华源, 在pip命令中添加`-i https://pypi.tuna.tsinghua.edu.cn/simple`)来加速下载。
如果需要使用develop分支编译的安装包,请从[最新安装包列表](./doc/LATEST_PACKAGES.md)中获取下载地址进行下载,使用`pip install`命令进行安装。 如果需要使用develop分支编译的安装包,请从[最新安装包列表](./doc/LATEST_PACKAGES.md)中获取下载地址进行下载,使用`pip install`命令进行安装。如果您想自行编译,请参照[Paddle Serving编译文档](./doc/COMPILE_CN.md)
paddle-serving-server和paddle-serving-server-gpu安装包支持Centos 6/7, Ubuntu 16/18和Windows 10。 paddle-serving-server和paddle-serving-server-gpu安装包支持Centos 6/7, Ubuntu 16/18和Windows 10。
paddle-serving-client和paddle-serving-app安装包支持Linux和Windows,其中paddle-serving-client仅支持python2.7/3.5/3.6。 paddle-serving-client和paddle-serving-app安装包支持Linux和Windows,其中paddle-serving-client仅支持python2.7/3.5/3.6/3.7/3.8。
推荐安装1.8.4及以上版本的paddle
对于**Windows 10 用户**,请参考文档[Windows平台使用Paddle Serving指导](./doc/WINDOWS_TUTORIAL_CN.md) 推荐安装2.0.0及以上版本的paddle
<h2 align="center"> Paddle Serving预装的服务 </h2>
<h3 align="center">中文分词</h4>
``` shell
> python -m paddle_serving_app.package --get_model lac
> tar -xzf lac.tar.gz
> python lac_web_service.py lac_model/ lac_workdir 9393 &
> curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "我爱北京天安门"}], "fetch":["word_seg"]}' http://127.0.0.1:9393/lac/prediction
{"result":[{"word_seg":"我|爱|北京|天安门"}]}
``` ```
# CPU环境请执行
pip install paddlepaddle==2.0.0
<h3 align="center">图像分类</h4> # GPU Cuda10.2环境请执行
pip install paddlepaddle-gpu==2.0.0
```
<p align="center"> **注意**: 如果您的Cuda版本不是10.2,请勿直接执行上述命令,需要参考[Paddle官方文档-多版本whl包列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-release)
<br>
<img src='https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg' width = "200" height = "200">
<br>
<p>
``` shell 选择相应的GPU环境的url链接并进行安装,例如Cuda 9.0的Python2.7用户,请选择表格当中的`cp27-cp27mu``cuda9.0_cudnn7-mkl`对应的url,复制下来并执行
> python -m paddle_serving_app.package --get_model resnet_v2_50_imagenet ```
> tar -xzf resnet_v2_50_imagenet.tar.gz pip install https://paddle-wheel.bj.bcebos.com/2.0.0-gpu-cuda9-cudnn7-mkl/paddlepaddle_gpu-2.0.0.post90-cp27-cp27mu-linux_x86_64.whl
> python resnet50_imagenet_classify.py resnet50_serving_model &
> curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"image": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"}], "fetch": ["score"]}' http://127.0.0.1:9292/image/prediction
{"result":{"label":["daisy"],"prob":[0.9341403245925903]}}
``` ```
如果是其他环境和Python版本,请在表格中找到对应的链接并用pip安装。
对于**Windows 10 用户**,请参考文档[Windows平台使用Paddle Serving指导](./doc/WINDOWS_TUTORIAL_CN.md)
<h2 align="center">快速开始示例</h2> <h2 align="center">快速开始示例</h2>
这个快速开始示例主要是为了给那些已经有一个要部署的模型的用户准备的,而且我们也提供了一个可以用来部署的模型。如果您想知道如何从离线训练到在线服务走完全流程,请参考[从训练到部署](https://github.com/PaddlePaddle/Serving/blob/develop/doc/TRAIN_TO_SERVICE_CN.md) 这个快速开始示例主要是为了给那些已经有一个要部署的模型的用户准备的,而且我们也提供了一个可以用来部署的模型。如果您想知道如何从离线训练到在线服务走完全流程,请参考前文的AiStudio教程。
<h3 align="center">波士顿房价预测</h3> <h3 align="center">波士顿房价预测</h3>
进入到Serving的git目录下,进入到`fit_a_line`例子
``` shell ``` shell
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz cd Serving/python/examples/fit_a_line
tar -xzf uci_housing.tar.gz sh get_data.sh
``` ```
Paddle Serving 为用户提供了基于 HTTP 和 RPC 的服务 Paddle Serving 为用户提供了基于 HTTP 和 RPC 的服务
...@@ -127,10 +171,10 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po ...@@ -127,10 +171,10 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
| `mem_optim_off` | - | - | Disable memory optimization | | `mem_optim_off` | - | - | Disable memory optimization |
| `ir_optim` | - | - | Enable analysis and optimization of calculation graph | | `ir_optim` | - | - | Enable analysis and optimization of calculation graph |
| `use_mkl` (Only for cpu version) | - | - | Run inference with MKL | | `use_mkl` (Only for cpu version) | - | - | Run inference with MKL |
| `use_trt` (Only for trt version) | - | - | Run inference with TensorRT | | `use_trt` (Only for Cuda>=10.1 version) | - | - | Run inference with TensorRT |
| `use_lite` (Only for ARM) | - | - | Run PaddleLite inference |
| `use_xpu` (Only for ARM+XPU) | - | - | Run PaddleLite XPU inference |
我们使用 `curl` 命令来发送HTTP POST请求给刚刚启动的服务。用户也可以调用python库来发送HTTP POST请求,请参考英文文
[requests](https://requests.readthedocs.io/en/master/)
</center> </center>
``` python ``` python
...@@ -151,26 +195,8 @@ print(fetch_map) ...@@ -151,26 +195,8 @@ print(fetch_map)
<h3 align="center">HTTP服务</h3> <h3 align="center">HTTP服务</h3>
用户也可以将数据格式处理逻辑放在服务器端进行,这样就可以直接用curl去访问服务,参考如下案例,在目录`python/examples/fit_a_line` 用户也可以将数据格式处理逻辑放在服务器端进行,这样就可以直接用curl去访问服务,参考如下案例,在目录`python/examples/fit_a_line`
```python ```
from paddle_serving_server.web_service import WebService python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci
import numpy as np
class UciService(WebService):
def preprocess(self, feed=[], fetch=[]):
feed_batch = []
is_batch = True
new_data = np.zeros((len(feed), 1, 13)).astype("float32")
for i, ins in enumerate(feed):
nums = np.array(ins["x"]).reshape(1, 1, 13)
new_data[i] = nums
feed = {"x": new_data}
return feed, fetch, is_batch
uci_service = UciService(name="uci")
uci_service.load_model_config("uci_housing_model")
uci_service.prepare_server(workdir="workdir", port=9292)
uci_service.run_rpc_service()
uci_service.run_web_service()
``` ```
客户端输入 客户端输入
``` ```
...@@ -181,32 +207,17 @@ curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1 ...@@ -181,32 +207,17 @@ curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1
{"result":{"price":[[18.901151657104492]]}} {"result":{"price":[[18.901151657104492]]}}
``` ```
<h2 align="center">Paddle Serving的核心功能</h2>
- 与Paddle训练紧密连接,绝大部分Paddle模型可以 **一键部署**.
- 支持 **工业级的服务能力** 例如模型管理,在线加载,在线A/B测试等.
- 支持 **分布式键值对索引** 助力于大规模稀疏特征作为模型输入.
- 支持客户端和服务端之间 **高并发和高效通信**.
- 支持 **多种编程语言** 开发客户端,例如Golang,C++和Python.
<h2 align="center">文档</h2> <h2 align="center">文档</h2>
### 新手教程 ### 新手教程
- [怎样保存用于Paddle Serving的模型?](doc/SAVE_CN.md) - [怎样保存用于Paddle Serving的模型?](doc/SAVE_CN.md)
- [端到端完成从训练到部署全流程](doc/TRAIN_TO_SERVICE_CN.md)
- [十分钟构建Bert-As-Service](doc/BERT_10_MINS_CN.md) - [十分钟构建Bert-As-Service](doc/BERT_10_MINS_CN.md)
- [Paddle Serving示例合辑](python/examples)
### AIStudio教程
- [PaddleServing作业](https://aistudio.baidu.com/aistudio/projectdetail/605819)
- [PaddleServing图像分割](https://aistudio.baidu.com/aistudio/projectdetail/457715)
- [PaddleServing情感分析](https://aistudio.baidu.com/aistudio/projectdetail/509014)
### 开发者教程 ### 开发者教程
- [如何配置Server端的计算图?](doc/SERVER_DAG_CN.md)
- [如何开发一个新的General Op?](doc/NEW_OPERATOR_CN.md)
- [如何开发一个新的Web Service?](doc/NEW_WEB_SERVICE_CN.md) - [如何开发一个新的Web Service?](doc/NEW_WEB_SERVICE_CN.md)
- [如何在Paddle Serving使用Go Client?](doc/IMDB_GO_CLIENT_CN.md)
- [如何编译PaddleServing?](doc/COMPILE_CN.md) - [如何编译PaddleServing?](doc/COMPILE_CN.md)
- [如何开发Pipeline?](doc/PIPELINE_SERVING_CN.md)
- [如何使用uWSGI部署Web Service](doc/UWSGI_DEPLOY_CN.md) - [如何使用uWSGI部署Web Service](doc/UWSGI_DEPLOY_CN.md)
- [如何实现模型文件热加载](doc/HOT_LOADING_IN_SERVING_CN.md) - [如何实现模型文件热加载](doc/HOT_LOADING_IN_SERVING_CN.md)
...@@ -217,12 +228,12 @@ curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1 ...@@ -217,12 +228,12 @@ curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1
- [CPU版Benchmarks](doc/BENCHMARKING.md) - [CPU版Benchmarks](doc/BENCHMARKING.md)
- [GPU版Benchmarks](doc/GPU_BENCHMARKING.md) - [GPU版Benchmarks](doc/GPU_BENCHMARKING.md)
### FAQ
- [常见问答](doc/FAQ.md)
### 设计文档 ### 设计文档
- [Paddle Serving设计文档](doc/DESIGN_DOC_CN.md) - [Paddle Serving设计文档](doc/DESIGN_DOC_CN.md)
### FAQ
- [常见问答](doc/FAQ.md)
<h2 align="center">社区</h2> <h2 align="center">社区</h2>
### Slack ### Slack
......
...@@ -36,7 +36,7 @@ Here, we [use docker](RUN_IN_DOCKER.md) to start the server-side service. ...@@ -36,7 +36,7 @@ Here, we [use docker](RUN_IN_DOCKER.md) to start the server-side service.
First, start the BOW server, which enables the `8000` port: First, start the BOW server, which enables the `8000` port:
``` shell ``` shell
docker run -dit -v $PWD/imdb_bow_model:/model -p 8000:8000 --name bow-server hub.baidubce.com/paddlepaddle/serving:latest /bin/bash docker run -dit -v $PWD/imdb_bow_model:/model -p 8000:8000 --name bow-server registry.baidubce.com/paddlepaddle/serving:latest /bin/bash
docker exec -it bow-server /bin/bash docker exec -it bow-server /bin/bash
pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple
...@@ -47,7 +47,7 @@ exit ...@@ -47,7 +47,7 @@ exit
Similarly, start the LSTM server, which enables the `9000` port: Similarly, start the LSTM server, which enables the `9000` port:
```bash ```bash
docker run -dit -v $PWD/imdb_lstm_model:/model -p 9000:9000 --name lstm-server hub.baidubce.com/paddlepaddle/serving:latest /bin/bash docker run -dit -v $PWD/imdb_lstm_model:/model -p 9000:9000 --name lstm-server registry.baidubce.com/paddlepaddle/serving:latest /bin/bash
docker exec -it lstm-server /bin/bash docker exec -it lstm-server /bin/bash
pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple
......
...@@ -35,7 +35,7 @@ pip install Shapely ...@@ -35,7 +35,7 @@ pip install Shapely
首先启动BOW Server,该服务启用`8000`端口: 首先启动BOW Server,该服务启用`8000`端口:
```bash ```bash
docker run -dit -v $PWD/imdb_bow_model:/model -p 8000:8000 --name bow-server hub.baidubce.com/paddlepaddle/serving:latest /bin/bash docker run -dit -v $PWD/imdb_bow_model:/model -p 8000:8000 --name bow-server registry.baidubce.com/paddlepaddle/serving:latest /bin/bash
docker exec -it bow-server /bin/bash docker exec -it bow-server /bin/bash
pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple
...@@ -46,7 +46,7 @@ exit ...@@ -46,7 +46,7 @@ exit
同理启动LSTM Server,该服务启用`9000`端口: 同理启动LSTM Server,该服务启用`9000`端口:
```bash ```bash
docker run -dit -v $PWD/imdb_lstm_model:/model -p 9000:9000 --name lstm-server hub.baidubce.com/paddlepaddle/serving:latest /bin/bash docker run -dit -v $PWD/imdb_lstm_model:/model -p 9000:9000 --name lstm-server registry.baidubce.com/paddlepaddle/serving:latest /bin/bash
docker exec -it lstm-server /bin/bash docker exec -it lstm-server /bin/bash
pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple
......
# Paddle Serving Using Baidu Kunlun Chips
(English|[简体中文](./BAIDU_KUNLUN_XPU_SERVING_CN.md))
Paddle serving supports deployment using Baidu Kunlun chips. At present, the pilot support is deployed on the ARM server with Baidu Kunlun chips
(such as Phytium FT-2000+/64). We will improve
the deployment capability on various heterogeneous hardware servers in the future.
# Compilation and installation
Refer to [compile](COMPILE.md) document to setup the compilation environment。
## Compilatiton
* Compile the Serving Server
```
cd Serving
mkdir -p server-build-arm && cd server-build-arm
cmake -DPYTHON_INCLUDE_DIR=/usr/include/python3.7m/ \
-DPYTHON_LIBRARIES=/usr/lib64/libpython3.7m.so \
-DPYTHON_EXECUTABLE=/usr/bin/python \
-DWITH_PYTHON=ON \
-DWITH_LITE=ON \
-DWITH_XPU=ON \
-DSERVER=ON ..
make -j10
```
You can run `make install` to produce the target in `./output` directory. Add `-DCMAKE_INSTALL_PREFIX=./output` to specify the output path to CMake command shown above。
* Compile the Serving Client
```
mkdir -p client-build-arm && cd client-build-arm
cmake -DPYTHON_INCLUDE_DIR=/usr/include/python3.7m/ \
-DPYTHON_LIBRARIES=/usr/lib64/libpython3.7m.so \
-DPYTHON_EXECUTABLE=/usr/bin/python \
-DWITH_PYTHON=ON \
-DWITH_LITE=ON \
-DWITH_XPU=ON \
-DCLIENT=ON ..
make -j10
```
* Compile the App
```
cd Serving
mkdir -p app-build-arm && cd app-build-arm
cmake -DPYTHON_INCLUDE_DIR=/usr/include/python3.7m/ \
-DPYTHON_LIBRARIES=/usr/lib64/libpython3.7m.so \
-DPYTHON_EXECUTABLE=/usr/bin/python \
-DWITH_PYTHON=ON \
-DWITH_LITE=ON \
-DWITH_XPU=ON \
-DAPP=ON ..
make -j10
```
## Install the wheel package
After the compilations stages above, the whl package will be generated in ```python/dist/``` under the specific temporary directories.
For example, after the Server Compiation step,the whl package will be produced under the server-build-arm/python/dist directory, and you can run ```pip install -u python/dist/*.whl``` to install the package。
# Request parameters description
In order to deploy serving
service on the arm server with Baidu Kunlun xpu chips and use the acceleration capability of Paddle-Lite,please specify the following parameters during deployment。
|param|param description|about|
|:--|:--|:--|
|use_lite|using Paddle-Lite Engine|use the inference capability of Paddle-Lite|
|use_xpu|using Baidu Kunlun for inference|need to be used with the use_lite option|
|ir_optim|open the graph optimization|refer to[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite)|
# Deplyment examples
## Download the model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```
## Start RPC service
There are mainly three deployment methods:
* deploy on the ARM server with Baidu xpu using the acceleration capability of Paddle-Lite and xpu;
* deploy on the ARM server standalone with Paddle-Lite;
* deploy on the ARM server standalone without Paddle-Lite。
The first two deployment methods are recommended。
Start the rpc service, deploying on ARM server with Baidu Kunlun chips,and accelerate with Paddle-Lite and Baidu Kunlun xpu.
```
python3 -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 6 --port 9292 --use_lite --use_xpu --ir_optim
```
Start the rpc service, deploying on ARM server,and accelerate with Paddle-Lite.
```
python3 -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 6 --port 9292 --use_lite --ir_optim
```
Start the rpc service, deploying on ARM server.
```
python3 -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 6 --port 9292
```
##
```
from paddle_serving_client import Client
import numpy as np
client = Client()
client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
-0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
fetch_map = client.predict(feed={"x": np.array(data).reshape(1,13,1)}, fetch=["price"])
print(fetch_map)
```
Some examples are provided below, and other models can be modifed with reference to these examples。
|sample name|sample links|
|:-----|:--|
|fit_a_line|[fit_a_line_xpu](../python/examples/xpu/fit_a_line_xpu)|
|resnet|[resnet_v2_50_xpu](../python/examples/xpu/resnet_v2_50_xpu)|
# Paddle Serving使用百度昆仑芯片部署
(简体中文|[English](./BAIDU_KUNLUN_XPU_SERVING.md))
Paddle Serving支持使用百度昆仑芯片进行预测部署。目前试验性支持在百度昆仑芯片和arm服务器(如飞腾 FT-2000+/64)上进行部署,后续完善对其他异构硬件服务器部署能力。
# 编译、安装
基本环境配置可参考[该文档](COMPILE_CN.md)进行配置。
## 编译
* 编译server部分
```
cd Serving
mkdir -p server-build-arm && cd server-build-arm
cmake -DPYTHON_INCLUDE_DIR=/usr/include/python3.7m/ \
-DPYTHON_LIBRARIES=/usr/lib64/libpython3.7m.so \
-DPYTHON_EXECUTABLE=/usr/bin/python \
-DWITH_PYTHON=ON \
-DWITH_LITE=ON \
-DWITH_XPU=ON \
-DSERVER=ON ..
make -j10
```
可以执行`make install`把目标产出放在`./output`目录下,cmake阶段需添加`-DCMAKE_INSTALL_PREFIX=./output`选项来指定存放路径。
* 编译client部分
```
mkdir -p client-build-arm && cd client-build-arm
cmake -DPYTHON_INCLUDE_DIR=/usr/include/python3.7m/ \
-DPYTHON_LIBRARIES=/usr/lib64/libpython3.7m.so \
-DPYTHON_EXECUTABLE=/usr/bin/python \
-DWITH_PYTHON=ON \
-DWITH_LITE=ON \
-DWITH_XPU=ON \
-DCLIENT=ON ..
make -j10
```
* 编译app部分
```
cd Serving
mkdir -p app-build-arm && cd app-build-arm
cmake -DPYTHON_INCLUDE_DIR=/usr/include/python3.7m/ \
-DPYTHON_LIBRARIES=/usr/lib64/libpython3.7m.so \
-DPYTHON_EXECUTABLE=/usr/bin/python \
-DWITH_PYTHON=ON \
-DWITH_LITE=ON \
-DWITH_XPU=ON \
-DAPP=ON ..
make -j10
```
## 安装wheel包
以上编译步骤完成后,会在各自编译目录$build_dir/python/dist生成whl包,分别安装即可。例如server步骤,会在server-build-arm/python/dist目录下生成whl包, 使用命令```pip install -u xxx.whl```进行安装。
# 请求参数说明
为了支持arm+xpu服务部署,使用Paddle-Lite加速能力,请求时需使用以下参数。
|参数|参数说明|备注|
|:--|:--|:--|
|use_lite|使用Paddle-Lite Engine|使用Paddle-Lite cpu预测能力|
|use_xpu|使用Baidu Kunlun进行预测|该选项需要与use_lite配合使用|
|ir_optim|开启Paddle-Lite计算子图优化|详细见[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite)|
# 部署使用示例
## 下载模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```
## 启动rpc服务
主要有三种启动配置:
* 使用arm cpu+xpu部署,使用Paddle-Lite xpu优化加速能力;
* 单独使用arm cpu部署,使用Paddle-Lite优化加速能力;
* 使用arm cpu部署,不使用Paddle-Lite加速。
推荐使用前两种部署方式。
启动rpc服务,使用arm cpu+xpu部署,使用Paddle-Lite xpu优化加速能力
```
python3 -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 6 --port 9292 --use_lite --use_xpu --ir_optim
```
启动rpc服务,使用arm cpu部署, 使用Paddle-Lite加速能力
```
python3 -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 6 --port 9292 --use_lite --ir_optim
```
启动rpc服务,使用arm cpu部署, 不使用Paddle-Lite加速能力
```
python3 -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 6 --port 9292
```
## client调用
```
from paddle_serving_client import Client
import numpy as np
client = Client()
client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
-0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
fetch_map = client.predict(feed={"x": np.array(data).reshape(1,13,1)}, fetch=["price"])
print(fetch_map)
```
以下提供部分样例,其他模型可参照进行修改。
|示例名称|示例链接|
|:-----|:--|
|fit_a_line|[fit_a_line_xpu](../python/examples/xpu/fit_a_line_xpu)|
|resnet|[resnet_v2_50_xpu](../python/examples/xpu/resnet_v2_50_xpu)|
...@@ -2,35 +2,57 @@ ...@@ -2,35 +2,57 @@
([简体中文](./BERT_10_MINS_CN.md)|English) ([简体中文](./BERT_10_MINS_CN.md)|English)
The goal of Bert-As-Service is to give a sentence, and the service can represent the sentence as a semantic vector and return it to the user. [Bert model](https://arxiv.org/abs/1810.04805) is a popular model in the current NLP field. It has achieved good results on a variety of public NLP tasks. The semantic vector calculated by the Bert model is used as input to other NLP models, which will also greatly improve the performance of the model. Bert-As-Service allows users to easily obtain the semantic vector representation of text and apply it to their own tasks. In order to achieve this goal, we have shown in four steps that using Paddle Serving can build such a service in ten minutes. All the code and files in the example can be found in [Example](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/bert) of Paddle Serving. The goal of Bert-As-Service is to give a sentence, and the service can represent the sentence as a semantic vector and return it to the user. [Bert model](https://arxiv.org/abs/1810.04805) is a popular model in the current NLP field. It has achieved good results on a variety of public NLP tasks. The semantic vector calculated by the Bert model is used as input to other NLP models, which will also greatly improve the performance of the model. Bert-As-Service allows users to easily obtain the semantic vector representation of text and apply it to their own tasks. In order to achieve this goal, we have shown in five steps that using Paddle Serving can build such a service in ten minutes. All the code and files in the example can be found in [Example](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/bert) of Paddle Serving.
#### Step1: Save the serviceable model If your python version is 3.X, replace the 'pip' field in the following command with 'pip3',replace 'python' with 'python3'.
Paddle Serving supports various models trained based on Paddle, and saves the serviceable model by specifying the input and output variables of the model. For convenience, we can load a trained bert Chinese model from paddlehub and save a deployable service with two lines of code. The server and client configurations are placed in the `bert_seq20_model` and` bert_seq20_client` folders, respectively. ### Step1: Getting Model
[//file]:#bert_10.py #### method 1:
``` python This example use model [BERT Chinese Model](https://www.paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel) from [Paddlehub](https://github.com/PaddlePaddle/PaddleHub).
import paddlehub as hub
model_name = "bert_chinese_L-12_H-768_A-12"
module = hub.Module(model_name)
inputs, outputs, program = module.context(
trainable=True, max_seq_len=20)
feed_keys = ["input_ids", "position_ids", "segment_ids",
"input_mask"]
fetch_keys = ["pooled_output", "sequence_output"]
feed_dict = dict(zip(feed_keys, [inputs[x] for x in feed_keys]))
fetch_dict = dict(zip(fetch_keys, [outputs[x] for x in fetch_keys]))
import paddle_serving_client.io as serving_io Install paddlehub first
serving_io.save_model("bert_seq20_model", "bert_seq20_client",
feed_dict, fetch_dict, program)
``` ```
pip install paddlehub
```
run
```
python prepare_model.py 128
```
**PaddleHub only support Python 3.5+**
the 128 in the command above means max_seq_len in BERT model, which is the length of sample after preprocessing.
the config file and model file for server side are saved in the folder bert_seq128_model.
the config file generated for client side is saved in the folder bert_seq128_client.
#### method 2:
You can also download the above model from BOS(max_seq_len=128). After decompression, the config file and model file for server side are stored in the bert_chinese_L-12_H-768_A-12_model folder, and the config file generated for client side is stored in the bert_chinese_L-12_H-768_A-12_client folder:
```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
mv bert_chinese_L-12_H-768_A-12_model bert_seq128_model
mv bert_chinese_L-12_H-768_A-12_client bert_seq128_client
```
### Step2: Getting Dict and Sample Dataset
```
sh get_data.sh
```
this script will download Chinese Dictionary File vocab.txt and Chinese Sample Data data-c.txt
#### Step2: Launch Service
[//file]:#server.sh ### Step3: Launch Service
``` shell
python -m paddle_serving_server_gpu.serve --model bert_seq20_model --thread 10 --port 9292 --gpu_ids 0 start cpu inference service,Run
```
python -m paddle_serving_server.serve --model bert_seq128_model/ --port 9292 #cpu inference service
```
Or,start gpu inference service,Run
```
python -m paddle_serving_server_gpu.serve --model bert_seq128_model/ --port 9292 --gpu_ids 0 #launch gpu inference service at GPU 0
``` ```
| Parameters | Meaning | | Parameters | Meaning |
| ---------- | ---------------------------------------- | | ---------- | ---------------------------------------- |
...@@ -39,52 +61,55 @@ python -m paddle_serving_server_gpu.serve --model bert_seq20_model --thread 10 - ...@@ -39,52 +61,55 @@ python -m paddle_serving_server_gpu.serve --model bert_seq20_model --thread 10 -
| port | server port number | | port | server port number |
| gpu_ids | GPU index number | | gpu_ids | GPU index number |
#### Step3: data preprocessing logic on Client Side ### Step4: data preprocessing logic on Client Side
Paddle Serving has many built-in corresponding data preprocessing logics. For the calculation of Chinese Bert semantic representation, we use the ChineseBertReader class under paddle_serving_app for data preprocessing. Model input fields of multiple models corresponding to a raw Chinese sentence can be easily fetched by developers Paddle Serving has many built-in corresponding data preprocessing logics. For the calculation of Chinese Bert semantic representation, we use the ChineseBertReader class under paddle_serving_app for data preprocessing. Model input fields of multiple models corresponding to a raw Chinese sentence can be easily fetched by developers
Install paddle_serving_app Install paddle_serving_app
[//file]:#pip_app.sh
```shell ```shell
pip install paddle_serving_app pip install paddle_serving_app
``` ```
#### Step4: Client Visit Serving ### Step5: Client Visit Serving
the script of client side bert_client.py is as follow:
[//file]:#bert_client.py #### method 1: RPC Inference
``` python
import sys
from paddle_serving_client import Client
from paddle_serving_client.utils import benchmark_args
from paddle_serving_app.reader import ChineseBertReader
import numpy as np
args = benchmark_args()
reader = ChineseBertReader({"max_seq_len": 128}) Run
fetch = ["pooled_output"] ```
endpoint_list = ['127.0.0.1:9292'] head data-c.txt | python bert_client.py --model bert_seq128_client/serving_client_conf.prototxt
client = Client() ```
client.load_client_config(args.model)
client.connect(endpoint_list) the client reads data from data-c.txt and send prediction request, the prediction is given by word vector. (Due to massive data in the word vector, we do not print it).
#### method 2: HTTP Inference
for line in sys.stdin: This method is divided into two steps:
feed_dict = reader.process(line)
for key in feed_dict.keys(): 1. Start an HTTP prediction server.
feed_dict[key] = np.array(feed_dict[key]).reshape((128, 1))
result = client.predict(feed=feed_dict, fetch=fetch, batch=False) start cpu HTTP inference service,Run
```
python bert_web_service.py bert_seq128_model/ 9292 #launch cpu inference service
``` ```
run Or,start gpu HTTP inference service,Run
```
export CUDA_VISIBLE_DEVICES=0,1
```
set environmental variable to specify which gpus are used, the command above means gpu 0 and gpu 1 is used.
```
python bert_web_service_gpu.py bert_seq128_model/ 9292 #launch gpu inference service
```
[//file]:#bert_10_cli.sh 2. Prediction via HTTP request
```shell
cat data.txt | python bert_client.py
``` ```
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "hello"}], "fetch":["pooled_output"]}' http://127.0.0.1:9292/bert/prediction
```
read samples from data.txt, print results at the standard output.
### Benchmark ### Benchmark
......
...@@ -2,30 +2,56 @@ ...@@ -2,30 +2,56 @@
(简体中文|[English](./BERT_10_MINS.md)) (简体中文|[English](./BERT_10_MINS.md))
Bert-As-Service的目标是给定一个句子,服务可以将句子表示成一个语义向量返回给用户。[Bert模型](https://arxiv.org/abs/1810.04805)是目前NLP领域的热门模型,在多种公开的NLP任务上都取得了很好的效果,使用Bert模型计算出的语义向量来做其他NLP模型的输入对提升模型的表现也有很大的帮助。Bert-As-Service可以让用户很方便地获取文本的语义向量表示并应用到自己的任务中。为了实现这个目标,我们通过个步骤说明使用Paddle Serving在十分钟内就可以搭建一个这样的服务。示例中所有的代码和文件均可以在Paddle Serving的[示例](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/bert)中找到。 Bert-As-Service的目标是给定一个句子,服务可以将句子表示成一个语义向量返回给用户。[Bert模型](https://arxiv.org/abs/1810.04805)是目前NLP领域的热门模型,在多种公开的NLP任务上都取得了很好的效果,使用Bert模型计算出的语义向量来做其他NLP模型的输入对提升模型的表现也有很大的帮助。Bert-As-Service可以让用户很方便地获取文本的语义向量表示并应用到自己的任务中。为了实现这个目标,我们通过以下几个步骤说明使用Paddle Serving在十分钟内就可以搭建一个这样的服务。示例中所有的代码和文件均可以在Paddle Serving的[示例](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/bert)中找到。
#### Step1:保存可服务模型
Paddle Serving支持基于Paddle进行训练的各种模型,并通过指定模型的输入和输出变量来保存可服务模型。为了方便,我们可以从paddlehub加载一个已经训练好的bert中文模型,并利用两行代码保存一个可部署的服务,服务端和客户端的配置分别放在`bert_seq20_model``bert_seq20_client`文件夹。 若使用python的版本为3.X, 将以下命令中的pip 替换为pip3, python替换为python3.
``` python
import paddlehub as hub
model_name = "bert_chinese_L-12_H-768_A-12"
module = hub.Module(model_name)
inputs, outputs, program = module.context(trainable=True, max_seq_len=20)
feed_keys = ["input_ids", "position_ids", "segment_ids", "input_mask"]
fetch_keys = ["pooled_output", "sequence_output"]
feed_dict = dict(zip(feed_keys, [inputs[x] for x in feed_keys]))
fetch_dict = dict(zip(fetch_keys, [outputs[x] for x in fetch_keys]))
import paddle_serving_client.io as serving_io ### Step1:获取模型
serving_io.save_model("bert_seq20_model", "bert_seq20_client", feed_dict, fetch_dict, program) #### 方法1:
示例中采用[Paddlehub](https://github.com/PaddlePaddle/PaddleHub)中的[BERT中文模型](https://www.paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel)
请先安装paddlehub
``` ```
pip install paddlehub
```
执行
```
python prepare_model.py 128
```
参数128表示BERT模型中的max_seq_len,即预处理后的样本长度。
生成server端配置文件与模型文件,存放在bert_seq128_model文件夹。
生成client端配置文件,存放在bert_seq128_client文件夹。
#### 方法2:
您也可以从bos上直接下载上述模型(max_seq_len=128),解压后server端配置文件与模型文件存放在bert_chinese_L-12_H-768_A-12_model文件夹,client端配置文件存放在bert_chinese_L-12_H-768_A-12_client文件夹:
```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
mv bert_chinese_L-12_H-768_A-12_model bert_seq128_model
mv bert_chinese_L-12_H-768_A-12_client bert_seq128_client
```
#### Step2:启动服务 ### Step2:获取词典和样例数据
```
sh get_data.sh
```
脚本将下载中文词典vocab.txt和中文样例数据data-c.txt
### Step3:启动服务
启动cpu预测服务,执行
```
python -m paddle_serving_server.serve --model bert_seq128_model/ --port 9292 #启动cpu预测服务
```
或者,启动gpu预测服务,执行
```
python -m paddle_serving_server_gpu.serve --model bert_seq128_model/ --port 9292 --gpu_ids 0 #在gpu 0上启动gpu预测服务
``` shell
python -m paddle_serving_server_gpu.serve --model bert_seq20_model --port 9292 --gpu_ids 0
``` ```
| 参数 | 含义 | | 参数 | 含义 |
...@@ -35,7 +61,8 @@ python -m paddle_serving_server_gpu.serve --model bert_seq20_model --port 9292 - ...@@ -35,7 +61,8 @@ python -m paddle_serving_server_gpu.serve --model bert_seq20_model --port 9292 -
| port | server端端口号 | | port | server端端口号 |
| gpu_ids | GPU索引号 | | gpu_ids | GPU索引号 |
#### Step3:客户端数据预处理逻辑
### Step4:客户端数据预处理逻辑
Paddle Serving内建了很多经典典型对应的数据预处理逻辑,对于中文Bert语义表示的计算,我们采用paddle_serving_app下的ChineseBertReader类进行数据预处理,开发者可以很容易获得一个原始的中文句子对应的多个模型输入字段。 Paddle Serving内建了很多经典典型对应的数据预处理逻辑,对于中文Bert语义表示的计算,我们采用paddle_serving_app下的ChineseBertReader类进行数据预处理,开发者可以很容易获得一个原始的中文句子对应的多个模型输入字段。
...@@ -45,39 +72,40 @@ Paddle Serving内建了很多经典典型对应的数据预处理逻辑,对于 ...@@ -45,39 +72,40 @@ Paddle Serving内建了很多经典典型对应的数据预处理逻辑,对于
pip install paddle_serving_app pip install paddle_serving_app
``` ```
#### Step4:客户端访问 ### Step5:客户端访问
#### 方法1:通过RPC方式执行预测
执行
```
head data-c.txt | python bert_client.py --model bert_seq128_client/serving_client_conf.prototxt
客户端脚本 bert_client.py内容如下 ```
启动client读取data-c.txt中的数据进行预测,预测结果为文本的向量表示(由于数据较多,脚本中没有将输出进行打印),server端的地址在脚本中修改。
``` python
import sys
from paddle_serving_client import Client
from paddle_serving_client.utils import benchmark_args
from paddle_serving_app.reader import ChineseBertReader
import numpy as np
args = benchmark_args()
reader = ChineseBertReader({"max_seq_len": 128}) #### 方法2:通过HTTP方式执行预测
fetch = ["pooled_output"] 该方式分为两步
endpoint_list = ['127.0.0.1:9292'] 1、启动一个HTTP预测服务端。
client = Client()
client.load_client_config(args.model)
client.connect(endpoint_list)
for line in sys.stdin: 启动cpu HTTP预测服务,执行
feed_dict = reader.process(line)
for key in feed_dict.keys():
feed_dict[key] = np.array(feed_dict[key]).reshape((128, 1))
result = client.predict(feed=feed_dict, fetch=fetch, batch=False)
``` ```
python bert_web_service.py bert_seq128_model/ 9292 #启动CPU预测服务
执行 ```
```shell 或者,启动gpu HTTP预测服务,执行
cat data.txt | python bert_client.py ```
export CUDA_VISIBLE_DEVICES=0,1
```
通过环境变量指定gpu预测服务使用的gpu,示例中指定索引为0和1的两块gpu
```
python bert_web_service_gpu.py bert_seq128_model/ 9292 #启动gpu预测服务
``` ```
从data.txt文件中读取样例,并将结果打印到标准输出。 2、通过HTTP请求执行预测。
```
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "hello"}], "fetch":["pooled_output"]}' http://127.0.0.1:9292/bert/prediction
```
### 性能测试 ### 性能测试
......
...@@ -6,12 +6,11 @@ ...@@ -6,12 +6,11 @@
| module | version | | module | version |
| :--------------------------: | :-------------------------------: | | :--------------------------: | :-------------------------------: |
| OS | CentOS 7 | | OS | Ubuntu16 and 18/CentOS 7 |
| gcc | 4.8.5 and later | | gcc | 4.8.5(Cuda 9.0 and 10.0) and 8.2(Others) |
| gcc-c++ | 4.8.5 and later | | gcc-c++ | 4.8.5(Cuda 9.0 and 10.0) and 8.2(Others) |
| git | 3.82 and later |
| cmake | 3.2.0 and later | | cmake | 3.2.0 and later |
| Python | 2.7.2 and later / 3.6 and later | | Python | 2.7.2 and later / 3.5.1 and later |
| Go | 1.9.2 and later | | Go | 1.9.2 and later |
| git | 2.17.1 and later | | git | 2.17.1 and later |
| glibc-static | 2.17 | | glibc-static | 2.17 |
...@@ -19,19 +18,13 @@ ...@@ -19,19 +18,13 @@
| bzip2-devel | 1.0.6 and later | | bzip2-devel | 1.0.6 and later |
| python-devel / python3-devel | 2.7.5 and later / 3.6.8 and later | | python-devel / python3-devel | 2.7.5 and later / 3.6.8 and later |
| sqlite-devel | 3.7.17 and later | | sqlite-devel | 3.7.17 and later |
| patchelf | 0.9 and later | | patchelf | 0.9 |
| libXext | 1.3.3 | | libXext | 1.3.3 |
| libSM | 1.2.2 | | libSM | 1.2.2 |
| libXrender | 0.9.10 | | libXrender | 0.9.10 |
It is recommended to use Docker for compilation. We have prepared the Paddle Serving compilation environment for you, see [this document](DOCKER_IMAGES.md). It is recommended to use Docker for compilation. We have prepared the Paddle Serving compilation environment for you, see [this document](DOCKER_IMAGES.md).
This document will take Python2 as an example to show how to compile Paddle Serving. If you want to compile with Python3, just adjust the Python options of cmake:
- Set `DPYTHON_INCLUDE_DIR` to `$PYTHONROOT/include/python3.6m/`
- Set `DPYTHON_LIBRARIES` to `$PYTHONROOT/lib64/libpython3.6.so`
- Set `DPYTHON_EXECUTABLE` to `$PYTHONROOT/bin/python3.6`
## Get Code ## Get Code
``` python ``` python
...@@ -39,19 +32,47 @@ git clone https://github.com/PaddlePaddle/Serving ...@@ -39,19 +32,47 @@ git clone https://github.com/PaddlePaddle/Serving
cd Serving && git submodule update --init --recursive cd Serving && git submodule update --init --recursive
``` ```
## PYTHONROOT settings
## PYTHONROOT Setting
```shell ```shell
# for example, the path of python is /usr/bin/python, you can set /usr as PYTHONROOT # For example, the path of python is /usr/bin/python, you can set PYTHONROOT
export PYTHONROOT=/usr/ export PYTHONROOT=/usr
``` ```
In the default centos7 image we provide, the Python path is `/usr/bin/python`. If you want to use our centos6 image, you need to set it to `export PYTHONROOT=/usr/local/python2.7/`. If you are using a Docker development image, please follow the following to determine the Python version to be compiled, and set the corresponding environment variables
```
#Python 2.7
export PYTHONROOT=/usr/local/python2.7.15/
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python2.7
#Python 3.5
export PYTHONROOT=/usr/local/python3.5.1
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.5m
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.5m.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.5
#Python3.6
export PYTHONROOT=/usr/local/
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.6m
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.6m.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.6
#Python3.7
export PYTHONROOT=/usr/local/
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.7m
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.7m.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.7
#Python3.8
export PYTHONROOT=/usr/local/
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.8
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.8.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.8
```
## Install Python dependencies ## Install Python dependencies
...@@ -59,14 +80,11 @@ In the default centos7 image we provide, the Python path is `/usr/bin/python`. I ...@@ -59,14 +80,11 @@ In the default centos7 image we provide, the Python path is `/usr/bin/python`. I
pip install -r python/requirements.txt pip install -r python/requirements.txt
``` ```
If Python3 is used, replace `pip` with `pip3`. If you use other Python version, please use the right `pip` accordingly.
## GOPATH Setting ## GOPATH Setting
The default GOPATH is set to `$HOME/go`, you can also set it to other values. **If it is the Docker environment provided by Serving, you do not need to set up.**
## Compile Arguments
The default GOPATH is `$HOME/go`, which you can set to other values.
```shell ```shell
export GOPATH=$HOME/go export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin export PATH=$PATH:$GOPATH/bin
...@@ -100,52 +118,42 @@ make -j10 ...@@ -100,52 +118,42 @@ make -j10
you can execute `make install` to put targets under directory `./output`, you need to add`-DCMAKE_INSTALL_PREFIX=./output`to specify output path to cmake command shown above. you can execute `make install` to put targets under directory `./output`, you need to add`-DCMAKE_INSTALL_PREFIX=./output`to specify output path to cmake command shown above.
### Integrated GPU version paddle inference library ### Integrated GPU version paddle inference library
### CUDA_PATH is the cuda install path,use the command(whereis cuda) to check,it should be /usr/local/cuda.
### CUDNN_LIBRARY && CUDA_CUDART_LIBRARY is the lib path, it should be /usr/local/cuda/lib64/
``` shell Compared with CPU environment, GPU environment needs to refer to the following table,
export CUDA_PATH='/usr/local/cuda' **It should be noted that the following table is used as a reference for non-Docker compilation environment. The Docker compilation environment has been configured with relevant parameters and does not need to be specified in cmake process. **
export CUDNN_LIBRARY='/usr/local/cuda/lib64/'
export CUDA_CUDART_LIBRARY="/usr/local/cuda/lib64/"
mkdir server-build-gpu && cd server-build-gpu | cmake environment variable | meaning | GPU environment considerations | whether Docker environment is needed |
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ |-----------------------|------------------------- ------------|-------------------------------|----- ---------------|
-DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ | CUDA_TOOLKIT_ROOT_DIR | cuda installation path, usually /usr/local/cuda | Required for all environments | No
-DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ (/usr/local/cuda) |
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \ | CUDNN_LIBRARY | The directory where libcudnn.so.* is located, usually /usr/local/cuda/lib64/ | Required for all environments | No (/usr/local/cuda/lib64/) |
-DCUDNN_LIBRARY=${CUDNN_LIBRARY} \ | CUDA_CUDART_LIBRARY | The directory where libcudart.so.* is located, usually /usr/local/cuda/lib64/ | Required for all environments | No (/usr/local/cuda/lib64/) |
-DCUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY} \ | TENSORRT_ROOT | The upper level directory of the directory where libnvinfer.so.* is located, depends on the TensorRT installation directory | Cuda 9.0/10.0 does not need, other needs | No (/usr) |
-DSERVER=ON \
-DWITH_GPU=ON ..
make -j10
```
### Integrated TRT version paddle inference library If not in Docker environment, users can refer to the following execution methods. The specific path is subject to the current environment, and the code is only for reference.
``` ``` shell
export CUDA_PATH='/usr/local/cuda' export CUDA_PATH='/usr/local/cuda'
export CUDNN_LIBRARY='/usr/local/cuda/lib64/' export CUDNN_LIBRARY='/usr/local/cuda/lib64/'
export CUDA_CUDART_LIBRARY="/usr/local/cuda/lib64/" export CUDA_CUDART_LIBRARY="/usr/local/cuda/lib64/"
export TENSORRT_LIBRARY_PATH="/usr/local/TensorRT-6.0.1.5/targets/x86_64-linux-gnu/"
mkdir server-build-trt && cd server-build-trt mkdir server-build-gpu && cd server-build-gpu
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
-DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ -DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ -DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DTENSORRT_ROOT=${TENSORRT_LIBRARY_PATH} \
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \ -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \
-DCUDNN_LIBRARY=${CUDNN_LIBRARY} \ -DCUDNN_LIBRARY=${CUDNN_LIBRARY} \
-DCUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY} \ -DCUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY} \
-DTENSORRT_ROOT=${TENSORRT_LIBRARY_PATH}
-DSERVER=ON \ -DSERVER=ON \
-DWITH_GPU=ON \ -DWITH_GPU=ON ..
-DWITH_TRT=ON ..
make -j10 make -j10
``` ```
execute `make install` to put targets under directory `./output` Execute `make install` to put the target output in the `./output` directory.
**Attention:** After the compilation is successful, you need to set the path of `SERVING_BIN`. See [Note](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE.md#Note) for details.
**Note:** After the compilation is successful, you need to set the `SERVING_BIN` path, see the following [Notes](COMPILE.md#Notes) ).
## Compile Client ## Compile Client
...@@ -208,7 +216,6 @@ Please use the example under `python/examples` to verify. ...@@ -208,7 +216,6 @@ Please use the example under `python/examples` to verify.
| CLIENT | Compile Paddle Serving Client | OFF | | CLIENT | Compile Paddle Serving Client | OFF |
| SERVER | Compile Paddle Serving Server | OFF | | SERVER | Compile Paddle Serving Server | OFF |
| APP | Compile Paddle Serving App package | OFF | | APP | Compile Paddle Serving App package | OFF |
| WITH_ELASTIC_CTR | Compile ELASITC-CTR solution | OFF |
| PACK | Compile for whl | OFF | | PACK | Compile for whl | OFF |
### WITH_GPU Option ### WITH_GPU Option
...@@ -231,10 +238,12 @@ Note here: ...@@ -231,10 +238,12 @@ Note here:
The following is the base library version matching relationship used by the PaddlePaddle release version for reference: The following is the base library version matching relationship used by the PaddlePaddle release version for reference:
| | CUDA | CuDNN | TensorRT | | | CUDA | CuDNN | TensorRT |
| :----: | :-----: | :----------------------: | :----: | | :----: | :-----: | :----------: | :----: |
| post9 | 9.0 | CuDNN 7.3.1 for CUDA 9.0 | | | post9 | 9.0 | CuDNN 7.6.4 | |
| post10 | 10.0 | CuDNN 7.5.1 for CUDA 10.0| | | post10 | 10.0 | CuDNN 7.6.5 | |
| trt | 10.1 | CuDNN 7.5.1 for CUDA 10.1| 6.0.1.5 | | post101 | 10.1 | CuDNN 7.6.5 | 6.0.1 |
| post102 | 10.2 | CuDNN 8.0.5 | 7.1.3 |
| post11 | 11.0 | CuDNN 8.0.4 | 7.1.3 |
### How to make the compiler detect the CuDNN library ### How to make the compiler detect the CuDNN library
......
...@@ -6,12 +6,11 @@ ...@@ -6,12 +6,11 @@
| 组件 | 版本要求 | | 组件 | 版本要求 |
| :--------------------------: | :-------------------------------: | | :--------------------------: | :-------------------------------: |
| OS | CentOS 7 | | OS | Ubuntu16 and 18/CentOS 7 |
| gcc | 4.8.5 and later | | gcc | 4.8.5(Cuda 9.0 and 10.0) and 8.2(Others) |
| gcc-c++ | 4.8.5 and later | | gcc-c++ | 4.8.5(Cuda 9.0 and 10.0) and 8.2(Others) |
| git | 3.82 and later |
| cmake | 3.2.0 and later | | cmake | 3.2.0 and later |
| Python | 2.7.2 and later / 3.6 and later | | Python | 2.7.2 and later / 3.5.1 and later |
| Go | 1.9.2 and later | | Go | 1.9.2 and later |
| git | 2.17.1 and later | | git | 2.17.1 and later |
| glibc-static | 2.17 | | glibc-static | 2.17 |
...@@ -24,13 +23,7 @@ ...@@ -24,13 +23,7 @@
| libSM | 1.2.2 | | libSM | 1.2.2 |
| libXrender | 0.9.10 | | libXrender | 0.9.10 |
推荐使用Docker编译,我们已经为您准备好了Paddle Serving编译环境,详见[该文档](DOCKER_IMAGES_CN.md) 推荐使用Docker编译,我们已经为您准备好了Paddle Serving编译环境并配置好了上述编译依赖,详见[该文档](DOCKER_IMAGES_CN.md)
本文档将以Python2为例介绍如何编译Paddle Serving。如果您想用Python3进行编译,只需要调整cmake的Python相关选项即可:
-`DPYTHON_INCLUDE_DIR`设置为`$PYTHONROOT/include/python3.6m/`
-`DPYTHON_LIBRARIES`设置为`$PYTHONROOT/lib64/libpython3.6.so`
-`DPYTHON_EXECUTABLE`设置为`$PYTHONROOT/bin/python3.6`
## 获取代码 ## 获取代码
...@@ -39,19 +32,46 @@ git clone https://github.com/PaddlePaddle/Serving ...@@ -39,19 +32,46 @@ git clone https://github.com/PaddlePaddle/Serving
cd Serving && git submodule update --init --recursive cd Serving && git submodule update --init --recursive
``` ```
## PYTHONROOT设置 ## PYTHONROOT设置
```shell ```shell
# 例如python的路径为/usr/bin/python,可以设置PYTHONROOT # 例如python的路径为/usr/bin/python,可以设置PYTHONROOT
export PYTHONROOT=/usr/ export PYTHONROOT=/usr
``` ```
我们提供默认Centos7的Python路径为`/usr/bin/python`,如果您要使用我们的Centos6镜像,需要将其设置为`export PYTHONROOT=/usr/local/python2.7/` 如果您使用的是Docker开发镜像,请按照如下,确定好需要编译的Python版本,设置对应的环境变量
```
#Python 2.7
export PYTHONROOT=/usr/local/python2.7.15/
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python2.7
#Python 3.5
export PYTHONROOT=/usr/local/python3.5.1
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.5m
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.5m.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.5
#Python3.6
export PYTHONROOT=/usr/local/
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.6m
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.6m.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.6
#Python3.7
export PYTHONROOT=/usr/local/
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.7m
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.7m.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.7
#Python3.8
export PYTHONROOT=/usr/local/
export PYTHON_INCLUDE_DIR=$PYTHONROOT/include/python3.8
export PYTHON_LIBRARIES=$PYTHONROOT/lib/libpython3.8.so
export PYTHON_EXECUTABLE=$PYTHONROOT/bin/python3.8
```
## 安装Python依赖 ## 安装Python依赖
...@@ -59,11 +79,11 @@ export PYTHONROOT=/usr/ ...@@ -59,11 +79,11 @@ export PYTHONROOT=/usr/
pip install -r python/requirements.txt pip install -r python/requirements.txt
``` ```
如果使用 Python3,请以 `pip3` 替换 `pip` 如果使用其他Python版本,请使用对应版本的`pip`
## GOPATH 设置 ## GOPATH 设置
默认 GOPATH 设置为 `$HOME/go`,您也可以设置为其他值。 默认 GOPATH 设置为 `$HOME/go`,您也可以设置为其他值。** 如果是Serving提供的Docker环境,可以不需要设置。**
```shell ```shell
export GOPATH=$HOME/go export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin export PATH=$PATH:$GOPATH/bin
...@@ -87,9 +107,9 @@ go get -u google.golang.org/grpc@v1.33.0 ...@@ -87,9 +107,9 @@ go get -u google.golang.org/grpc@v1.33.0
``` shell ``` shell
mkdir server-build-cpu && cd server-build-cpu mkdir server-build-cpu && cd server-build-cpu
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR/ \
-DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ -DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ -DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DSERVER=ON .. -DSERVER=ON ..
make -j10 make -j10
``` ```
...@@ -97,44 +117,35 @@ make -j10 ...@@ -97,44 +117,35 @@ make -j10
可以执行`make install`把目标产出放在`./output`目录下,cmake阶段需添加`-DCMAKE_INSTALL_PREFIX=./output`选项来指定存放路径。 可以执行`make install`把目标产出放在`./output`目录下,cmake阶段需添加`-DCMAKE_INSTALL_PREFIX=./output`选项来指定存放路径。
### 集成GPU版本Paddle Inference Library ### 集成GPU版本Paddle Inference Library
### CUDA_PATH是cuda的安装路径,可以使用命令行whereis cuda命令确认你的cuda安装路径,通常应该是/usr/local/cuda
### CUDNN_LIBRARY CUDA_CUDART_LIBRARY 是cuda库文件的路径,通常应该是/usr/local/cuda/lib64/
``` shell
export CUDA_PATH='/usr/local/cuda'
export CUDNN_LIBRARY='/usr/local/cuda/lib64/'
export CUDA_CUDART_LIBRARY="/usr/local/cuda/lib64/"
mkdir server-build-gpu && cd server-build-gpu 相比CPU环境,GPU环境需要参考以下表格,
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ **需要说明的是,以下表格对非Docker编译环境作为参考,Docker编译环境已经配置好相关参数,无需在cmake过程指定。**
-DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \
-DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \
-DCUDNN_LIBRARY=${CUDNN_LIBRARY} \
-DCUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY} \
-DSERVER=ON \
-DWITH_GPU=ON ..
make -j10
```
### 集成TensorRT版本Paddle Inference Library | cmake环境变量 | 含义 | GPU环境注意事项 | Docker环境是否需要 |
|-----------------------|-------------------------------------|-------------------------------|--------------------|
| CUDA_TOOLKIT_ROOT_DIR | cuda安装路径,通常为/usr/local/cuda | 全部环境都需要 | 否(/usr/local/cuda) |
| CUDNN_LIBRARY | libcudnn.so.*所在目录,通常为/usr/local/cuda/lib64/ | 全部环境都需要 | 否(/usr/local/cuda/lib64/) |
| CUDA_CUDART_LIBRARY | libcudart.so.*所在目录,通常为/usr/local/cuda/lib64/ | 全部环境都需要 | 否(/usr/local/cuda/lib64/) |
| TENSORRT_ROOT | libnvinfer.so.*所在目录的上一级目录,取决于TensorRT安装目录 | Cuda 9.0/10.0不需要,其他需要 | 否(/usr) |
``` 非Docker环境下,用户可以参考如下执行方式,具体的路径以当时环境为准,代码仅作为参考。
``` shell
export CUDA_PATH='/usr/local/cuda' export CUDA_PATH='/usr/local/cuda'
export CUDNN_LIBRARY='/usr/local/cuda/lib64/' export CUDNN_LIBRARY='/usr/local/cuda/lib64/'
export CUDA_CUDART_LIBRARY="/usr/local/cuda/lib64/" export CUDA_CUDART_LIBRARY="/usr/local/cuda/lib64/"
export TENSORRT_LIBRARY_PATH="/usr/local/TensorRT-6.0.1.5/targets/x86_64-linux-gnu/" export TENSORRT_LIBRARY_PATH="/usr/local/TensorRT-6.0.1.5/targets/x86_64-linux-gnu/"
mkdir server-build-trt && cd server-build-trt mkdir server-build-gpu && cd server-build-gpu
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
-DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ -DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ -DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DTENSORRT_ROOT=${TENSORRT_LIBRARY_PATH} \
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \ -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \
-DCUDNN_LIBRARY=${CUDNN_LIBRARY} \ -DCUDNN_LIBRARY=${CUDNN_LIBRARY} \
-DCUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY} \ -DCUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY} \
-DTENSORRT_ROOT=${TENSORRT_LIBRARY_PATH}
-DSERVER=ON \ -DSERVER=ON \
-DWITH_GPU=ON \ -DWITH_GPU=ON ..
-DWITH_TRT=ON ..
make -j10 make -j10
``` ```
...@@ -146,9 +157,9 @@ make -j10 ...@@ -146,9 +157,9 @@ make -j10
``` shell ``` shell
mkdir client-build && cd client-build mkdir client-build && cd client-build
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
-DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ -DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ -DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DCLIENT=ON .. -DCLIENT=ON ..
make -j10 make -j10
``` ```
...@@ -161,10 +172,9 @@ make -j10 ...@@ -161,10 +172,9 @@ make -j10
```bash ```bash
mkdir app-build && cd app-build mkdir app-build && cd app-build
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ \ cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
-DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so \ -DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python \ -DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DCMAKE_INSTALL_PREFIX=./output \
-DAPP=ON .. -DAPP=ON ..
make make
``` ```
...@@ -183,7 +193,7 @@ make ...@@ -183,7 +193,7 @@ make
运行python端Server时,会检查`SERVING_BIN`环境变量,如果想使用自己编译的二进制文件,请将设置该环境变量为对应二进制文件的路径,通常是`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving` 运行python端Server时,会检查`SERVING_BIN`环境变量,如果想使用自己编译的二进制文件,请将设置该环境变量为对应二进制文件的路径,通常是`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving`
其中BUILD_DIR为server-build-cpu或server-build-gpu的绝对路径。 其中BUILD_DIR为server-build-cpu或server-build-gpu的绝对路径。
可以cd server-build-cpu路径下,执行export SERVING_BIN=${PWD}/core/general-server/serving 可以cd server-build-cpu路径下,执行`export SERVING_BIN=${PWD}/core/general-server/serving`
...@@ -207,7 +217,6 @@ make ...@@ -207,7 +217,6 @@ make
| CLIENT | Compile Paddle Serving Client | OFF | | CLIENT | Compile Paddle Serving Client | OFF |
| SERVER | Compile Paddle Serving Server | OFF | | SERVER | Compile Paddle Serving Server | OFF |
| APP | Compile Paddle Serving App package | OFF | | APP | Compile Paddle Serving App package | OFF |
| WITH_ELASTIC_CTR | Compile ELASITC-CTR solution | OFF |
| PACK | Compile for whl | OFF | | PACK | Compile for whl | OFF |
### WITH_GPU选项 ### WITH_GPU选项
...@@ -226,13 +235,15 @@ Paddle Serving通过PaddlePaddle预测库支持在GPU上做预测。WITH_GPU选 ...@@ -226,13 +235,15 @@ Paddle Serving通过PaddlePaddle预测库支持在GPU上做预测。WITH_GPU选
1. 编译Serving所在的系统上所安装的CUDA/CUDNN等基础库版本,需要兼容实际的GPU设备。例如,Tesla V100卡至少要CUDA 9.0。如果编译时所用CUDA等基础库版本过低,由于生成的GPU代码和实际硬件设备不兼容,会导致Serving进程无法启动,或出现coredump等严重问题。 1. 编译Serving所在的系统上所安装的CUDA/CUDNN等基础库版本,需要兼容实际的GPU设备。例如,Tesla V100卡至少要CUDA 9.0。如果编译时所用CUDA等基础库版本过低,由于生成的GPU代码和实际硬件设备不兼容,会导致Serving进程无法启动,或出现coredump等严重问题。
2. 运行Paddle Serving的系统上安装与实际GPU设备兼容的CUDA driver,并安装与编译期所用的CUDA/CuDNN等版本兼容的基础库。如运行Paddle Serving的系统上安装的CUDA/CuDNN的版本低于编译时所用版本,可能会导致奇怪的cuda函数调用失败等问题。 2. 运行Paddle Serving的系统上安装与实际GPU设备兼容的CUDA driver,并安装与编译期所用的CUDA/CuDNN等版本兼容的基础库。如运行Paddle Serving的系统上安装的CUDA/CuDNN的版本低于编译时所用版本,可能会导致奇怪的cuda函数调用失败等问题。
以下是PaddlePaddle发布版本所使用的基础库版本匹配关系,供参考: 以下是PaddleServing 镜像的Cuda与Cudnn,TensorRT的匹配关系,供参考:
| | CUDA | CuDNN | TensorRT | | | CUDA | CuDNN | TensorRT |
| :----: | :-----: | :----------------------: | :----: | | :----: | :-----: | :----------: | :----: |
| post9 | 9.0 | CuDNN 7.3.1 for CUDA 9.0 | | | post9 | 9.0 | CuDNN 7.6.4 | |
| post10 | 10.0 | CuDNN 7.5.1 for CUDA 10.0| | | post10 | 10.0 | CuDNN 7.6.5 | |
| trt | 10.1 | CuDNN 7.5.1 for CUDA 10.1| 6.0.1.5 | | post101 | 10.1 | CuDNN 7.6.5 | 6.0.1 |
| post102 | 10.2 | CuDNN 8.0.5 | 7.1.3 |
| post11 | 11.0 | CuDNN 8.0.4 | 7.1.3 |
### 如何让Paddle Serving编译系统探测到CuDNN库 ### 如何让Paddle Serving编译系统探测到CuDNN库
......
...@@ -4,158 +4,93 @@ ...@@ -4,158 +4,93 @@
## 1. Design Objectives ## 1. Design Objectives
- Long Term Vision: Online deployment of deep learning models will be a user-facing application in the future. Any AI developer will face the problem of deploying an online service for his or her trained model. Paddle Serving is the official open source online deployment framework. The long term goal of Paddle Serving is to provide professional, reliable and easy-to-use online service to the last mile of AI application. Online deployment of deep learning models will be a user-facing application in the future. Any AI developer will face the problem of deploying an online service for his or her trained model.
Paddle Serving is the official open source online deployment framework. The long term goal of Paddle Serving is to provide professional, reliable and easy-to-use online service to the last mile of AI application.
- Easy-To-Use: For algorithmic developers to quickly deploy their models online, Paddle Serving designs APIs that can be used with Paddle's training process seamlessly, most Paddle models can be deployed as a service with one line command. - Industrial Oriented: To meet industrial deployment requirements, Paddle Serving supports lots of large-scale deployment functions: 1) Model management, model hot loading, model encryption and decryption. 2)Support cross-platform, multiple hardware deployment. 3) Distributed Sparse Embedding Indexing. 4) online A/B test
- Industrial Oriented: To meet industrial deployment requirements, Paddle Serving supports lots of large-scale deployment functions: 1) Distributed Sparse Embedding Indexing. 2) Highly concurrent underlying communications. 3) Model Management, online A/B test, model online loading. - High Performance: Thinking about improving the performance of model inference from the two dimensions of low latency and high throughput. 1) High-performance prediction engine Paddle Inference is integrated. 2) Nvidia Tensor RT is supported. 3) High-performance network framework brpc is Integrated. 4) Asynchronous Pipeline mode greatly improves throughput.
- Extensibility: Paddle Serving supports C++, Python and Golang client, and will support more clients with different languages. It is very easy to extend Paddle Serving to support other machine learning inference library, although currently Paddle inference library is the only official supported inference backend. - Easy-To-Use: For algorithmic developers to quickly deploy their models online, Paddle Serving designs APIs that can be used with Paddle's training process seamlessly, most Paddle models can be deployed as a service with one line command. More than 20 common model cases and documents.
- Extensibility: Paddle Serving supports C++, Python, Golang, Java four client SDK, and will support more clients with different languages. It is very easy to extend Paddle Serving to support other machine learning inference library, although currently Paddle inference library is the only official supported inference backend.
## 2. Module design and implementation ----
### 2.1 Python API interface design ## 2. Preliminary Design
Any excellent software product must start from user needs, have clear positioning and good preliminary designs. Same goes for Paddle Serving, which aims to provide professional, reliable and easy-to-use online service to the last mile of AI application. By investigating the usage scenarios of a large number of users, and abstracting these scenarios, for example, online services focus on high concurrency and low response time; offline services focus on high batch throughput and high resource utilization; Algorithm developers are good at using Python for model training and inference.
#### 2.1.1 save a servable model ### 2.1 Design selection
The inference phase of Paddle model focuses on 1) input variables of the model. 2) output variables of the model. 3) model structure and model parameters. Paddle Serving Python API provides a `save_model` interface for trained model, and save necessary information for Paddle Serving to use during deployment phase. An example is as follows:
``` python In order to meet the needs of users in different scenarios, Paddle Serving's product positioning adopts lower-dimensional features, such as response time, throughput, development efficiency, etc., to achieve target selection and technology selection.
import paddle_serving_client.io as serving_io
serving_io.save_model("serving_model", "client_conf",
{"words": data}, {"prediction": prediction},
fluid.default_main_program())
```
In the example, `{"words": data}` and `{"prediction": prediction}` assign the inputs and outputs of a model. `"words"` and `"prediction"` are alias names of inputs and outputs. The design of alias name is to help developers to memorize model inputs and model outputs. `data` and `prediction` are Paddle `[Variable](https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Variable_cn.html#variable)` in training phase that often represents ([Tensor](https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Tensor_cn.html#tensor)) or ([LodTensor](https://www.paddlepaddle.org.cn/documentation/docs/zh/beginners_guide/basic_concept/lod_tensor.html#lodtensor)). When the `save_model` API is called, two directories called `"serving_model"` and `"client_conf"` will be generated. The content of the saved model is as follows:
``` shell
.
├── client_conf
│   ├── serving_client_conf.prototxt
│   └── serving_client_conf.stream.prototxt
└── serving_model
├── embedding_0.w_0
├── fc_0.b_0
├── fc_0.w_0
├── fc_1.b_0
├── fc_1.w_0
├── fc_2.b_0
├── fc_2.w_0
├── lstm_0.b_0
├── lstm_0.w_0
├── __model__
├── serving_server_conf.prototxt
└── serving_server_conf.stream.prototxt
```
`"serving_client_conf.prototxt"` and `"serving_server_conf.prototxt"` are the client side and the server side configurations of Paddle Serving, and `"serving_client_conf.stream.prototxt"` and `"serving_server_conf.stream.prototxt"` are the corresponding parts. Other contents saved in the directory are the same as Paddle saved inference model. We are considering to support `save_model` interface in Paddle training framework so that a user is not aware of the servable configurations.
#### 2.1.2 Model loading on the server side | Response time | throughput | development efficiency | Resource utilization | selection | Applications|
|-----|------|-----|-----|------|------|
| LOW | HIGH | LOW | HIGH |C++ Serving | High-performance,recall and ranking services of large-scale online recommendation systems|
| HIGH | HIGH | HIGH | HIGH |Python Pipeline Serving| High-throughput, high-efficiency, asynchronous mode, fitting for single operator multi-model combination scenarios|
| HIGH | LOW | HIGH| LOW |Python webserver| High-throughput,Low-traffic services or projects that require rapid iteration, model effect verification|
Prediction logics on the server side can be defined through Paddle Serving Server API with a few lines of code, an example is as follows: Performance index description:
``` python 1. Response time (ms): Average response time of a single request, calculate the response time of 50, 90, 95, 99 quantiles, the lower the better.
import paddle_serving_server as serving 2. Throughput(QPS/TPS): The efficiency of service processing requests, the number of requests processed per unit time, the higher the better.
op_maker = serving.OpMaker() 3. Development efficiency: Using different development languages ​​to complete the same work takes different time, including the efficiency of development, debugging, and maintenance, the higher the better.
read_op = op_maker.create('general_reader') 4. Resource utilization: Deploy a service to resource utilization (CPU/GPU), low resource utilization is a waste of resources, the higher the better.
dist_kv_op = op_maker.create('general_dist_kv')
general_infer_op = op_maker.create('general_infer')
general_response_op = op_maker.create('general_response')
op_seq_maker = serving.OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(dist_kv_op)
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(general_response_op)
```
Current Paddle Serving supports operator list on the server side as follows:
<center> Paddle Serving provides RPC and HTTP protocol for users. For HTTP service, we recommend users with median or small traffic services to use, and the latency is not a strict requirement. For RPC protocol, we recommend high traffic services and low latency required services to use. For users who use distributed sparse parameter indexing built-in service, it is not necessary to care about the underlying details of communication. The following figure gives out several scenarios that user may want to use Paddle Serving.
| Op Name | Description | <p align="center">
|--------------|------| <br>
| `general_reader` | General Data Reading Operator | <img src='user_groups.png' width = "700" height = "470">
| `genreal_infer` | General Data Inference with Paddle Operator | <br>
| `general_response` | General Data Response Operator | <p>
| `general_dist_kv` | Distributed Sparse Embedding Indexing |
</center> For servable models saved from Paddle Serving IO API, users do not need to do extra coding work to startup a service, but may need some coding work on the client side. For development of Web Service plugin, a user needs to provide implementation of Web Service's preprocessing and postprocessing work if needed to get a HTTP service.
Paddle Serving supports inference engine on multiple devices. Current supports are CPU and GPU engine. Docker Images of CPU and GPU are provided officially. User can use one line command to start an inference service either on CPU or on GPU. ### 2.2 Industrial Features
``` shell Paddle Serving takes into account a series of issues such as different operating systems, different development languages, multiple hardware devices, cross-deep learning platform model conversion, distributed sparse parameter indexing, and cloud deployment by different teams in industrial-level scenarios.
python -m paddle_serving_server.serve --model your_servable_model --thread 10 --port 9292
```
``` shell
python -m paddle_serving_server_gpu.serve --model your_servable_model --thread 10 --port 9292
```
Options of startup command are listed below: > Cross-platform operation
<center>
| Arguments | Types | Defaults | Descriptions | Cross-platform is not dependent on the operating system, nor on the hardware environment. Applications developed under one operating system can still run under another operating system. Therefore, the design should consider not only the development language and the cross-platform components, but also the interpretation differences of the compilers on different systems.
|--------------|------|-----------|--------------------------------|
| `thread` | int | `4` | Concurrency on server side, usually equal to the number of CPU core |
| `port` | int | `9292` | Port exposed to users |
| `name` | str | `""` | Service name that if a user specifies, the name of HTTP service is allocated |
| `model` | str | `""` | Servable models for Paddle Serving |
| `gpu_ids` | str | `""` | Supported only in paddle_serving_server_gpu, similar to the usage of CUDA_VISIBLE_DEVICES |
</center> Docker is an open source application container engine that allows developers to package their applications and dependencies into a portable container, and then publish it to any popular Linux machine or Windows machine. We have packaged a variety of Docker images for the Paddle Serving framework. Refer to the image list《[Docker Images](DOCKER_IMAGES.md)》, Select mirrors according to user's usage. We provide Docker usage documentation《[How to run PaddleServing in Docker](RUN_IN_DOCKER.md)》.Currently, the Python webserver mode can be deployed and run on the native Linux and Windows dual systems.《[Paddle Serving for Windows Users](WINDOWS_TUTORIAL.md)
For example, `python -m paddle_serving_server.serve --model your_servable_model --thread 10 --port 9292` is the same as the following code as user can define:
``` python
from paddle_serving_server import OpMaker, OpSeqMaker, Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_infer_op = op_maker.create('general_infer')
general_response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(general_response_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(10)
server.load_model_config(your_servable_model)
server.prepare_server(port=9292, device="cpu")
server.run_server()
```
#### 2.1.3 Paddle Serving Client API > Support multiple development languages client ​​SDKs
Paddle Serving supports remote service access through RPC(remote procedure call) and HTTP. RPC access of remote service can be called through Client API of Paddle Serving. A user can define data preprocess function before calling Paddle Serving's client API. The example below explains how to define the input data of Paddle Serving Client. The servable model has two inputs with alias name of `sparse` and `dense`. `sparse` corresponds to sparse sequence ids such as `[1, 1001, 100001]` and `dense` corresponds to dense vector such as `[0.2, 0.5, 0.1, 0.4, 0.11, 0.22]`. For sparse sequence data, current design supports `lod_level=0` and `lod_level=1` of Paddle, that corresponds to `Tensor` and `LodTensor`. For dense vector, current design supports any `N-D Tensor`. Users do not need to assign the shape of inference model input. The Paddle Serving Client API will check the input data's shape with servable configurations.
``` python Paddle Serving provides 4 development language client SDKs, including Python, C++, Java, and Golang. Golang SDK is under construction, We hope that interested open source developers can help submit PR.
feed_dict["sparse"] = [1, 1001, 100001]
feed_dict["dense"] = [0.2, 0.5, 0.1, 0.4, 0.11, 0.22]
fetch_map = client.predict(feed=feed_dict, fetch=["prob"])
```
The following code sample shows that Paddle Serving Client API connects to Server API with endpoint of the servers. To use the data parallelism ability during prediction, Paddle Serving Client allows users to define multiple server endpoints. + Python, Refer to the client example under python/examples or 4.2 web service example.
``` python + C++, Refer to《[从零开始写一个预测服务](deprecated/CREATING.md)
client = Client() + Java, Refer to《[Paddle Serving Client Java SDK](JAVA_SDK.md)
client.load_client_config('servable_client_configs') + Golang, Refer to《[How to use Go Client of Paddle Serving](deprecated/IMDB_GO_CLIENT.md)
client.connect(["127.0.0.1:9292"])
```
### 2.2 Underlying Communication Mechanism > Support multiple hardware devices
Paddle Serving adopts [baidu-rpc](https://github.com/apache/incubator-brpc) as underlying communication layer. baidu-rpc is an open-source RPC communication library with high concurrency and low latency advantages compared with other open source RPC library. Millions of instances and thousands of services are using baidu-rpc within Baidu.
### 2.3 Core Execution Engine The inference framework of the well-known deep learning platform only supports CPU and GPU inference on the X86 platform. With the rapid increase in the complexity of AI algorithms, the computing power of chips has greatly increased, which has promoted the accelerated implementation of IoT applications and deployment on a variety of hardware.Paddle Serving integrates high-performance inference engine Paddle Inference and mobile terminal inference engine Paddle Lite, Provide inference services on multiple hardware devices. At present, in addition to X86 CPU and GPU, Paddle Serving has implemented the deployment of inference services on ARM CPU and Kunlun XPU. In the future, more hardware will be added to Paddle Serving.
The core execution engine of Paddle Serving is a Directed acyclic graph(DAG). In the DAG, each node represents a phase of inference service, such as paddle inference prediction, data preprocessing and data postprocessing. DAG can fully parallelize the computation efficiency and can fully utilize the computation resources. For example, when a user has input data that needs to be feed into two models, and combine the scores of the two models, the computation of model scoring is parallelized through DAG.
<p align="center"> > Model conversion across deep learning platforms
<br>
<img src='design_doc.png'">
<br>
<p>
### 2.4 Micro service plugin Models trained on other deep learning platforms can be passed《[PaddlePaddle/X2Paddle工具](https://github.com/PaddlePaddle/X2Paddle)》.We convert multiple mainstream CV models to Paddle models. TensorFlow, Caffe, ONNX, PyTorch model conversion is tested.《[An End-to-end Tutorial from Training to Inference Service Deployment](TRAIN_TO_SERVICE.md)
The underlying communication of Paddle Serving is implemented with C++ as well as the core framework, it is hard for users who do not familiar with C++ to implement new Paddle Serving Server Operators. Another approach is to use the light-weighted Web Service in Paddle Serving Server that can be viewed as a plugin. A user can implement complex data preprocessing and postprocessing logics to build a complex AI service. If access of the AI service has a large volumn, it is worth to implement the service with high performance Paddle Serving Server operators. The relationship between Web Service and RPC Service can be referenced in `User Type`.
## 3. Industrial Features Because it is impossible to directly view the feed and fetch parameter information in the model file, it is not convenient for users to assemble the parameters. Therefore, Paddle Serving developed a tool to convert the Paddle model into Serving format and generate a prototxt file containing feed and fetch parameter information. The following figure is the generated prototxt file of the uci_housing example. For more conversion methods, refer to the document《[How to save a servable model of Paddle Serving?](SAVE.md)》.
```
feed_var {
name: "x"
alias_name: "x"
is_lod_tensor: false
feed_type: 1
shape: 13
}
fetch_var {
name: "fc_0.tmp_1"
alias_name: "price"
is_lod_tensor: false
fetch_type: 1
shape: 1
}
```
### 3.1 Distributed Sparse Parameter Indexing > Distributed Sparse Parameter Indexing
Distributed Sparse Parameter Indexing is commonly seen in advertising and recommendation scenarios, and is often used coupled with distributed training. The figure below explains a commonly seen architecture for online recommendation. When the recommendation service receives a request from a user, the system will automatically collects training log for the offline distributed online training. Mean while, the request is sent to Paddle Serving Server. For sparse features, distributed sparse parameter index service is called so that sparse parameters can be looked up. The dense input features together with the looked up sparse model parameters are fed into the Paddle Inference Node of the DAG in Paddle Serving Server. Then the score can be responsed through RPC to product service for item ranking. Distributed Sparse Parameter Indexing is commonly seen in advertising and recommendation scenarios, and is often used coupled with distributed training. The figure below explains a commonly seen architecture for online recommendation. When the recommendation service receives a request from a user, the system will automatically collects training log for the offline distributed online training. Mean while, the request is sent to Paddle Serving Server. For sparse features, distributed sparse parameter index service is called so that sparse parameters can be looked up. The dense input features together with the looked up sparse model parameters are fed into the Paddle Inference Node of the DAG in Paddle Serving Server. Then the score can be responsed through RPC to product service for item ranking.
...@@ -164,41 +99,56 @@ Distributed Sparse Parameter Indexing is commonly seen in advertising and recomm ...@@ -164,41 +99,56 @@ Distributed Sparse Parameter Indexing is commonly seen in advertising and recomm
<img src='cube_eng.png' width = "450" height = "230"> <img src='cube_eng.png' width = "450" height = "230">
<br> <br>
<p> <p>
Why do we need to support distributed sparse parameter indexing in Paddle Serving? 1) In some recommendation scenarios, the number of features can be up to hundreds of billions that a single node can not hold the parameters within random access memory. 2) Paddle Serving supports distributed sparse parameter indexing that can couple with paddle inference. Users do not need to do extra work to have a low latency inference engine with hundreds of billions of parameters. Why do we need to support distributed sparse parameter indexing in Paddle Serving? 1) In some recommendation scenarios, the number of features can be up to hundreds of billions that a single node can not hold the parameters within random access memory. 2) Paddle Serving supports distributed sparse parameter indexing that can couple with paddle inference. Users do not need to do extra work to have a low latency inference engine with hundreds of billions of parameters.
### 3.2 Online A/B test ----
After sufficient offline evaluation of the model, online A/B test is usually needed to decide whether to enable the service on a large scale. The following figure shows the basic structure of A/B test with Paddle Serving. After the client is configured with the corresponding configuration, the traffic will be automatically distributed to different servers to achieve A/B test. Please refer to [ABTEST in Paddle Serving](ABTEST_IN_PADDLE_SERVING.md) for specific examples. ## 3. C++ Serving design
C++ Serving aims to achieve high-performance reasoning services with high concurrency and low latency. Its network framework and core execution engine are written based on C/C++, and provide powerful industrial-grade application capabilities, including model management, model security, and A/B Testing
### 3.1 Network Communication Mechanism
Paddle Serving adopts [brpc](https://github.com/apache/incubator-brpc) as underlying communication layer. brpc is an open-source RPC communication library with high concurrency and low latency advantages compared with other open source RPC library. Millions of instances and thousands of services are using brpc within Baidu.
### 3.2 Core Execution Engine
The core execution engine of Paddle Serving is a Directed acyclic graph(DAG). In the DAG, each node represents a phase of inference service, such as paddle inference prediction, data preprocessing and data postprocessing. DAG can fully parallelize the computation efficiency and can fully utilize the computation resources. For example, when a user has input data that needs to be feed into two models, and combine the scores of the two models, the computation of model scoring is parallelized through DAG.
<p align="center"> <p align="center">
<br> <br>
<img src='abtest.png' width = "345" height = "230"> <img src='design_doc.png'">
<br> <br>
<p> <p>
### 3.3 Model Management and Hot Reloading
C++ Serving supports model management functions, including management of multiple models and multiple model versions.In order to ensure the availability of services, the model needs to be hot loaded without service interruption. Paddle Serving supports this feature and provides a tool for monitoring output models to update local models. Please refer to [Hot loading in Paddle Serving](HOT_LOADING_IN_SERVING.md) for specific examples.
### 3.3 Model Online Reloading ### 3.4 MOEDL ENCRYPTION INFERENCE
Paddle Serving uses a symmetric encryption algorithm to encrypt the model, and decrypts it in memory during the service loading model. At present, providing basic model security capabilities does not guarantee absolute model security. Users can improve them according to our design to achieve a higher level of security. Documentation reference《[MOEDL ENCRYPTION INFERENCE](ENCRYPTION.md)
In order to ensure the availability of services, the model needs to be hot loaded without service interruption. Paddle Serving supports this feature and provides a tool for monitoring output models to update local models. Please refer to [Hot loading in Paddle Serving](HOT_LOADING_IN_SERVING.md) for specific examples. ### 3.5 A/B Test
### 3.4 Model Management After sufficient offline evaluation of the model, online A/B test is usually needed to decide whether to enable the service on a large scale. The following figure shows the basic structure of A/B test with Paddle Serving. After the client is configured with the corresponding configuration, the traffic will be automatically distributed to different servers to achieve A/B test. Please refer to [ABTEST in Paddle Serving](ABTEST_IN_PADDLE_SERVING.md) for specific examples.
Paddle Serving's C++ engine supports model management. Currently, python API is not released yet, please wait for the next release.
## 4. User Types
Paddle Serving provides RPC and HTTP protocol for users. For HTTP service, we recommend users with median or small traffic services to use, and the latency is not a strict requirement. For RPC protocol, we recommend high traffic services and low latency required services to use. For users who use distributed sparse parameter indexing built-in service, it is not necessary to care about the underlying details of communication. The following figure gives out several scenarios that user may want to use Paddle Serving.
<p align="center"> <p align="center">
<br> <br>
<img src='user_groups.png' width = "700" height = "470"> <img src='abtest.png' width = "345" height = "230">
<br> <br>
<p> <p>
For servable models saved from Paddle Serving IO API, users do not need to do extra coding work to startup a service, but may need some coding work on the client side. For development of Web Service plugin, a user needs to provide implementation of Web Service's preprocessing and postprocessing work if needed to get a HTTP service. ### 3.6 Micro service plugin
The underlying communication of Paddle Serving is implemented with C++ as well as the core framework, it is hard for users who do not familiar with C++ to implement new Paddle Serving Server Operators. Another approach is to use the light-weighted Web Service in Paddle Serving Server that can be viewed as a plugin. A user can implement complex data preprocessing and postprocessing logics to build a complex AI service. If access of the AI service has a large volumn, it is worth to implement the service with high performance Paddle Serving Server operators. The relationship between Web Service and RPC Service can be referenced in `User Type`.
### 4.1 Web Service Development ----
Web Service has lots of open sourced framework. Currently Paddle Serving uses Flask as built-in service framework, and users are not aware of this. More efficient web service will be integrated in the furture if needed. ## 4. Python Webserver Design
### 4.1 Network Communication Mechanism
There are many open source frameworks for web services. Paddle Serving currently integrates the Flask framework, but this part is not visible to users. In the future, a better-performing web framework may be provided as the underlying HTTP service integration engine.
### 4.2 Web Service Development
`WebService` is a Base Class, providing inheritable interfaces such `preprocess` and `postprocess` for users to implement. In the inherited class of `WebService` class, users can define any functions they want and the startup function interface is the same as RPC service.
``` python ``` python
from paddle_serving_server.web_service import WebService from paddle_serving_server.web_service import WebService
...@@ -229,15 +179,36 @@ imdb_service.prepare_dict({"dict_file_path": sys.argv[4]}) ...@@ -229,15 +179,36 @@ imdb_service.prepare_dict({"dict_file_path": sys.argv[4]})
imdb_service.run_server() imdb_service.run_server()
``` ```
`WebService` is a Base Class, providing inheritable interfaces such `preprocess` and `postprocess` for users to implement. In the inherited class of `WebService` class, users can define any functions they want and the startup function interface is the same as RPC service. ----
## 5. Python Pipeline Serving Design
The end-to-end deep learning model is currently unable to solve all problems. The use of multiple deep learning models together is still a conventional means to solve real-world problems.
the end-to-end deep learning model can not solve all the problems at present. Usually, it is necessary to use multiple deep learning models to solve practical problems.
### 5.1 Network Communication Mechanism
The network framework of Pipeline Serving uses gRPC and gPRC gateway. The gRPC service receives the RPC request, and the gPRC gateway receives the RESTful API request and forwards the request to the gRPC Service through the reverse proxy server. Therefore, the network layer of Pipeline Serving receives both RPC and RESTful API.
<center>
<img src='pipeline_serving-image1.png' height = "250" align="middle"/>
</center>
### 5.2 Core Design And Use Cases
The core design of Pipeline Serving is a graph execution engine, and the basic processing units are OP and Channel. A set of directed acyclic graphs can be realized through combination. Reference for design and use documents《[Pipeline Serving](PIPELINE_SERVING.md)
<center>
<img src='pipeline_serving-image2.png' height = "300" align="middle"/>
</center>
## 5. Future Plan ----
### 5.1 Open DAG definition API
Current version of Paddle Serving Server supports sequential type of execution flow. DAG definition API can be more helpful to users on complex tasks.
### 5.2 Auto Deployment on Cloud ## 6. Future Plan
### 5.1 Auto Deployment on Cloud
In order to make deployment more easily on public cloud, Paddle Serving considers to provides Operators on Kubernetes in submitting a service job. In order to make deployment more easily on public cloud, Paddle Serving considers to provides Operators on Kubernetes in submitting a service job.
### 5.3 Vector Indexing and Tree based Indexing ### 6.2 Vector Indexing and Tree based Indexing
In recommendation and advertisement systems, it is commonly seen to use vector based index or tree based indexing service to do candidate retrievals. These retrieval tasks will be built-in services of Paddle Serving. In recommendation and advertisement systems, it is commonly seen to use vector based index or tree based indexing service to do candidate retrievals. These retrieval tasks will be built-in services of Paddle Serving.
### 6.3 Service Monitoring
Paddle Serving will integrate Prometheus monitoring, which is a set of open source monitoring & alarm & time series database combination, suitable for k8s and docker monitoring systems.
...@@ -6,28 +6,30 @@ ...@@ -6,28 +6,30 @@
Paddle Serving是一个PaddlePaddle开源的在线服务框架,长期目标就是围绕着人工智能落地的最后一公里提供越来越专业、可靠、易用的服务。 Paddle Serving是一个PaddlePaddle开源的在线服务框架,长期目标就是围绕着人工智能落地的最后一公里提供越来越专业、可靠、易用的服务。
- 工业级:为了达到工业级深度学习模型在线部署的要求, - 工业级:为了达到工业级深度学习模型在线部署的要求,Paddle Serving提供很多大规模场景需要的部署功能:1)模型管理、模型热加载、模型加解密;2)支持跨平台、多种硬件部署;3)分布式稀疏参数索引功能;4)在线A/B流量测试
Paddle Serving提供很多大规模场景需要的部署功能:1)模型管理、模型热加载、模型加解密。2)支持跨平台、多种硬件部署和推理。3)分布式稀疏参数索引功能。4)在线A/B流量测试
- 高性能:从低延时和高吞吐2个维度思考提升模型推理的性能。1)集成Paddle Inference高性能预测引擎;2)支持Nvidia Tensor RT高性能推理引擎;3)高性能网络框架;4)异步Pipeline模式大幅提升吞吐量 - 高性能:从低延时和高吞吐2个维度思考提升模型推理的性能。1)集成Paddle Inference高性能预测引擎;2)支持Nvidia Tensor RT高性能推理引擎;3)集成高性能网络框架brpc;4)异步Pipeline模式大幅提升吞吐量
- 简单易用:为了让使用Paddle的用户能够以极低的成本部署模型,PaddleServing设计了一套与Paddle训练框架无缝打通的预测部署API,普通模型可以使用一行命令进行服务部署。20多种常见模型案例和文档。 - 简单易用:为了让使用Paddle的用户能够以极低的成本部署模型,PaddleServing设计了一套与Paddle训练框架无缝打通的预测部署API,普通模型可以使用一行命令进行服务部署。20多种常见模型案例和文档。
- 功能扩展:当前,Paddle Serving支持C++、Python、Golang、Java 4种语言客户端,能力上也会持续加强。在Paddle Serving的框架设计方面,尽管当前Paddle Serving以支持Paddle模型的部署为核心功能, - 功能扩展:当前,Paddle Serving支持C++、Python、Golang、Java 4种语言客户端,未来会支持更多语。在Paddle Serving的框架设计方面,尽管当前Paddle Serving以支持Paddle模型的部署为核心功能,
用户可以很容易嵌入其他的机器学习库部署在线预测。 用户可以很容易嵌入其他的机器学习库部署在线预测。
----
## 2. 概要设计
任何优秀软件产品一定从用户需求出发,具有清晰的定位和良好的概要设计。Paddle Serving也不例外,Paddle Serving目标围绕着人工智能落地的最后一公里提供越来越专业、可靠、易用的服务。通过调研大量用户的使用场景,并将这些场景抽象归纳,例如在线服务侧重高并发,低平响;离线服务侧重批量高吞吐,高资源利用率;算法开发者擅长使用Python做模型训练和推理等。
## 2. 整体设计 ## 2. 整体设计
任何优秀产品一定从用户需求出发,具有清晰的定位和良好的设计。Paddle Serving也不例外,Paddle Serving目标围绕着人工智能落地的最后一公里提供越来越专业、可靠、易用的服务。通过调研大量用户的使用场景,并将这些场景抽象归纳,例如在线服务侧重高并发,低平响;离线服务侧重批量高吞吐,高资源利用率;算法开发同学擅长使用Python做模型训练和推理等。 任何优秀产品一定从用户需求出发,具有清晰的定位和良好的设计。Paddle Serving也不例外,Paddle Serving目标围绕着人工智能落地的最后一公里提供越来越专业、可靠、易用的服务。通过调研大量用户的使用场景,并将这些场景抽象归纳,例如在线服务侧重高并发,低平响;离线服务侧重批量高吞吐,高资源利用率;算法开发同学擅长使用Python做模型训练和推理等。
### 2.1 设计选型 ### 2.1 设计选型
为了满足不同场景的用户需求,Paddle Serving的产品定位采用更低维度特征,如响应时间、吞吐、开发效率等,实现目标的选型和技术选型。 为了满足不同场景的用户需求,Paddle Serving的产品定位采用更低维度特征,如响应时间、吞吐、开发效率等,实现目标的选型和技术选型。
| 响应时间 | 吞吐 | 开发效率 | 资源利用率 | 选型 | 类似场景| | 响应时间 | 吞吐 | 开发效率 | 资源利用率 | 选型 | 应用场景|
|-----|------|-----|-----|------|------| |-----|------|-----|-----|------|------|
| 低 | 高 | 低 | 高 |C++ Serving | 高性能场景,大型在线推荐系统召回、排序服务。支持批量推理| | 低 | 高 | 低 | 高 |C++ Serving | 高性能场景,大型在线推荐系统召回、排序服务|
| 高 | 高 | 较高 |高|Python Pipeline Serving| 兼顾吞吐和效率,单算子多模型组合场景,异步模式| | 高 | 高 | 较高 |高|Python Pipeline Serving| 兼顾吞吐和效率,单算子多模型组合场景,异步模式|
| 高 | 低 | 高| 低 |Python webserver| 高迭代效率场景,小型服务或需要快速迭代,模型效果验证| | 高 | 低 | 高| 低 |Python webserver| 高迭代效率场景,小型服务或需要快速迭代,模型效果验证|
...@@ -55,20 +57,20 @@ Paddle Serving从做顶层设计时考虑到不同团队在工业级场景中会 ...@@ -55,20 +57,20 @@ Paddle Serving从做顶层设计时考虑到不同团队在工业级场景中会
> 跨平台运行 > 跨平台运行
跨平台是不依赖于操作系统,也不依赖硬件环境。一个操作系统下开发的应用,放到另一个操作系统下依然可以运行。因此,设计上既要考虑开发语言、组件是跨平台的,同时也要考虑不同系统上编译器的解释差异。 跨平台是不依赖于操作系统,也不依赖硬件环境。一个操作系统下开发的应用,放到另一个操作系统下依然可以运行。因此,设计上既要考虑开发语言、组件是跨平台的,同时也要考虑不同系统上编译器的解释差异。
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器或Windows机器上。我们将Paddle Serving框架打包了多种Docker镜像,镜像列表参考《[Docker镜像](DOCKER_IMAGES_CN.md)》,根据用户的使用场景选择。为方便用户使用Docker镜像,我们提供了帮助文档《[如何在Docker中运行PaddleServing](RUN_IN_DOCKER_CN.md)》。目前,Python webserver模式可在原生系统Linux和Windows双系统上部署运行。《[Windows平台使用Paddle Serving指导](WINDOWS_TUTORIAL_CN.md)
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器或Windows机器上。我们将Paddle Serving框架打包了多种Docker镜像,镜像列表参考《[Docker镜像](DOCKER_IMAGES_CN.md)》,根据用户的使用场景选择镜像。为方便用户使用Docker,我们提供了帮助文档《[如何在Docker中运行PaddleServing](RUN_IN_DOCKER_CN.md)》。目前,Python webserver模式可在原生系统Linux和Windows双系统上部署运行。《[Windows平台使用Paddle Serving指导](WINDOWS_TUTORIAL_CN.md)
> 支持多种开发语言SDK > 支持多种开发语言SDK
为了方便不同场景使用Serving,Paddle Serving提供了4种开发语言SDK,包括Python、C++、Java、Golang。Golang SDK在持续建设中,有兴趣的开源开发者可以提交PR。 Paddle Serving提供了4种开发语言SDK,包括Python、C++、Java、Golang。Golang SDK在建设中,有兴趣的开源开发者可以提交PR。
+ Python 参考python/examples下client示例 或 4.2 web服务示例 + Python参考python/examples下client示例 或 4.2 web服务示例
+ C++使用文档 [从零开始写一个预测服务](deprecated/CREATING.md) + C++,参考[从零开始写一个预测服务](deprecated/CREATING.md)
+ Java使用文档 [Paddle Serving Client Java SDK](JAVA_SDK_CN.md) + Java,参考[Paddle Serving Client Java SDK](JAVA_SDK_CN.md)
+ Golang示例文档 《[如何在Paddle Serving使用Go Client](IMDB_GO_CLIENT_CN.md) + Golang,参考《[如何在Paddle Serving使用Go Client](deprecated/IMDB_GO_CLIENT_CN.md)
> 支持多种硬件设备 > 支持多种硬件设备
主流深度学习平台的推理框架仅支持X86平台的CPU和GPU推理,随着AI算法复杂度高速增长,推动芯片算力不断提升,推动物联网应用加速落地,在多种硬件环境的推理场景越来越多。Paddle Serving集成高性能Paddle Inference和Paddle Lite,提供在多种硬件设备上推理服务。目前,除了X86 CPU、GPU外,Paddle Serving已实现ARM CPU和昆仑 XPU上部署推理服务,未来会有更多的硬件加入Paddle Serving。 知名的深度学习平台的推理框架仅支持X86平台的CPU和GPU推理。随着AI算法复杂度高速增长,芯片算力大幅提升,推动物联网应用加速落地,在多种硬件上部署。Paddle Serving集成高性能推理引擎Paddle Inference和移动端推理引擎Paddle Lite,在多种硬件设备上提供推理服务。目前,除了X86 CPU、GPU外,Paddle Serving已实现ARM CPU和昆仑 XPU上部署推理服务,未来会有更多的硬件加入Paddle Serving。
> 跨深度学习平台模型转换 > 跨深度学习平台模型转换
...@@ -105,18 +107,15 @@ fetch_var { ...@@ -105,18 +107,15 @@ fetch_var {
分布式稀疏参数索引通常在广告推荐中出现,并与分布式训练配合形成完整的离线-在线一体化部署。下图解释了其中的流程,产品的在线服务接受用户请求后将请求发送给预估服务,同时系统会记录用户的请求以进行相应的训练日志处理和拼接。离线分布式训练系统会针对流式产出的训练日志进行模型增量训练,而增量产生的模型会配送至分布式稀疏参数索引服务,同时对应的稠密的模型参数也会配送至在线的预估服务。在线服务由两部分组成,一部分是针对用户的请求提取特征后,将需要进行模型的稀疏参数索引的特征发送请求给分布式稀疏参数索引服务,针对分布式稀疏参数索引服务返回的稀疏参数再进行后续深度学习模型的计算流程,从而完成预估。 分布式稀疏参数索引通常在广告推荐中出现,并与分布式训练配合形成完整的离线-在线一体化部署。下图解释了其中的流程,产品的在线服务接受用户请求后将请求发送给预估服务,同时系统会记录用户的请求以进行相应的训练日志处理和拼接。离线分布式训练系统会针对流式产出的训练日志进行模型增量训练,而增量产生的模型会配送至分布式稀疏参数索引服务,同时对应的稠密的模型参数也会配送至在线的预估服务。在线服务由两部分组成,一部分是针对用户的请求提取特征后,将需要进行模型的稀疏参数索引的特征发送请求给分布式稀疏参数索引服务,针对分布式稀疏参数索引服务返回的稀疏参数再进行后续深度学习模型的计算流程,从而完成预估。
> 云上部署
云端部署能力正在建设中,待开放
---- ----
## 3. C++ Serving设计 ## 3. C++ Serving设计
C++ Serving目标实现高并发、低延时的高性能推理服务。其网络框架和核心执行引擎均是基于C/C++编写,并且提供一定的工业级应用能力,包括模型管理、模型安全、A/B Testing C++ Serving目标实现高并发、低延时的高性能推理服务。其网络框架和核心执行引擎均是基于C/C++编写,并且提供强大的工业级应用能力,包括模型管理、模型安全、A/B Testing
### 3.1 网络框架 ### 3.1 通信机制
C++ Serving采用[better-rpc](https://github.com/apache/incubator-brpc)进行底层的通信。better-rpc是百度开源的一款PRC通信库,具有高并发、低延时等特点,已经支持了包括百度在内上百万在线预估实例、上千个在线预估服务,稳定可靠。与gRPC网络框架相比,具有更低的延时,更高的并发性能;缺点是跨操作系统平台、跨语言能力不足。 C++ Serving采用[better-rpc](https://github.com/apache/incubator-brpc)进行底层的通信。better-rpc是百度开源的一款PRC通信库,具有高并发、低延时等特点,已经支持了包括百度在内上百万在线预估实例、上千个在线预估服务,稳定可靠。与gRPC网络框架相比,具有更低的延时,更高的并发性能;缺点是跨操作系统平台、跨语言能力不足。
### 3.2 核心执行引擎 ### 3.2 核心执行引擎
C++ Serving的核心执行引擎是一个有向无环图,图中的每个节点代表预估服务的一个环节,例如计算模型预测打分就是其中一个环节。有向无环图有利于可并发节点充分利用部署实例内的计算资源,缩短延时。一个例子,当同一份输入需要送入两个不同的模型进行预估,并将两个模型预估的打分进行加权求和时,两个模型的打分过程即可以通过有向无环图的拓扑关系并发。 C++ Serving的核心执行引擎是一个有向无环图,图中的每个节点代表预估服务的一个环节,例如计算模型预测打分就是其中一个环节。有向无环图有利于可并发节点充分利用部署实例内的计算资源,缩短延时。一个例子,当同一份输入需要送入两个不同的模型进行预估,并将两个模型预估的打分进行加权求和时,两个模型的打分过程即可以通过有向无环图的拓扑关系并发。
...@@ -128,7 +127,7 @@ C++ Serving的核心执行引擎是一个有向无环图,图中的每个节点 ...@@ -128,7 +127,7 @@ C++ Serving的核心执行引擎是一个有向无环图,图中的每个节点
### 3.3 模型管理与热加载 ### 3.3 模型管理与热加载
addle Serving的C++引擎支持模型管理功能,支持多种模型和模型不同版本的管理。为了保证在模型更换期间推理服务的可用性,需要在服务不中断的情况下对模型进行热加载。Paddle Serving对该特性进行了支持,并提供了一个监控产出模型更新本地模型的工具,具体例子请参考《[Paddle Serving中的模型热加载](HOT_LOADING_IN_SERVING_CN.md)》。 Paddle Serving的C++引擎支持模型管理功能,支持多种模型和模型不同版本的管理。为了保证在模型更换期间推理服务的可用性,需要在服务不中断的情况下对模型进行热加载。Paddle Serving对该特性进行了支持,并提供了一个监控产出模型更新本地模型的工具,具体例子请参考《[Paddle Serving中的模型热加载](HOT_LOADING_IN_SERVING_CN.md)》。
### 3.4 模型加解密 ### 3.4 模型加解密
...@@ -136,6 +135,7 @@ Paddle Serving采用对称加密算法对模型进行加密,在服务加载模 ...@@ -136,6 +135,7 @@ Paddle Serving采用对称加密算法对模型进行加密,在服务加载模
### 3.5 A/B Test ### 3.5 A/B Test
在对模型进行充分的离线评估后,通常需要进行在线A/B测试,来决定是否大规模上线服务。下图为使用Paddle Serving做A/B测试的基本结构,Client端做好相应的配置后,自动将流量分发给不同的Server,从而完成A/B测试。具体例子请参考《[如何使用Paddle Serving做ABTEST](ABTEST_IN_PADDLE_SERVING_CN.md)》。 在对模型进行充分的离线评估后,通常需要进行在线A/B测试,来决定是否大规模上线服务。下图为使用Paddle Serving做A/B测试的基本结构,Client端做好相应的配置后,自动将流量分发给不同的Server,从而完成A/B测试。具体例子请参考《[如何使用Paddle Serving做ABTEST](ABTEST_IN_PADDLE_SERVING_CN.md)》。
<p align="center"> <p align="center">
...@@ -210,3 +210,6 @@ Pipeline Serving核心设计是图执行引擎,基本处理单元是OP和Chann ...@@ -210,3 +210,6 @@ Pipeline Serving核心设计是图执行引擎,基本处理单元是OP和Chann
### 6.2 向量检索、树结构检索 ### 6.2 向量检索、树结构检索
在推荐与广告场景的召回系统中,通常需要采用基于向量的快速检索或者基于树结构的快速检索,Paddle Serving会对这方面的检索引擎进行集成或扩展。 在推荐与广告场景的召回系统中,通常需要采用基于向量的快速检索或者基于树结构的快速检索,Paddle Serving会对这方面的检索引擎进行集成或扩展。
### 6.3 服务监控
集成普罗米修斯监控,一套开源的监控&报警&时间序列数据库的组合,适合k8s和docker的监控系统。
...@@ -8,11 +8,10 @@ This document maintains a list of docker images provided by Paddle Serving. ...@@ -8,11 +8,10 @@ This document maintains a list of docker images provided by Paddle Serving.
You can get images in two ways: You can get images in two ways:
1. Pull image directly from `hub.baidubce.com ` or `docker.io` through TAG: 1. Pull image directly from `registry.baidubce.com ` through TAG:
```shell ```shell
docker pull hub.baidubce.com/paddlepaddle/serving:<TAG> # hub.baidubce.com docker pull registry.baidubce.com/paddlepaddle/serving:<TAG> # registry.baidubce.com
docker pull paddlepaddle/serving:<TAG> # hub.docker.com
``` ```
2. Building image based on dockerfile 2. Building image based on dockerfile
...@@ -20,7 +19,7 @@ You can get images in two ways: ...@@ -20,7 +19,7 @@ You can get images in two ways:
Create a new folder and copy Dockerfile to this folder, and run the following command: Create a new folder and copy Dockerfile to this folder, and run the following command:
```shell ```shell
docker build -t <image-name>:<images-tag> . docker build -f ${DOCKERFILE} -t <image-name>:<images-tag> .
``` ```
...@@ -47,18 +46,54 @@ If you want to customize your Serving based on source code, use the version with ...@@ -47,18 +46,54 @@ If you want to customize your Serving based on source code, use the version with
**Java Client:** **Java Client:**
``` ```
hub.baidubce.com/paddlepaddle/serving:latest-java registry.baidubce.com/paddlepaddle/serving:latest-java
``` ```
**XPU:** **XPU:**
``` ```
hub.baidubce.com/paddlepaddle/serving:xpu-beta registry.baidubce.com/paddlepaddle/serving:xpu-beta
``` ```
## Requirements for running CUDA containers ## Requirements for running CUDA containers
Running a CUDA container requires a machine with at least one CUDA-capable GPU and a driver compatible with the CUDA toolkit version you are using. Running a CUDA container requires a machine with at least one CUDA-capable GPU and a driver compatible with the CUDA toolkit version you are using.
The machine running the CUDA container **only requires the NVIDIA driver**, the CUDA toolkit doesn't have to be installed. The machine running the CUDA container **only requires the NVIDIA driver**, the CUDA toolkit does not have to be installed.
For the relationship between CUDA toolkit version, Driver version and GPU architecture, please refer to [nvidia-docker wiki](https://github.com/NVIDIA/nvidia-docker/wiki/CUDA). For the relationship between CUDA toolkit version, Driver version and GPU architecture, please refer to [nvidia-docker wiki](https://github.com/NVIDIA/nvidia-docker/wiki/CUDA).
# (Attachment) The List of All the Docker images
Develop Images:
| Env | Version | Docker images tag | OS | Gcc Version |
|----------|---------|------------------------------|-----------|-------------|
| CPU | 0.5.0 | 0.5.0-devel | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | 0.4.0-devel | CentOS 7 | 4.8.5 |
| Cuda9.0 | 0.5.0 | 0.5.0-cuda9.0-cudnn7-devel | Ubuntu 16 | 4.8.5 |
| | <=0.4.0 | 0.4.0-cuda9.0-cudnn7-devel | CentOS 7 | 4.8.5 |
| Cuda10.0 | 0.5.0 | 0.5.0-cuda10.0-cudnn7-devel | Ubuntu 16 | 4.8.5 |
| | <=0.4.0 | 0.4.0-cuda10.0-cudnn7-devel | CentOS 7 | 4.8.5 |
| Cuda10.1 | 0.5.0 | 0.5.0-cuda10.1-cudnn7-devel | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | 0.4.0-cuda10.1-cudnn7-devel | CentOS 7 | 4.8.5 |
| Cuda10.2 | 0.5.0 | 0.5.0-cuda10.2-cudnn8-devel | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | Nan | Nan | Nan |
| Cuda11.0 | 0.5.0 | 0.5.0-cuda11.0-cudnn8-devel | Ubuntu 18 | 8.2.0 |
| | <=0.4.0 | Nan | Nan | Nan |
Running Images:
| Env | Version | Docker images tag | OS | Gcc Version |
|----------|---------|-----------------------|-----------|-------------|
| CPU | 0.5.0 | 0.5.0 | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | 0.4.0 | CentOS 7 | 4.8.5 |
| Cuda9.0 | 0.5.0 | 0.5.0-cuda9.0-cudnn7 | Ubuntu 16 | 4.8.5 |
| | <=0.4.0 | 0.4.0-cuda9.0-cudnn7 | CentOS 7 | 4.8.5 |
| Cuda10.0 | 0.5.0 | 0.5.0-cuda10.0-cudnn7 | Ubuntu 16 | 4.8.5 |
| | <=0.4.0 | 0.4.0-cuda10.0-cudnn7 | CentOS 7 | 4.8.5 |
| Cuda10.1 | 0.5.0 | 0.5.0-cuda10.1-cudnn7 | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | 0.4.0-cuda10.1-cudnn7 | CentOS 7 | 4.8.5 |
| Cuda10.2 | 0.5.0 | 0.5.0-cuda10.2-cudnn8 | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | Nan | Nan | Nan |
| Cuda11.0 | 0.5.0 | 0.5.0-cuda11.0-cudnn8 | Ubuntu 18 | 8.2.0 |
| | <=0.4.0 | Nan | Nan | Nan |
...@@ -8,11 +8,10 @@ ...@@ -8,11 +8,10 @@
您可以通过两种方式获取镜像。 您可以通过两种方式获取镜像。
1. 通过 TAG 直接从 `hub.baidubce.com ``docker.io` 拉取镜像: 1. 通过 TAG 直接从 `registry.baidubce.com ` 或 拉取镜像,具体TAG请参见下文的**镜像说明**章节的表格。
```shell ```shell
docker pull hub.baidubce.com/paddlepaddle/serving:<TAG> # hub.baidubce.com docker pull registry.baidubce.com/paddlepaddle/serving:<TAG> # registry.baidubce.com
docker pull paddlepaddle/serving:<TAG> # hub.docker.com
``` ```
2. 基于 Dockerfile 构建镜像 2. 基于 Dockerfile 构建镜像
...@@ -20,7 +19,8 @@ ...@@ -20,7 +19,8 @@
建立新目录,复制对应 Dockerfile 内容到该目录下 Dockerfile 文件。执行 建立新目录,复制对应 Dockerfile 内容到该目录下 Dockerfile 文件。执行
```shell ```shell
docker build -t <image-name>:<images-tag> . cd tools
docker build -f ${DOCKERFILE} -t <image-name>:<images-tag> .
``` ```
...@@ -29,6 +29,8 @@ ...@@ -29,6 +29,8 @@
运行时镜像不能用于开发编译。 运行时镜像不能用于开发编译。
若需要基于源代码二次开发编译,请使用后缀为-devel的版本。 若需要基于源代码二次开发编译,请使用后缀为-devel的版本。
**在TAG列,latest也可以替换成对应的版本号,例如0.5.0/0.4.1等,但需要注意的是,部分开发环境随着某个版本迭代才增加,因此并非所有环境都有对应的版本号可以使用。**
| 镜像选择 | 操作系统 | TAG | Dockerfile | | 镜像选择 | 操作系统 | TAG | Dockerfile |
| :----------------------------------------------------------: | :-----: | :--------------------------: | :----------------------------------------------------------: | | :----------------------------------------------------------: | :-----: | :--------------------------: | :----------------------------------------------------------: |
...@@ -47,14 +49,15 @@ ...@@ -47,14 +49,15 @@
**Java镜像:** **Java镜像:**
``` ```
hub.baidubce.com/paddlepaddle/serving:latest-java registry.baidubce.com/paddlepaddle/serving:latest-java
``` ```
**XPU镜像:** **XPU镜像:**
``` ```
hub.baidubce.com/paddlepaddle/serving:xpu-beta registry.baidubce.com/paddlepaddle/serving:xpu-beta
``` ```
## 运行CUDA容器的要求 ## 运行CUDA容器的要求
运行CUDA容器需要至少具有一个支持CUDA的GPU以及与您所使用的CUDA工具包版本兼容的驱动程序。 运行CUDA容器需要至少具有一个支持CUDA的GPU以及与您所使用的CUDA工具包版本兼容的驱动程序。
...@@ -62,3 +65,40 @@ hub.baidubce.com/paddlepaddle/serving:xpu-beta ...@@ -62,3 +65,40 @@ hub.baidubce.com/paddlepaddle/serving:xpu-beta
运行CUDA容器的机器**只需要相应的NVIDIA驱动程序**,而CUDA工具包不是必要的。 运行CUDA容器的机器**只需要相应的NVIDIA驱动程序**,而CUDA工具包不是必要的。
相关CUDA工具包版本、驱动版本和GPU架构的关系请参阅 [nvidia-docker wiki](https://github.com/NVIDIA/nvidia-docker/wiki/CUDA) 相关CUDA工具包版本、驱动版本和GPU架构的关系请参阅 [nvidia-docker wiki](https://github.com/NVIDIA/nvidia-docker/wiki/CUDA)
# (附录)所有镜像列表
编译镜像:
| Env | Version | Docker images tag | OS | Gcc Version |
|----------|---------|------------------------------|-----------|-------------|
| CPU | 0.5.0 | 0.5.0-devel | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | 0.4.0-devel | CentOS 7 | 4.8.5 |
| Cuda9.0 | 0.5.0 | 0.5.0-cuda9.0-cudnn7-devel | Ubuntu 16 | 4.8.5 |
| | <=0.4.0 | 0.4.0-cuda9.0-cudnn7-devel | CentOS 7 | 4.8.5 |
| Cuda10.0 | 0.5.0 | 0.5.0-cuda10.0-cudnn7-devel | Ubuntu 16 | 4.8.5 |
| | <=0.4.0 | 0.4.0-cuda10.0-cudnn7-devel | CentOS 7 | 4.8.5 |
| Cuda10.1 | 0.5.0 | 0.5.0-cuda10.1-cudnn7-devel | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | 0.4.0-cuda10.1-cudnn7-devel | CentOS 7 | 4.8.5 |
| Cuda10.2 | 0.5.0 | 0.5.0-cuda10.2-cudnn8-devel | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | Nan | Nan | Nan |
| Cuda11.0 | 0.5.0 | 0.5.0-cuda11.0-cudnn8-devel | Ubuntu 18 | 8.2.0 |
| | <=0.4.0 | Nan | Nan | Nan |
运行镜像:
| Env | Version | Docker images tag | OS | Gcc Version |
|----------|---------|-----------------------|-----------|-------------|
| CPU | 0.5.0 | 0.5.0 | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | 0.4.0 | CentOS 7 | 4.8.5 |
| Cuda9.0 | 0.5.0 | 0.5.0-cuda9.0-cudnn7 | Ubuntu 16 | 4.8.5 |
| | <=0.4.0 | 0.4.0-cuda9.0-cudnn7 | CentOS 7 | 4.8.5 |
| Cuda10.0 | 0.5.0 | 0.5.0-cuda10.0-cudnn7 | Ubuntu 16 | 4.8.5 |
| | <=0.4.0 | 0.4.0-cuda10.0-cudnn7 | CentOS 7 | 4.8.5 |
| Cuda10.1 | 0.5.0 | 0.5.0-cuda10.1-cudnn7 | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | 0.4.0-cuda10.1-cudnn7 | CentOS 7 | 4.8.5 |
| Cuda10.2 | 0.5.0 | 0.5.0-cuda10.2-cudnn8 | Ubuntu 16 | 8.2.0 |
| | <=0.4.0 | Nan | Nan | Nan |
| Cuda11.0 | 0.5.0 | 0.5.0-cuda11.0-cudnn8 | Ubuntu 18 | 8.2.0 |
| | <=0.4.0 | Nan | Nan | Nan |
...@@ -42,11 +42,3 @@ Once the server gets the key, it uses the key to parse the model and starts the ...@@ -42,11 +42,3 @@ Once the server gets the key, it uses the key to parse the model and starts the
### Example of Model Encryption Inference ### Example of Model Encryption Inference
Example of model encryption inference, See the [`/python/examples/encryption/`](../python/examples/encryption/) Example of model encryption inference, See the [`/python/examples/encryption/`](../python/examples/encryption/)
### Other Details
Interface of encryption method in paddlepaddle official website:
[Python encryption method](https://github.com/HexToString/Serving/blob/develop/python/paddle_serving_app/local_predict.py)
[C++ encryption method](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/python_infer_cn.html#analysispre)
...@@ -42,11 +42,3 @@ python -m paddle_serving_server_gpu.serve --model encrypt_server/ --port 9300 -- ...@@ -42,11 +42,3 @@ python -m paddle_serving_server_gpu.serve --model encrypt_server/ --port 9300 --
### 模型加密推理示例 ### 模型加密推理示例
模型加密推理示例, 请参见[`/python/examples/encryption/`](../python/examples/encryption/) 模型加密推理示例, 请参见[`/python/examples/encryption/`](../python/examples/encryption/)
### 其他详细信息
飞桨官方网站加密方法接口
[Python加密方法接口](https://github.com/HexToString/Serving/blob/develop/python/paddle_serving_app/local_predict.py)
[C++加密方法接口](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/python_infer_cn.html#analysispre)
...@@ -115,24 +115,12 @@ python test_asyn_client.py ...@@ -115,24 +115,12 @@ python test_asyn_client.py
python test_batch_client.py python test_batch_client.py
``` ```
#### 通用 pb 预测
``` shell
python test_general_pb_client.py
```
#### 预测超时 #### 预测超时
``` shell ``` shell
python test_timeout_client.py python test_timeout_client.py
``` ```
#### List 输入
``` shell
python test_list_input_client.py
```
## 3.更多示例 ## 3.更多示例
详见[`python/examples/grpc_impl_example`](../python/examples/grpc_impl_example)下的示例文件。 详见[`python/examples/grpc_impl_example`](../python/examples/grpc_impl_example)下的示例文件。
...@@ -18,7 +18,7 @@ The following table shows compatibilities between Paddle Serving Server and Java ...@@ -18,7 +18,7 @@ The following table shows compatibilities between Paddle Serving Server and Java
| Paddle Serving Server version | Java SDK version | | Paddle Serving Server version | Java SDK version |
| :---------------------------: | :--------------: | | :---------------------------: | :--------------: |
| 0.3.2 | 0.0.1 | | 0.5.0 | 0.0.1 |
1. Directly use the provided Java SDK as the client for prediction 1. Directly use the provided Java SDK as the client for prediction
### Install Java SDK ### Install Java SDK
......
...@@ -17,7 +17,7 @@ Paddle Serving 提供了 Java SDK,支持 Client 端用 Java 语言进行预测 ...@@ -17,7 +17,7 @@ Paddle Serving 提供了 Java SDK,支持 Client 端用 Java 语言进行预测
| Paddle Serving Server version | Java SDK version | | Paddle Serving Server version | Java SDK version |
| :---------------------------: | :--------------: | | :---------------------------: | :--------------: |
| 0.3.2 | 0.0.1 | | 0.5.0 | 0.0.1 |
1. 直接使用提供的Java SDK作为Client进行预测 1. 直接使用提供的Java SDK作为Client进行预测
### 安装 ### 安装
......
...@@ -87,3 +87,34 @@ https://paddle-serving.bj.bcebos.com/whl/xpu/paddle_serving_client-0.0.0-cp36-no ...@@ -87,3 +87,34 @@ https://paddle-serving.bj.bcebos.com/whl/xpu/paddle_serving_client-0.0.0-cp36-no
# App # App
https://paddle-serving.bj.bcebos.com/whl/xpu/paddle_serving_app-0.0.0-py3-none-any.whl https://paddle-serving.bj.bcebos.com/whl/xpu/paddle_serving_app-0.0.0-py3-none-any.whl
``` ```
### Binary Package
for most users, we do not need to read this section. But if you deploy your Paddle Serving on a machine without network, you will encounter a problem that the binary executable tar file cannot be downloaded. Therefore, here we give you all the download links for various environment.
#### Bin links
```
# CPU AVX MKL
https://paddle-serving.bj.bcebos.com/bin/serving-cpu-avx-mkl-0.0.0.tar.gz
# CPU AVX OPENBLAS
https://paddle-serving.bj.bcebos.com/bin/serving-cpu-avx-openblas-0.0.0.tar.gz
# CPU NOAVX OPENBLAS
https://paddle-serving.bj.bcebos.com/bin/serving-cpu-noavx-openblas-0.0.0.tar.gz
# Cuda 9
https://paddle-serving.bj.bcebos.com/bin/serving-gpu-cuda9-0.0.0.tar.gz
# Cuda 10
https://paddle-serving.bj.bcebos.com/bin/serving-gpu-cuda10-0.0.0.tar.gz
# Cuda 10.1
https://paddle-serving.bj.bcebos.com/bin/serving-gpu-101-0.0.0.tar.gz
# Cuda 10.2
https://paddle-serving.bj.bcebos.com/bin/serving-gpu-102-0.0.0.tar.gz
# Cuda 11
https://paddle-serving.bj.bcebos.com/bin/serving-gpu-cuda11-0.0.0.tar.gz
```
#### How to setup SERVING_BIN offline?
- download the serving server whl package and bin package, and make sure they are for the same environment
- download the serving client whl and serving app whl, pay attention to the Python version.
- `pip install ` the serving and `tar xf ` the binary package, then `export SERVING_BIN=$PWD/serving-gpu-cuda10-0.0.0/serving` (take Cuda 10.0 as the example)
...@@ -5,7 +5,7 @@ ...@@ -5,7 +5,7 @@
例如: 例如:
```shell ```shell
python -m paddle_serving_server_gpu.serve --model bert_seq20_model --port 9292 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model bert_seq128_model --port 9292 --gpu_ids 0
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9393 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9393 --gpu_ids 0
``` ```
......
...@@ -17,14 +17,14 @@ This document takes Python2 as an example to show how to run Paddle Serving in d ...@@ -17,14 +17,14 @@ This document takes Python2 as an example to show how to run Paddle Serving in d
Refer to [this document](DOCKER_IMAGES.md) for a docker image: Refer to [this document](DOCKER_IMAGES.md) for a docker image:
```shell ```shell
docker pull hub.baidubce.com/paddlepaddle/serving:latest docker pull registry.baidubce.com/paddlepaddle/serving:latest-devel
``` ```
### Create container ### Create container
```bash ```bash
docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:latest-devel
docker exec -it test bash docker exec -it test bash
``` ```
...@@ -46,20 +46,20 @@ The GPU version is basically the same as the CPU version, with only some differe ...@@ -46,20 +46,20 @@ The GPU version is basically the same as the CPU version, with only some differe
Refer to [this document](DOCKER_IMAGES.md) for a docker image, the following is an example of an `cuda9.0-cudnn7` image: Refer to [this document](DOCKER_IMAGES.md) for a docker image, the following is an example of an `cuda9.0-cudnn7` image:
```shell ```shell
docker pull hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7 docker pull registry.baidubce.com/paddlepaddle/serving:latest-cuda10.2-cudnn8-devel
``` ```
### Create container ### Create container
```bash ```bash
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7 nvidia-docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:latest-cuda10.2-cudnn8-devel
nvidia-docker exec -it test bash nvidia-docker exec -it test bash
``` ```
or or
```bash ```bash
docker run --gpus all -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7 docker run --gpus all -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:latest-cuda10.2-cudnn8-devel
docker exec -it test bash docker exec -it test bash
``` ```
...@@ -69,7 +69,7 @@ The `-p` option is to map the `9292` port of the container to the `9292` port of ...@@ -69,7 +69,7 @@ The `-p` option is to map the `9292` port of the container to the `9292` port of
The mirror comes with `paddle_serving_server_gpu`, `paddle_serving_client`, and `paddle_serving_app` corresponding to the mirror tag version. If users don’t need to change the version, they can use it directly, which is suitable for environments without extranet services. The mirror comes with `paddle_serving_server_gpu`, `paddle_serving_client`, and `paddle_serving_app` corresponding to the mirror tag version. If users don’t need to change the version, they can use it directly, which is suitable for environments without extranet services.
If you need to change the version, please refer to the instructions on the homepage to download the pip package of the corresponding version. If you need to change the version, please refer to the instructions on the homepage to download the pip package of the corresponding version. [LATEST_PACKAGES](./LATEST_PACKAGES.md)
## Precautious ## Precautious
......
...@@ -16,14 +16,16 @@ Docker(GPU版本需要在GPU机器上安装nvidia-docker) ...@@ -16,14 +16,16 @@ Docker(GPU版本需要在GPU机器上安装nvidia-docker)
参考[该文档](DOCKER_IMAGES_CN.md)获取镜像: 参考[该文档](DOCKER_IMAGES_CN.md)获取镜像:
以CPU编译镜像为例
```shell ```shell
docker pull hub.baidubce.com/paddlepaddle/serving:latest docker pull registry.baidubce.com/paddlepaddle/serving:latest-devel
``` ```
### 创建容器并进入 ### 创建容器并进入
```bash ```bash
docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:latest-devel
docker exec -it test bash docker exec -it test bash
``` ```
...@@ -37,15 +39,19 @@ docker exec -it test bash ...@@ -37,15 +39,19 @@ docker exec -it test bash
## GPU 版本 ## GPU 版本
```shell
docker pull registry.baidubce.com/paddlepaddle/serving:latest-cuda10.2-cudnn8-devel
```
### 创建容器并进入 ### 创建容器并进入
```bash ```bash
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7 nvidia-docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:latest-cuda10.2-cudnn8-devel
nvidia-docker exec -it test bash nvidia-docker exec -it test bash
``` ```
或者 或者
```bash ```bash
docker run --gpus all -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7 docker run --gpus all -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:latest-cuda10.2-cudnn8-devel
docker exec -it test bash docker exec -it test bash
``` ```
...@@ -55,7 +61,7 @@ docker exec -it test bash ...@@ -55,7 +61,7 @@ docker exec -it test bash
镜像里自带对应镜像tag版本的`paddle_serving_server_gpu``paddle_serving_client``paddle_serving_app`,如果用户不需要更改版本,可以直接使用,适用于没有外网服务的环境。 镜像里自带对应镜像tag版本的`paddle_serving_server_gpu``paddle_serving_client``paddle_serving_app`,如果用户不需要更改版本,可以直接使用,适用于没有外网服务的环境。
如果需要更换版本,请参照首页的指导,下载对应版本的pip包。 如果需要更换版本,请参照首页的指导,下载对应版本的pip包。[最新安装包合集](LATEST_PACKAGES.md)
## 注意事项 ## 注意事项
......
...@@ -2,7 +2,74 @@ ...@@ -2,7 +2,74 @@
([简体中文](./SAVE_CN.md)|English) ([简体中文](./SAVE_CN.md)|English)
## Save from training or prediction script ## Export from saved model files
you can use a build-in python module called `paddle_serving_client.convert` to convert it.
```python
python -m paddle_serving_client.convert --dirname ./your_inference_model_dir
```
If you have saved model files using Paddle's `save_inference_model` API, you can use Paddle Serving's` inference_model_to_serving` API to convert it into a model file that can be used for Paddle Serving.
```python
import paddle_serving_client.io as serving_io
serving_io.inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None )
```
Arguments are the same as `inference_model_to_serving` API.
| Argument | Type | Default | Description |
|--------------|------|-----------|--------------------------------|
| `dirname` | str | - | Path of saved model files. Program file and parameter files are saved in this directory. |
| `serving_server` | str | `"serving_server"` | The path of model files and configuration files for server. |
| `serving_client` | str | `"serving_client"` | The path of configuration files for client. |
| `model_filename` | str | None | The name of file to load the inference program. If it is None, the default filename `__model__` will be used. |
| `params_filename` | str | None | The name of file to load all parameters. It is only used for the case that all parameters were saved in a single binary file. If parameters were saved in separate files, set it as None. |
**Demo: Convert From Dynamic Graph**
PaddlePaddle 2.0 provides a new dynamic graph mode, so here we use imagenet ResNet50 dynamic graph as an example to teach how to export from a saved model and use it for real online inference scenarios.
```
wget https://paddle-serving.bj.bcebos.com/others/dygraph_res50.tar #模型
wget https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg #示例输入(向日葵)
tar xf dygraph_res50.tar
python -m paddle_serving_client.convert --dirname . --model_filename dygraph_model.pdmodel --params_filename dygraph_model.pdiparams --serving_server serving_server --serving_client serving_client```
We can see that the `serving_server` and `serving_client` folders hold the server and client configuration of the model respectively
Start the server (GPU)
```
python -m paddle_serving_server_gpu.serve --model serving_server --port 9393 --gpu_id 0
```
Client (`test_client.py`)
```
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop
from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize
client = Client()
client.load_client_config(
"serving_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9393"])
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
image_file = "daisy.jpg"
img = seq(image_file)
fetch_map = client.predict(feed={"inputs": img}, fetch=["save_infer_model/scale_0.tmp_0"])
print(fetch_map["save_infer_model/scale_0.tmp_0"].reshape(-1))
```
Run
```
python test_client.py
```
You can see that the prediction has been successfully executed. The above is the content predicted by the dynamic graph ResNet50 model on Serving. The use of other dynamic graph models is similar.
## Save from training or prediction script (Static Graph Mode)
Currently, paddle serving provides a save_model interface for users to access, the interface is similar with `save_inference_model` of Paddle. Currently, paddle serving provides a save_model interface for users to access, the interface is similar with `save_inference_model` of Paddle.
``` python ``` python
import paddle_serving_client.io as serving_io import paddle_serving_client.io as serving_io
...@@ -31,22 +98,3 @@ for line in sys.stdin: ...@@ -31,22 +98,3 @@ for line in sys.stdin:
fetch_map = client.predict(feed=feed, fetch=fetch) fetch_map = client.predict(feed=feed, fetch=fetch)
print("{} {}".format(fetch_map["prediction"][1], label[0])) print("{} {}".format(fetch_map["prediction"][1], label[0]))
``` ```
## Export from saved model files
If you have saved model files using Paddle's `save_inference_model` API, you can use Paddle Serving's` inference_model_to_serving` API to convert it into a model file that can be used for Paddle Serving.
```python
import paddle_serving_client.io as serving_io
serving_io.inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None )
```
Or you can use a build-in python module called `paddle_serving_client.convert` to convert it.
```python
python -m paddle_serving_client.convert --dirname ./your_inference_model_dir
```
Arguments are the same as `inference_model_to_serving` API.
| Argument | Type | Default | Description |
|--------------|------|-----------|--------------------------------|
| `dirname` | str | - | Path of saved model files. Program file and parameter files are saved in this directory. |
| `serving_server` | str | `"serving_server"` | The path of model files and configuration files for server. |
| `serving_client` | str | `"serving_client"` | The path of configuration files for client. |
| `model_filename` | str | None | The name of file to load the inference program. If it is None, the default filename `__model__` will be used. |
| `params_filename` | str | None | The name of file to load all parameters. It is only used for the case that all parameters were saved in a single binary file. If parameters were saved in separate files, set it as None. |
...@@ -2,14 +2,79 @@ ...@@ -2,14 +2,79 @@
(简体中文|[English](./SAVE.md)) (简体中文|[English](./SAVE.md))
## 从训练或预测脚本中保存 ## 从已保存的模型文件中导出
如果已使用Paddle 的`save_inference_model`接口保存出预测要使用的模型,你可以使用Paddle Serving提供的名为`paddle_serving_client.convert`的内置模块进行转换。
```python
python -m paddle_serving_client.convert --dirname ./your_inference_model_dir
```
也可以通过Paddle Serving的`inference_model_to_serving`接口转换成可用于Paddle Serving的模型文件。
```python
import paddle_serving_client.io as serving_io
serving_io.inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None)
```
模块参数与`inference_model_to_serving`接口参数相同。
| 参数 | 类型 | 默认值 | 描述 |
|--------------|------|-----------|--------------------------------|
| `dirname` | str | - | 需要转换的模型文件存储路径,Program结构文件和参数文件均保存在此目录。|
| `serving_server` | str | `"serving_server"` | 转换后的模型文件和配置文件的存储路径。默认值为serving_server |
| `serving_client` | str | `"serving_client"` | 转换后的客户端配置文件存储路径。默认值为serving_client |
| `model_filename` | str | None | 存储需要转换的模型Inference Program结构的文件名称。如果设置为None,则使用 `__model__` 作为默认的文件名 |
| `params_filename` | str | None | 存储需要转换的模型所有参数的文件名称。当且仅当所有模型参数被保>存在一个单独的二进制文件中,它才需要被指定。如果模型参数是存储在各自分离的文件中,设置它的值为None |
**示例:从动态图模型中导出**
PaddlePaddle 2.0提供了全新的动态图模式,因此我们这里以imagenet ResNet50动态图为示例教学如何从已保存模型导出,并用于真实的在线预测场景。
```
wget https://paddle-serving.bj.bcebos.com/others/dygraph_res50.tar #模型
wget https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg #示例输入(向日葵)
tar xf dygraph_res50.tar
python -m paddle_serving_client.convert --dirname . --model_filename dygraph_model.pdmodel --params_filename dygraph_model.pdiparams --serving_server serving_server --serving_client serving_client
```
我们可以看到`serving_server``serving_client`文件夹分别保存着模型的服务端和客户端配置
启动服务端(GPU)
```
python -m paddle_serving_server_gpu.serve --model serving_server --port 9393 --gpu_id 0
```
客户端写法,保存为`test_client.py`
```
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop
from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize
client = Client()
client.load_client_config(
"serving_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9393"])
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
image_file = "daisy.jpg"
img = seq(image_file)
fetch_map = client.predict(feed={"inputs": img}, fetch=["save_infer_model/scale_0.tmp_0"])
print(fetch_map["save_infer_model/scale_0.tmp_0"].reshape(-1))
```
执行
```
python test_client.py
```
即可看到成功的执行了预测,以上就是动态图ResNet50模型在Serving上预测的内容,其他动态图模型使用方式与之类似。
## 从训练或预测脚本中保存(静态图)
目前,Paddle Serving提供了一个save_model接口供用户访问,该接口与Paddle的`save_inference_model`类似。 目前,Paddle Serving提供了一个save_model接口供用户访问,该接口与Paddle的`save_inference_model`类似。
``` python ``` python
import paddle_serving_client.io as serving_io import paddle_serving_client.io as serving_io
serving_io.save_model("imdb_model", "imdb_client_conf", serving_io.save_model("imdb_model", "imdb_client_conf",
{"words": data}, {"prediction": prediction}, {"words": data}, {"prediction": prediction},
fluid.default_main_program()) paddle.static.default_main_program())
``` ```
imdb_model是具有服务配置的服务器端模型。 imdb_client_conf是客户端rpc配置。 imdb_model是具有服务配置的服务器端模型。 imdb_client_conf是客户端rpc配置。
...@@ -32,22 +97,3 @@ for line in sys.stdin: ...@@ -32,22 +97,3 @@ for line in sys.stdin:
fetch_map = client.predict(feed=feed, fetch=fetch) fetch_map = client.predict(feed=feed, fetch=fetch)
print("{} {}".format(fetch_map["prediction"][1], label[0])) print("{} {}".format(fetch_map["prediction"][1], label[0]))
``` ```
## 从已保存的模型文件中导出
如果已使用Paddle 的`save_inference_model`接口保存出预测要使用的模型,则可以通过Paddle Serving的`inference_model_to_serving`接口转换成可用于Paddle Serving的模型文件。
```python
import paddle_serving_client.io as serving_io
serving_io.inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None)
```
或者你可以使用Paddle Serving提供的名为`paddle_serving_client.convert`的内置模块进行转换。
```python
python -m paddle_serving_client.convert --dirname ./your_inference_model_dir
```
模块参数与`inference_model_to_serving`接口参数相同。
| 参数 | 类型 | 默认值 | 描述 |
|--------------|------|-----------|--------------------------------|
| `dirname` | str | - | 需要转换的模型文件存储路径,Program结构文件和参数文件均保存在此目录。|
| `serving_server` | str | `"serving_server"` | 转换后的模型文件和配置文件的存储路径。默认值为serving_server |
| `serving_client` | str | `"serving_client"` | 转换后的客户端配置文件存储路径。默认值为serving_client |
| `model_filename` | str | None | 存储需要转换的模型Inference Program结构的文件名称。如果设置为None,则使用 `__model__` 作为默认的文件名 |
| `params_filename` | str | None | 存储需要转换的模型所有参数的文件名称。当且仅当所有模型参数被保存在一个单独的二进制文件中,它才需要被指定。如果模型参数是存储在各自分离的文件中,设置它的值为None |
# An End-to-end Tutorial from Training to Inference Service Deployment
([简体中文](./TRAIN_TO_SERVICE_CN.md)|English)
Paddle Serving is Paddle's high-performance online inference service framework, which can flexibly support the deployment of most models. In this article, the IMDB review sentiment analysis task is used as an example to show the entire process from model training to deployment of inference service through 9 steps.
## Step1:Prepare for Running Environment
Paddle Serving can be deployed on Linux environments.Currently the server supports deployment on Centos7. [Docker deployment is recommended](RUN_IN_DOCKER.md). The rpc client supports deploymen on Centos7 and Ubuntu 18.On other systems or in environments where you do not want to install the serving module, you can still access the server-side prediction service through the http service.
You can choose to install the cpu or gpu version of the server module according to the requirements and machine environment, and install the client module on the client machine. When you want to access the server with http, there is not need to install client module.
```shell
pip install paddle_serving_server #cpu version server side
pip install paddle_serving_server_gpu #gpu version server side
pip install paddle_serving_client #client version
```
After simple preparation, we will take the IMDB review sentiment analysis task as an example to show the process from model training to deployment of prediction services. All the code in the example can be found in the [IMDB example](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imdb) of the Paddle Serving code base, the data and dictionary used in the example The file can be obtained by executing the get_data.sh script in the IMDB sample code.
## Step2:Determine Tasks and Raw Data Format
IMDB review sentiment analysis task is to classify the content of movie reviews to determine whether the review is a positive review or a negative review.
First let's take a look at the raw data:
```
saw a trailer for this on another video, and decided to rent when it came out. boy, was i disappointed! the story is extremely boring, the acting (aside from christopher walken) is bad, and i couldn't care less about the characters, aside from really wanting to see nora's husband get thrashed. christopher walken's role is such a throw-away, what a tease! | 0
```
This is a sample of English comments. The sample uses | as the separator. The content of the comment is before the separator. The label is the sample after the separator. 0 is the negative while 1 is the positive.
## Step3:Define Reader, divide training set and test set
For the original text we need to convert it to a numeric id that the neural network can use. The imdb_reader.py script defines the method of text idization, and the words are mapped to integers through the dictionary file imdb.vocab.
<details>
<summary>imdb_reader.py</summary>
```python
import sys
import os
import paddle
import re
import paddle.fluid.incubate.data_generator as dg
class IMDBDataset(dg.MultiSlotDataGenerator):
def load_resource(self, dictfile):
self._vocab = {}
wid = 0
with open(dictfile) as f:
for line in f:
self._vocab[line.strip()] = wid
wid += 1
self._unk_id = len(self._vocab)
self._pattern = re.compile(r'(;|,|\.|\?|!|\s|\(|\))')
self.return_value = ("words", [1, 2, 3, 4, 5, 6]), ("label", [0])
def get_words_only(self, line):
sent = line.lower().replace("<br />", " ").strip()
words = [x for x in self._pattern.split(sent) if x and x != " "]
feas = [
self._vocab[x] if x in self._vocab else self._unk_id for x in words
]
return feas
def get_words_and_label(self, line):
send = '|'.join(line.split('|')[:-1]).lower().replace("<br />",
" ").strip()
label = [int(line.split('|')[-1])]
words = [x for x in self._pattern.split(send) if x and x != " "]
feas = [
self._vocab[x] if x in self._vocab else self._unk_id for x in words
]
return feas, label
def infer_reader(self, infer_filelist, batch, buf_size):
def local_iter():
for fname in infer_filelist:
with open(fname, "r") as fin:
for line in fin:
feas, label = self.get_words_and_label(line)
yield feas, label
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def memory_iter():
for i in range(1000):
yield self.return_value
def data_iter():
feas, label = self.get_words_and_label(line)
yield ("words", feas), ("label", label)
return data_iter
```
</details>
The sample after mapping is similar to the following format:
```
257 142 52 898 7 0 12899 1083 824 122 89527 134 6 65 47 48 904 89527 13 0 87 170 8 248 9 15 4 25 1365 4360 89527 702 89527 1 89527 240 3 28 89527 19 7 0 216 219 614 89527 0 84 89527 225 3 0 15 67 2356 89527 0 498 117 2 314 282 7 38 1097 89527 1 0 174 181 38 11 71 198 44 1 3110 89527 454 89527 34 37 89527 0 15 5912 80 2 9856 7748 89527 8 421 80 9 15 14 55 2218 12 4 45 6 58 25 89527 154 119 224 41 0 151 89527 871 89527 505 89527 501 89527 29 2 773 211 89527 54 307 90 0 893 89527 9 407 4 25 2 614 15 46 89527 89527 71 8 1356 35 89527 12 0 89527 89527 89 527 577 374 3 39091 22950 1 3771 48900 95 371 156 313 89527 37 154 296 4 25 2 217 169 3 2759 7 0 15 89527 0 714 580 11 2094 559 34 0 84 539 89527 1 0 330 355 3 0 15 15607 935 80 0 5369 3 0 622 89527 2 15 36 9 2291 2 7599 6968 2449 89527 1 454 37 256 2 211 113 0 480 218 1152 700 4 1684 1253 352 10 2449 89527 39 4 1819 129 1 316 462 29 0 12957 3 6 28 89527 13 0 457 8952 7 225 89527 8 2389 0 1514 89527 1
```
In this way, the neural network can train the transformed text information as feature values.
## Step4:Define CNN network for training and saving
Net we use [CNN Model](https://www.paddlepaddle.org.cn/documentation/docs/zh/user_guides/nlp_case/understand_sentiment/README.cn.html#cnn) for training, in nets.py we define the network structure.
<details>
<summary>nets.py</summary>
```python
import sys
import time
import numpy as np
import paddle
import paddle.fluid as fluid
def cnn_net(data,
label,
dict_dim,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2,
win_size=3):
""" conv net. """
emb = fluid.layers.embedding(
input=data, size=[dict_dim, emb_dim], is_sparse=True)
conv_3 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=win_size,
act="tanh",
pool_type="max")
fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, acc, prediction
```
</details>
Use training dataset for training. The training script is local_train.py. After training, use the paddle_serving_client.io.save_model function to save the model files and configuration files used by the servingdeployment.
<details>
<summary>local_train.py</summary>
```python
import os
import sys
import paddle
import logging
import paddle.fluid as fluid
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
# load dict file
def load_vocab(filename):
vocab = {}
with open(filename) as f:
wid = 0
for line in f:
vocab[line.strip()] = wid
wid += 1
vocab["<unk>"] = len(vocab)
return vocab
if __name__ == "__main__":
from nets import cnn_net
model_name = "imdb_cnn"
vocab = load_vocab('imdb.vocab')
dict_dim = len(vocab)
#define model input
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
#define dataset,train_data is the dataset directory
dataset = fluid.DatasetFactory().create_dataset()
filelist = ["train_data/%s" % x for x in os.listdir("train_data")]
dataset.set_use_var([data, label])
pipe_command = "python imdb_reader.py"
dataset.set_pipe_command(pipe_command)
dataset.set_batch_size(4)
dataset.set_filelist(filelist)
dataset.set_thread(10)
#define model
avg_cost, acc, prediction = cnn_net(data, label, dict_dim)
optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimizer.minimize(avg_cost)
#execute training
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
epochs = 100
import paddle_serving_client.io as serving_io
for i in range(epochs):
exe.train_from_dataset(
program=fluid.default_main_program(), dataset=dataset, debug=False)
logger.info("TRAIN --> pass: {}".format(i))
if i == 64:
#At the end of training, use the model save interface in PaddleServing to save the models and configuration files required by Serving
serving_io.save_model("{}_model".format(model_name),
"{}_client_conf".format(model_name),
{"words": data}, {"prediction": prediction},
fluid.default_main_program())
```
</details>
![Training process](./imdb_loss.png) As can be seen from the above figure, the loss of the model starts to converge after the 65th round. We save the model and configuration file after the 65th round of training is completed. The saved files are divided into imdb_cnn_client_conf and imdb_cnn_model folders. The former contains client-side configuration files, and the latter contains server-side configuration files and saved model files.
The parameter list of the save_model function is as follows:
| Parameter | Meaning |
| -------------------- | ------------------------------------------------------------ |
| server_model_folder | Directory for server-side configuration files and model files |
| client_config_folder | Directory for saving client configuration files |
| feed_var_dict | The input of the inference model. The dict type and key can be customized. The value is the input variable in the model. Each key corresponds to a variable. When using the prediction service, the input data uses the key as the input name. |
| fetch_var_dict | The output of the model used for prediction, dict type, key can be customized, value is the input variable in the model, and each key corresponds to a variable. When using the prediction service, use the key to get the returned data |
| main_program | Model's program |
## Step5: Deploy RPC Prediction Service
The Paddle Serving framework supports two types of prediction service methods. One is to communicate through RPC and the other is to communicate through HTTP. The deployment and use of RPC prediction service will be introduced first. The deployment and use of HTTP prediction service will be introduced at Step 8. .
```shell
python -m paddle_serving_server.serve --model imdb_cnn_model / --port 9292 #cpu prediction service
python -m paddle_serving_server_gpu.serve --model imdb_cnn_model / --port 9292 --gpu_ids 0 #gpu prediction service
```
The parameter --model in the command specifies the server-side model and configuration file directory previously saved, --port specifies the port of the prediction service. When deploying the gpu prediction service using the gpu version, you can use --gpu_ids to specify the gpu used.
After executing one of the above commands, the RPC prediction service deployment of the IMDB sentiment analysis task is completed.
## Step6: Reuse Reader, define remote RPC client
Below we access the RPC prediction service through Python code, the script is test_client.py
<details>
<summary>test_client.py</summary>
```python
from paddle_serving_client import Client
from imdb_reader import IMDBDataset
import sys
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"])
#The code of the data preprocessing part is reused here to convert the original text into a numeric id
imdb_dataset = IMDBDataset()
imdb_dataset.load_resource(sys.argv[2])
for line in sys.stdin:
word_ids, label = imdb_dataset.get_words_and_label(line)
feed = {"words": word_ids}
fetch = ["acc", "cost", "prediction"]
fetch_map = client.predict(feed=feed, fetch=fetch)
print("{} {}".format(fetch_map["prediction"][1], label[0]))
```
</details>
The script receives data from standard input and prints out the probability that the sample whose infer result is 1 and its real label.
## Step7: Call the RPC service to test the model effect
The client implemented in the previous step runs the prediction service as an example. The usage method is as follows:
```shell
cat test_data/part-0 | python test_client.py imdb_lstm_client_conf/serving_client_conf.prototxt imdb.vocab
```
Using 2084 samples in the test_data/part-0 file for test testing, the model prediction accuracy is 88.19%.
**Note**: The effect of each model training may be slightly different, and the accuracy of predictions using the trained model will be close to the examples but may not be exactly the same.
## Step8: Deploy HTTP Prediction Service
When using the HTTP prediction service, the client does not need to install any modules of Paddle Serving, it only needs to be able to send HTTP requests. Of course, the HTTP method consumes more time in the communication phase than the RPC method.
For the IMDB sentiment analysis task, the original text needs to be preprocessed before prediction. In the RPC prediction service, we put the preprocessing in the client's script, and in the HTTP prediction service, we put the preprocessing on the server. Paddle Serving's HTTP prediction service framework prepares data pre-processing and post-processing interfaces for this situation. We just need to rewrite it according to the needs of the task.
Serving provides sample code, which is obtained by executing the imdb_web_service_demo.sh script in [IMDB Example](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imdb).
Let's take a look at the script text_classify_service.py that starts the HTTP prediction service.
<details>
<summary>text_clssify_service.py</summary>
```python
from paddle_serving_server.web_service import WebService
from imdb_reader import IMDBDataset
import sys
#extend class WebService
class IMDBService(WebService):
def prepare_dict(self, args={}):
if len(args) == 0:
exit(-1)
self.dataset = IMDBDataset()
self.dataset.load_resource(args["dict_file_path"])
#rewrite preprocess() to implement data preprocessing, here we reuse reader script for training
def preprocess(self, feed={}, fetch=[]):
if "words" not in feed:
exit(-1)
res_feed = {}
res_feed["words"] = self.dataset.get_words_only(feed["words"])[0]
return res_feed, fetch
#Here you need to use the name parameter to specify the name of the prediction service.
imdb_service = IMDBService(name="imdb")
imdb_service.load_model_config(sys.argv[1])
imdb_service.prepare_server(
workdir=sys.argv[2], port=int(sys.argv[3]), device="cpu")
imdb_service.prepare_dict({"dict_file_path": sys.argv[4]})
imdb_service.run_server()
```
</details>
run
```shell
python text_classify_service.py imdb_cnn_model/ workdir/ 9292 imdb.vocab
```
In the above command, the first parameter is the saved server-side model and configuration file. The second parameter is the working directory, which will save some configuration files for the prediction service. The directory may not exist but needs to be specified. The prediction service will be created by itself. the third parameter is Port number, the fourth parameter is the dictionary file.
## Step9: Call the prediction service with plaintext data
After starting the HTTP prediction service, you can make prediction with a single command:
```
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "i am very sad | 0"}], "fetch":["prediction"]}' http://127.0.0.1:9292/imdb/prediction
```
When the inference process is normal, the prediction probability is returned, as shown below.
```
{"result":{"prediction":[[0.4389057457447052,0.561094343662262]]}}
```
**Note**: The effect of each model training may be slightly different, and the inferred probability value using the trained model may not be consistent with the example.
# 端到端完成从训练到部署全流程
(简体中文|[English](./TRAIN_TO_SERVICE.md))
Paddle Serving是Paddle的高性能在线预测服务框架,可以灵活支持大多数模型的部署。本文中将以IMDB评论情感分析任务为例通过9步展示从模型的训练到部署预测服务的全流程。
## Step1:准备环境
Paddle Serving可以部署在Linux环境上,目前server端支持在Centos7上部署,推荐使用[Docker部署](RUN_IN_DOCKER_CN.md)。rpc client端可以在Centos7和Ubuntu18上部署,在其他系统上或者不希望安装serving模块的环境中仍然可以通过http服务来访问server端的预测服务。
可以根据需求和机器环境来选择安装cpu或gpu版本的server模块,在client端机器上安装client模块。使用http请求的方式来访问server时,client端机器不需要安装client模块。
```shell
pip install paddle_serving_server #cpu版本server端
pip install paddle_serving_server_gpu #gpu版本server端
pip install paddle_serving_client #client端
```
简单准备后,我们将以IMDB评论情感分析任务为例,展示从模型训练到部署预测服务的流程。示例中的所有代码都可以在Paddle Serving代码库的[IMDB示例](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imdb)中找到,示例中使用的数据和词典文件可以通过执行IMDB示例代码中的get_data.sh脚本得到。
## Step2:确定任务和原始数据格式
IMDB评论情感分析任务是对电影评论的内容进行二分类,判断该评论是属于正面评论还是负面评论。
首先我们来看一下原始的数据:
```
saw a trailer for this on another video, and decided to rent when it came out. boy, was i disappointed! the story is extremely boring, the acting (aside from christopher walken) is bad, and i couldn't care less about the characters, aside from really wanting to see nora's husband get thrashed. christopher walken's role is such a throw-away, what a tease! | 0
```
这是一条英文评论样本,样本中使用|作为分隔符,分隔符之前为评论的内容,分隔符之后是样本的标签,0代表负样本,即负面评论,1代表正样本,即正面评论。
## Step3:定义Reader,划分训练集、测试集
对于原始文本我们需要将它转化为神经网络可以使用的数字id。imdb_reader.py脚本中定义了文本id化的方法,通过词典文件imdb.vocab将单词映射为整形数。
<details>
<summary>imdb_reader.py</summary>
```python
import sys
import os
import paddle
import re
import paddle.fluid.incubate.data_generator as dg
class IMDBDataset(dg.MultiSlotDataGenerator):
def load_resource(self, dictfile):
self._vocab = {}
wid = 0
with open(dictfile) as f:
for line in f:
self._vocab[line.strip()] = wid
wid += 1
self._unk_id = len(self._vocab)
self._pattern = re.compile(r'(;|,|\.|\?|!|\s|\(|\))')
self.return_value = ("words", [1, 2, 3, 4, 5, 6]), ("label", [0])
def get_words_only(self, line):
sent = line.lower().replace("<br />", " ").strip()
words = [x for x in self._pattern.split(sent) if x and x != " "]
feas = [
self._vocab[x] if x in self._vocab else self._unk_id for x in words
]
return feas
def get_words_and_label(self, line):
send = '|'.join(line.split('|')[:-1]).lower().replace("<br />",
" ").strip()
label = [int(line.split('|')[-1])]
words = [x for x in self._pattern.split(send) if x and x != " "]
feas = [
self._vocab[x] if x in self._vocab else self._unk_id for x in words
]
return feas, label
def infer_reader(self, infer_filelist, batch, buf_size):
def local_iter():
for fname in infer_filelist:
with open(fname, "r") as fin:
for line in fin:
feas, label = self.get_words_and_label(line)
yield feas, label
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def memory_iter():
for i in range(1000):
yield self.return_value
def data_iter():
feas, label = self.get_words_and_label(line)
yield ("words", feas), ("label", label)
return data_iter
```
</details>
映射之后的样本类似于以下的格式:
```
257 142 52 898 7 0 12899 1083 824 122 89527 134 6 65 47 48 904 89527 13 0 87 170 8 248 9 15 4 25 1365 4360 89527 702 89527 1 89527 240 3 28 89527 19 7 0 216 219 614 89527 0 84 89527 225 3 0 15 67 2356 89527 0 498 117 2 314 282 7 38 1097 89527 1 0 174 181 38 11 71 198 44 1 3110 89527 454 89527 34 37 89527 0 15 5912 80 2 9856 7748 89527 8 421 80 9 15 14 55 2218 12 4 45 6 58 25 89527 154 119 224 41 0 151 89527 871 89527 505 89527 501 89527 29 2 773 211 89527 54 307 90 0 893 89527 9 407 4 25 2 614 15 46 89527 89527 71 8 1356 35 89527 12 0 89527 89527 89 527 577 374 3 39091 22950 1 3771 48900 95 371 156 313 89527 37 154 296 4 25 2 217 169 3 2759 7 0 15 89527 0 714 580 11 2094 559 34 0 84 539 89527 1 0 330 355 3 0 15 15607 935 80 0 5369 3 0 622 89527 2 15 36 9 2291 2 7599 6968 2449 89527 1 454 37 256 2 211 113 0 480 218 1152 700 4 1684 1253 352 10 2449 89527 39 4 1819 129 1 316 462 29 0 12957 3 6 28 89527 13 0 457 8952 7 225 89527 8 2389 0 1514 89527 1
```
这样神经网络就可以将转化后的文本信息作为特征值进行训练。
## Step4:定义CNN网络进行训练并保存
接下来我们使用[CNN模型](https://www.paddlepaddle.org.cn/documentation/docs/zh/user_guides/nlp_case/understand_sentiment/README.cn.html#cnn)来进行训练。在nets.py脚本中定义网络结构。
<details>
<summary>nets.py</summary>
```python
import sys
import time
import numpy as np
import paddle
import paddle.fluid as fluid
def cnn_net(data,
label,
dict_dim,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2,
win_size=3):
""" conv net. """
emb = fluid.layers.embedding(
input=data, size=[dict_dim, emb_dim], is_sparse=True)
conv_3 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=win_size,
act="tanh",
pool_type="max")
fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, acc, prediction
```
</details>
使用训练样本进行训练,训练脚本为local_train.py。在训练结束后使用paddle_serving_client.io.save_model函数来保存部署预测服务使用的模型文件和配置文件。
<details>
<summary>local_train.py</summary>
```python
import os
import sys
import paddle
import logging
import paddle.fluid as fluid
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
# 加载词典文件
def load_vocab(filename):
vocab = {}
with open(filename) as f:
wid = 0
for line in f:
vocab[line.strip()] = wid
wid += 1
vocab["<unk>"] = len(vocab)
return vocab
if __name__ == "__main__":
from nets import cnn_net
model_name = "imdb_cnn"
vocab = load_vocab('imdb.vocab')
dict_dim = len(vocab)
#定义模型输入
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
#定义dataset,train_data为训练数据目录
dataset = fluid.DatasetFactory().create_dataset()
filelist = ["train_data/%s" % x for x in os.listdir("train_data")]
dataset.set_use_var([data, label])
pipe_command = "python imdb_reader.py"
dataset.set_pipe_command(pipe_command)
dataset.set_batch_size(4)
dataset.set_filelist(filelist)
dataset.set_thread(10)
#定义模型
avg_cost, acc, prediction = cnn_net(data, label, dict_dim)
optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimizer.minimize(avg_cost)
#执行训练
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
epochs = 100
import paddle_serving_client.io as serving_io
for i in range(epochs):
exe.train_from_dataset(
program=fluid.default_main_program(), dataset=dataset, debug=False)
logger.info("TRAIN --> pass: {}".format(i))
if i == 64:
#在训练结束时使用PaddleServing中的模型保存接口保存出Serving所需的模型和配置文件
serving_io.save_model("{}_model".format(model_name),
"{}_client_conf".format(model_name),
{"words": data}, {"prediction": prediction},
fluid.default_main_program())
```
</details>
![训练过程](./imdb_loss.png)由上图可以看出模型的损失在第65轮之后开始收敛,我们在第65轮训练完成后保存模型和配置文件。保存的文件分为imdb_cnn_client_conf和imdb_cnn_model文件夹,前者包含client端的配置文件,后者包含server端的配置文件和保存的模型文件。
save_model函数的参数列表如下:
| 参数 | 含义 |
| -------------------- | ------------------------------------------------------------ |
| server_model_folder | 保存server端配置文件和模型文件的目录 |
| client_config_folder | 保存client端配置文件的目录 |
| feed_var_dict | 用于预测的模型的输入,dict类型,key可以自定义,value为模型中的input variable,每个key对应一个variable,使用预测服务时,输入数据使用key作为输入的名称 |
| fetch_var_dict | 用于预测的模型的输出,dict类型,key可以自定义,value为模型中的input variable,每个key对应一个variable,使用预测服务时,通过key来获取返回数据 |
| main_program | 模型的program |
## Step5:部署RPC预测服务
Paddle Serving框架支持两种预测服务方式,一种是通过RPC进行通信,一种是通过HTTP进行通信,下面将先介绍RPC预测服务的部署和使用方法,在Step8开始介绍HTTP预测服务的部署和使用。
```shell
python -m paddle_serving_server.serve --model imdb_cnn_model/ --port 9292 #cpu预测服务
python -m paddle_serving_server_gpu.serve --model imdb_cnn_model/ --port 9292 --gpu_ids 0 #gpu预测服务
```
命令中参数--model 指定在之前保存的server端的模型和配置文件目录,--port指定预测服务的端口,当使用gpu版本部署gpu预测服务时可以使用--gpu_ids指定使用的gpu 。
执行完以上命令之一,就完成了IMDB 情感分析任务的RPC预测服务部署。
## Step6:复用Reader,定义远程RPC客户端
下面我们通过Python代码来访问RPC预测服务,脚本为test_client.py
<details>
<summary>test_client.py</summary>
```python
from paddle_serving_client import Client
from imdb_reader import IMDBDataset
import sys
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"])
#在这里复用了数据预处理部分的代码将原始文本转换成数字id
imdb_dataset = IMDBDataset()
imdb_dataset.load_resource(sys.argv[2])
for line in sys.stdin:
word_ids, label = imdb_dataset.get_words_and_label(line)
feed = {"words": word_ids}
fetch = ["acc", "cost", "prediction"]
fetch_map = client.predict(feed=feed, fetch=fetch)
print("{} {}".format(fetch_map["prediction"][1], label[0]))
```
</details>
脚本从标准输入接收数据,并打印出样本预测为1的概率与真实的label。
## Step7:调用RPC服务,测试模型效果
以上一步实现的客户端为例运行预测服务,使用方式如下:
```shell
cat test_data/part-0 | python test_client.py imdb_lstm_client_conf/serving_client_conf.prototxt imdb.vocab
```
使用test_data/part-0文件中的2084个样本进行测试测试,模型预测的准确率为88.19%。
**注意**:每次模型训练的效果可能略有不同,使用训练出的模型预测的准确率会与示例中接近但有可能不完全一致。
## Step8:部署HTTP预测服务
使用HTTP预测服务时,client端不需要安装Paddle Serving的任何模块,仅需要能发送HTTP请求即可。当然HTTP的通信方式会相较于RPC的通信方式在通信阶段消耗更多的时间。
对于IMDB情感分析任务原始文本在预测之前需要进行预处理,在RPC预测服务中我们将预处理放在client的脚本中,而在HTTP预测服务中我们将预处理放在server端。Paddle Serving的HTTP预测服务框架为这种情况准备了数据预处理和后处理的接口,我们只要根据任务需要重写即可。
Serving提供了示例代码,通过执行[IMDB示例](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imdb)中的imdb_web_service_demo.sh脚本来获取。
下面我们来看一下启动HTTP预测服务的脚本text_classify_service.py。
<details>
<summary>text_clssify_service.py</summary>
```python
from paddle_serving_server.web_service import WebService
from imdb_reader import IMDBDataset
import sys
#继承框架中的WebService类
class IMDBService(WebService):
def prepare_dict(self, args={}):
if len(args) == 0:
exit(-1)
self.dataset = IMDBDataset()
self.dataset.load_resource(args["dict_file_path"])
#重写preprocess方法来实现数据预处理,这里也复用了训练时使用的reader脚本
def preprocess(self, feed={}, fetch=[]):
if "words" not in feed:
exit(-1)
res_feed = {}
res_feed["words"] = self.dataset.get_words_only(feed["words"])[0]
return res_feed, fetch
#这里需要使用name参数指定预测服务的名称,
imdb_service = IMDBService(name="imdb")
imdb_service.load_model_config(sys.argv[1])
imdb_service.prepare_server(
workdir=sys.argv[2], port=int(sys.argv[3]), device="cpu")
imdb_service.prepare_dict({"dict_file_path": sys.argv[4]})
imdb_service.run_server()
```
</details>
启动命令
```shell
python text_classify_service.py imdb_cnn_model/ workdir/ 9292 imdb.vocab
```
以上命令中参数1为保存的server端模型和配置文件,参数2为工作目录会保存一些预测服务工作时的配置文件,该目录可以不存在但需要指定名称,预测服务会自行创建,参数3为端口号,参数4为词典文件。
## Step9:明文数据调用预测服务
启动完HTTP预测服务,即可通过一行命令进行预测:
```
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "i am very sad | 0"}], "fetch":["prediction"]}' http://127.0.0.1:9292/imdb/prediction
```
预测流程正常时,会返回预测概率,示例如下。
```
{"result":{"prediction":[[0.4389057457447052,0.561094343662262]]}}
```
**注意**:每次模型训练的效果可能略有不同,使用训练出的模型预测概率数值可能与示例不一致。
...@@ -117,9 +117,9 @@ Please refer to [Docker Desktop](https://www.docker.com/products/docker-desktop) ...@@ -117,9 +117,9 @@ Please refer to [Docker Desktop](https://www.docker.com/products/docker-desktop)
After installation, start the docker linux engine and download the relevant image. In the Serving directory After installation, start the docker linux engine and download the relevant image. In the Serving directory
``` ```
docker pull hub.baidubce.com/paddlepaddle/serving:latest-devel docker pull registry.baidubce.com/paddlepaddle/serving:latest-devel
# There is no expose port here, users can set -p to perform port mapping as needed # There is no expose port here, users can set -p to perform port mapping as needed
docker run --rm -dit --name serving_devel -v $PWD:/Serving hub.baidubce.com/paddlepaddle/serving:latest-devel docker run --rm -dit --name serving_devel -v $PWD:/Serving registry.baidubce.com/paddlepaddle/serving:latest-devel
docker exec -it serving_devel bash docker exec -it serving_devel bash
cd /Serving cd /Serving
``` ```
......
...@@ -117,9 +117,9 @@ python your_client.py ...@@ -117,9 +117,9 @@ python your_client.py
安装之后启动docker的linux engine,下载相关镜像。在Serving目录下 安装之后启动docker的linux engine,下载相关镜像。在Serving目录下
``` ```
docker pull hub.baidubce.com/paddlepaddle/serving:latest-devel docker pull registry.baidubce.com/paddlepaddle/serving:latest-devel
# 此处没有expose端口,用户可根据需要设置-p来进行端口映射 # 此处没有expose端口,用户可根据需要设置-p来进行端口映射
docker run --rm -dit --name serving_devel -v $PWD:/Serving hub.baidubce.com/paddlepaddle/serving:latest-devel docker run --rm -dit --name serving_devel -v $PWD:/Serving registry.baidubce.com/paddlepaddle/serving:latest-devel
docker exec -it serving_devel bash docker exec -it serving_devel bash
cd /Serving cd /Serving
``` ```
......
...@@ -7,8 +7,8 @@ ...@@ -7,8 +7,8 @@
In order to facilitate users to use java for development, we provide the compiled Serving project to be placed in the java mirror. The way to get the mirror and enter the development environment is In order to facilitate users to use java for development, we provide the compiled Serving project to be placed in the java mirror. The way to get the mirror and enter the development environment is
``` ```
docker pull hub.baidubce.com/paddlepaddle/serving:0.4.1-java docker pull registry.baidubce.com/paddlepaddle/serving:0.5.0-java
docker run --rm -dit --name java_serving hub.baidubce.com/paddlepaddle/serving:0.4.1-java docker run --rm -dit --name java_serving registry.baidubce.com/paddlepaddle/serving:0.5.0-java
docker exec -it java_serving bash docker exec -it java_serving bash
cd Serving/java cd Serving/java
``` ```
......
...@@ -7,8 +7,8 @@ ...@@ -7,8 +7,8 @@
为了方便用户使用java进行开发,我们提供了编译好的Serving工程放置在java镜像当中,获取镜像并进入开发环境的方式是 为了方便用户使用java进行开发,我们提供了编译好的Serving工程放置在java镜像当中,获取镜像并进入开发环境的方式是
``` ```
docker pull hub.baidubce.com/paddlepaddle/serving:0.4.1-java docker pull registry.baidubce.com/paddlepaddle/serving:0.5.0-java
docker run --rm -dit --name java_serving hub.baidubce.com/paddlepaddle/serving:0.4.1-java docker run --rm -dit --name java_serving registry.baidubce.com/paddlepaddle/serving:0.5.0-java
docker exec -it java_serving bash docker exec -it java_serving bash
cd Serving/java cd Serving/java
``` ```
......
## Examples
### Support `--use_trt`
the following models support `--use_trt`, which means you can use TensorRT to accelerate inference at Cuda 10.1 or higher.
- imagenet ResNet50/ResNet101
- detection faster_rcnn/yolov3/pp-yolo/ttf-net
## Serving模型示例
### 支持TensorRT的模型列表 `--use_trt`
以下模型支持TensorRT,可以开启 `--use_trt`来加速在线预测,其他模型不能开启。
- imagenet ResNet50/ResNet101
- detection faster_rcnn/yolov3/pp-yolo/ttf-net
...@@ -11,14 +11,16 @@ This example use model [BERT Chinese Model](https://www.paddlepaddle.org.cn/hubd ...@@ -11,14 +11,16 @@ This example use model [BERT Chinese Model](https://www.paddlepaddle.org.cn/hubd
Install paddlehub first Install paddlehub first
``` ```
pip install paddlehub pip3 install paddlehub
``` ```
run run
``` ```
python prepare_model.py 128 python3 prepare_model.py 128
``` ```
**PaddleHub only support Python 3.5+**
the 128 in the command above means max_seq_len in BERT model, which is the length of sample after preprocessing. the 128 in the command above means max_seq_len in BERT model, which is the length of sample after preprocessing.
the config file and model file for server side are saved in the folder bert_seq128_model. the config file and model file for server side are saved in the folder bert_seq128_model.
the config file generated for client side is saved in the folder bert_seq128_client. the config file generated for client side is saved in the folder bert_seq128_client.
...@@ -28,8 +30,9 @@ You can also download the above model from BOS(max_seq_len=128). After decompres ...@@ -28,8 +30,9 @@ You can also download the above model from BOS(max_seq_len=128). After decompres
```shell ```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
mv bert_chinese_L-12_H-768_A-12_model bert_seq128_model
mv bert_chinese_L-12_H-768_A-12_client bert_seq128_client
``` ```
if your model is bert_chinese_L-12_H-768_A-12_model, replace the 'bert_seq128_model' field in the following command with 'bert_chinese_L-12_H-768_A-12_model',replace 'bert_seq128_client' with 'bert_chinese_L-12_H-768_A-12_client'.
### Getting Dict and Sample Dataset ### Getting Dict and Sample Dataset
...@@ -64,7 +67,7 @@ the client reads data from data-c.txt and send prediction request, the predictio ...@@ -64,7 +67,7 @@ the client reads data from data-c.txt and send prediction request, the predictio
### HTTP Inference Service ### HTTP Inference Service
start cpu HTTP inference service,Run start cpu HTTP inference service,Run
``` ```
python bert_web_service.py bert_seq128_model/ 9292 #launch gpu inference service python bert_web_service.py bert_seq128_model/ 9292 #launch cpu inference service
``` ```
Or,start gpu HTTP inference service,Run Or,start gpu HTTP inference service,Run
......
...@@ -10,11 +10,11 @@ ...@@ -10,11 +10,11 @@
示例中采用[Paddlehub](https://github.com/PaddlePaddle/PaddleHub)中的[BERT中文模型](https://www.paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel) 示例中采用[Paddlehub](https://github.com/PaddlePaddle/PaddleHub)中的[BERT中文模型](https://www.paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel)
请先安装paddlehub 请先安装paddlehub
``` ```
pip install paddlehub pip3 install paddlehub
``` ```
执行 执行
``` ```
python prepare_model.py 128 python3 prepare_model.py 128
``` ```
参数128表示BERT模型中的max_seq_len,即预处理后的样本长度。 参数128表示BERT模型中的max_seq_len,即预处理后的样本长度。
生成server端配置文件与模型文件,存放在bert_seq128_model文件夹。 生成server端配置文件与模型文件,存放在bert_seq128_model文件夹。
...@@ -25,9 +25,9 @@ python prepare_model.py 128 ...@@ -25,9 +25,9 @@ python prepare_model.py 128
```shell ```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
mv bert_chinese_L-12_H-768_A-12_model bert_seq128_model
mv bert_chinese_L-12_H-768_A-12_client bert_seq128_client
``` ```
若使用bert_chinese_L-12_H-768_A-12_model模型,将下面命令中的bert_seq128_model字段替换为bert_chinese_L-12_H-768_A-12_model,bert_seq128_client字段替换为bert_chinese_L-12_H-768_A-12_client.
### 获取词典和样例数据 ### 获取词典和样例数据
...@@ -67,7 +67,7 @@ head data-c.txt | python bert_client.py --model bert_seq128_client/serving_clien ...@@ -67,7 +67,7 @@ head data-c.txt | python bert_client.py --model bert_seq128_client/serving_clien
### 启动HTTP预测服务 ### 启动HTTP预测服务
启动cpu HTTP预测服务,执行 启动cpu HTTP预测服务,执行
``` ```
python bert_web_service.py bert_seq128_model/ 9292 #启动gpu预测服务 python bert_web_service.py bert_seq128_model/ 9292 #启动CPU预测服务
``` ```
......
...@@ -14,7 +14,7 @@ tar xf criteo_ctr_demo_model.tar.gz ...@@ -14,7 +14,7 @@ tar xf criteo_ctr_demo_model.tar.gz
mv models/ctr_client_conf . mv models/ctr_client_conf .
mv models/ctr_serving_model . mv models/ctr_serving_model .
``` ```
the directories like serving_server_model and serving_client_config will appear. the directories like `ctr_serving_model` and `ctr_client_conf` will appear.
### Start RPC Inference Service ### Start RPC Inference Service
...@@ -26,6 +26,6 @@ python -m paddle_serving_server_gpu.serve --model ctr_serving_model/ --port 9292 ...@@ -26,6 +26,6 @@ python -m paddle_serving_server_gpu.serve --model ctr_serving_model/ --port 9292
### RPC Infer ### RPC Infer
``` ```
python test_client.py ctr_client_conf/serving_client_conf.prototxt raw_data/ python test_client.py ctr_client_conf/serving_client_conf.prototxt raw_data/part-0
``` ```
the latency will display in the end. the latency will display in the end.
...@@ -14,7 +14,7 @@ tar xf criteo_ctr_demo_model.tar.gz ...@@ -14,7 +14,7 @@ tar xf criteo_ctr_demo_model.tar.gz
mv models/ctr_client_conf . mv models/ctr_client_conf .
mv models/ctr_serving_model . mv models/ctr_serving_model .
``` ```
会在当前目录出现serving_server_model和serving_client_config文件夹。 会在当前目录出现`ctr_serving_model``ctr_client_conf`文件夹。
### 启动RPC预测服务 ### 启动RPC预测服务
...@@ -26,6 +26,6 @@ python -m paddle_serving_server_gpu.serve --model ctr_serving_model/ --port 9292 ...@@ -26,6 +26,6 @@ python -m paddle_serving_server_gpu.serve --model ctr_serving_model/ --port 9292
### 执行预测 ### 执行预测
``` ```
python test_client.py ctr_client_conf/serving_client_conf.prototxt raw_data/ python test_client.py ctr_client_conf/serving_client_conf.prototxt raw_data/part-0
``` ```
预测完毕会输出预测过程的耗时。 预测完毕会输出预测过程的耗时。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import paddle.fluid.incubate.data_generator as dg
class CriteoDataset(dg.MultiSlotDataGenerator):
def setup(self, sparse_feature_dim):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [
20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.cont_diff_ = [
20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.hash_dim_ = sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self.train_idx_ = 41256555
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
def _process_line(self, line):
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in self.continuous_range_:
if features[idx] == '':
dense_feature.append(0.0)
else:
dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
sparse_feature.append(
[hash(str(idx) + features[idx]) % self.hash_dim_])
return dense_feature, sparse_feature, [int(features[0])]
def infer_reader(self, filelist, batch, buf_size):
def local_iter():
for fname in filelist:
with open(fname.strip(), "r") as fin:
for line in fin:
dense_feature, sparse_feature, label = self._process_line(
line)
#yield dense_feature, sparse_feature, label
yield [dense_feature] + sparse_feature + [label]
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def data_iter():
dense_feature, sparse_feature, label = self._process_line(line)
feature_name = ["dense_input"]
for idx in self.categorical_range_:
feature_name.append("C" + str(idx - 13))
feature_name.append("label")
yield zip(feature_name, [dense_feature] + sparse_feature + [label])
return data_iter
if __name__ == "__main__":
criteo_dataset = CriteoDataset()
criteo_dataset.setup(int(sys.argv[1]))
criteo_dataset.run_from_stdin()
...@@ -14,43 +14,63 @@ ...@@ -14,43 +14,63 @@
# pylint: disable=doc-string-missing # pylint: disable=doc-string-missing
from paddle_serving_client import Client from paddle_serving_client import Client
import paddle
import sys import sys
import os import os
import time import time
import criteo_reader as criteo
from paddle_serving_client.metric import auc from paddle_serving_client.metric import auc
import numpy as np import numpy as np
import sys import sys
class CriteoReader(object):
def __init__(self, sparse_feature_dim):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [
20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.cont_diff_ = [
20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.hash_dim_ = sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self.train_idx_ = 41256555
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
def process_line(self, line):
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in self.continuous_range_:
if features[idx] == '':
dense_feature.append(0.0)
else:
dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
sparse_feature.append(
[hash(str(idx) + features[idx]) % self.hash_dim_])
return sparse_feature
py_version = sys.version_info[0] py_version = sys.version_info[0]
client = Client() client = Client()
client.load_client_config(sys.argv[1]) client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"]) client.connect(["127.0.0.1:9292"])
reader = CriteoReader(1000001)
batch = 1 batch = 1
buf_size = 100 buf_size = 100
dataset = criteo.CriteoDataset()
dataset.setup(1000001)
test_filelists = [
"{}/part-%d".format(sys.argv[2]) % x
for x in range(len(os.listdir(sys.argv[2])))
]
reader = dataset.infer_reader(test_filelists[len(test_filelists) - 40:], batch,
buf_size)
label_list = [] label_list = []
prob_list = [] prob_list = []
start = time.time() start = time.time()
for ei in range(1000): f = open(sys.argv[2], 'r')
if py_version == 2: for ei in range(10):
data = reader().next() data = reader.process_line(f.readline())
else:
data = reader().__next__()
feed_dict = {} feed_dict = {}
for i in range(1, 27): for i in range(1, 27):
feed_dict["sparse_{}".format(i - 1)] = np.array(data[0][i]).reshape(-1) feed_dict["sparse_{}".format(i - 1)] = np.array(data[i-1]).reshape(-1)
feed_dict["sparse_{}.lod".format(i - 1)] = [0, len(data[0][i])] feed_dict["sparse_{}.lod".format(i - 1)] = [0, len(data[i-1])]
fetch_map = client.predict(feed=feed_dict, fetch=["prob"]) fetch_map = client.predict(feed=feed_dict, fetch=["prob"])
print(fetch_map)
end = time.time() end = time.time()
print(end - start) f.close()
...@@ -12,6 +12,7 @@ Paddle Detection provides a large number of [Model Zoo](https://github.com/Paddl ...@@ -12,6 +12,7 @@ Paddle Detection provides a large number of [Model Zoo](https://github.com/Paddl
### Serving example ### Serving example
Several examples of PaddleDetection models used in Serving are given in this folder Several examples of PaddleDetection models used in Serving are given in this folder
All examples support TensorRT.
-[Faster RCNN](./faster_rcnn_r50_fpn_1x_coco) -[Faster RCNN](./faster_rcnn_r50_fpn_1x_coco)
-[PPYOLO](./ppyolo_r50vd_dcn_1x_coco) -[PPYOLO](./ppyolo_r50vd_dcn_1x_coco)
......
...@@ -13,6 +13,9 @@ tar xf faster_rcnn_r50_fpn_1x_coco.tar ...@@ -13,6 +13,9 @@ tar xf faster_rcnn_r50_fpn_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
``` ```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction ### Perform prediction
``` ```
python test_client.py 000000570688.jpg python test_client.py 000000570688.jpg
......
...@@ -11,8 +11,9 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ ...@@ -11,8 +11,9 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/
### 启动服务 ### 启动服务
``` ```
tar xf faster_rcnn_r50_fpn_1x_coco.tar tar xf faster_rcnn_r50_fpn_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model pddet_serving_model --port 9494 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
``` ```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测 ### 执行预测
``` ```
......
...@@ -13,6 +13,8 @@ tar xf ppyolo_r50vd_dcn_1x_coco.tar ...@@ -13,6 +13,8 @@ tar xf ppyolo_r50vd_dcn_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
``` ```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction ### Perform prediction
``` ```
python test_client.py 000000570688.jpg python test_client.py 000000570688.jpg
......
...@@ -11,9 +11,11 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ ...@@ -11,9 +11,11 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/
### 启动服务 ### 启动服务
``` ```
tar xf ppyolo_r50vd_dcn_1x_coco.tar tar xf ppyolo_r50vd_dcn_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model pddet_serving_model --port 9494 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
``` ```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测 ### 执行预测
``` ```
python test_client.py 000000570688.jpg python test_client.py 000000570688.jpg
......
...@@ -12,6 +12,7 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ ...@@ -12,6 +12,7 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/
tar xf ttfnet_darknet53_1x_coco.tar tar xf ttfnet_darknet53_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
``` ```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction ### Perform prediction
``` ```
......
...@@ -11,9 +11,11 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ ...@@ -11,9 +11,11 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/
### 启动服务 ### 启动服务
``` ```
tar xf ttfnet_darknet53_1x_coco.tar tar xf ttfnet_darknet53_1x_coco.tar
python -m paddle_serving_server_gpu.serve --model pddet_serving_model --port 9494 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
``` ```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测 ### 执行预测
``` ```
python test_client.py 000000570688.jpg python test_client.py 000000570688.jpg
......
...@@ -13,6 +13,8 @@ tar xf yolov3_darknet53_270e_coco.tar ...@@ -13,6 +13,8 @@ tar xf yolov3_darknet53_270e_coco.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
``` ```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction ### Perform prediction
``` ```
python test_client.py 000000570688.jpg python test_client.py 000000570688.jpg
......
...@@ -11,9 +11,11 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ ...@@ -11,9 +11,11 @@ wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/
### 启动服务 ### 启动服务
``` ```
tar xf yolov3_darknet53_270e_coco.tar tar xf yolov3_darknet53_270e_coco.tar
python -m paddle_serving_server_gpu.serve --model pddet_serving_model --port 9494 --gpu_ids 0 python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
``` ```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测 ### 执行预测
``` ```
python test_client.py 000000570688.jpg python test_client.py 000000570688.jpg
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="PaddlePaddle CTR example")
parser.add_argument(
'--train_data_path',
type=str,
default='./data/raw/train.txt',
help="The path of training dataset")
parser.add_argument(
'--sparse_only',
type=bool,
default=False,
help="Whether we use sparse features only")
parser.add_argument(
'--test_data_path',
type=str,
default='./data/raw/valid.txt',
help="The path of testing dataset")
parser.add_argument(
'--batch_size',
type=int,
default=1000,
help="The size of mini-batch (default:1000)")
parser.add_argument(
'--embedding_size',
type=int,
default=10,
help="The size for embedding layer (default:10)")
parser.add_argument(
'--num_passes',
type=int,
default=10,
help="The number of passes to train (default: 10)")
parser.add_argument(
'--model_output_dir',
type=str,
default='models',
help='The path for model to store (default: models)')
parser.add_argument(
'--sparse_feature_dim',
type=int,
default=1000001,
help='sparse feature hashing space for index processing')
parser.add_argument(
'--is_local',
type=int,
default=1,
help='Local train or distributed train (default: 1)')
parser.add_argument(
'--cloud_train',
type=int,
default=0,
help='Local train or distributed train on paddlecloud (default: 0)')
parser.add_argument(
'--async_mode',
action='store_true',
default=False,
help='Whether start pserver in async mode to support ASGD')
parser.add_argument(
'--no_split_var',
action='store_true',
default=False,
help='Whether split variables into blocks when update_method is pserver')
parser.add_argument(
'--role',
type=str,
default='pserver', # trainer or pserver
help='The path for model to store (default: models)')
parser.add_argument(
'--endpoints',
type=str,
default='127.0.0.1:6000',
help='The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001')
parser.add_argument(
'--current_endpoint',
type=str,
default='127.0.0.1:6000',
help='The path for model to store (default: 127.0.0.1:6000)')
parser.add_argument(
'--trainer_id',
type=int,
default=0,
help='The path for model to store (default: models)')
parser.add_argument(
'--trainers',
type=int,
default=1,
help='The num of trianers, (default: 1)')
return parser.parse_args()
ps -ef | grep cube | awk {'print $2'} | xargs kill -9
rm -rf cube/cube_data cube/data cube/log* cube/nohup* cube/output/ cube/donefile cube/input cube/monitor cube/cube-builder.INFO
ps -ef | grep test | awk {'print $2'} | xargs kill -9
ps -ef | grep serving | awk {'print $2'} | xargs kill -9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
class CriteoDataset(object):
def setup(self, sparse_feature_dim):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [
20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.cont_diff_ = [
20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.hash_dim_ = sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self.train_idx_ = 41256555
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
def _process_line(self, line):
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in self.continuous_range_:
if features[idx] == '':
dense_feature.append(0.0)
else:
dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
sparse_feature.append(
[hash(str(idx) + features[idx]) % self.hash_dim_])
return dense_feature, sparse_feature, [int(features[0])]
def infer_reader(self, filelist, batch, buf_size):
def local_iter():
for fname in filelist:
with open(fname.strip(), "r") as fin:
for line in fin:
dense_feature, sparse_feature, label = self._process_line(
line)
#yield dense_feature, sparse_feature, label
yield [dense_feature] + sparse_feature + [label]
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def data_iter():
dense_feature, sparse_feature, label = self._process_line(line)
feature_name = ["dense_input"]
for idx in self.categorical_range_:
feature_name.append("C" + str(idx - 13))
feature_name.append("label")
yield zip(feature_name, [dense_feature] + sparse_feature + [label])
return data_iter
if __name__ == "__main__":
criteo_dataset = CriteoDataset()
criteo_dataset.setup(int(sys.argv[1]))
criteo_dataset.run_from_stdin()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import paddle.fluid.incubate.data_generator as dg
class CriteoDataset(dg.MultiSlotDataGenerator):
def setup(self, sparse_feature_dim):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [
20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.cont_diff_ = [
20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.hash_dim_ = sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self.train_idx_ = 41256555
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
def _process_line(self, line):
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in self.continuous_range_:
if features[idx] == '':
dense_feature.append(0.0)
else:
dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
sparse_feature.append(
[hash(str(idx) + features[idx]) % self.hash_dim_])
return dense_feature, sparse_feature, [int(features[0])]
def infer_reader(self, filelist, batch, buf_size):
def local_iter():
for fname in filelist:
with open(fname.strip(), "r") as fin:
for line in fin:
dense_feature, sparse_feature, label = self._process_line(
line)
#yield dense_feature, sparse_feature, label
yield [dense_feature] + sparse_feature + [label]
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def data_iter():
dense_feature, sparse_feature, label = self._process_line(line)
feature_name = ["dense_input"]
for idx in self.categorical_range_:
feature_name.append("C" + str(idx - 13))
feature_name.append("label")
yield zip(feature_name, [dense_feature] + sparse_feature + [label])
return data_iter
if __name__ == "__main__":
criteo_dataset = CriteoDataset()
criteo_dataset.setup(int(sys.argv[1]))
criteo_dataset.run_from_stdin()
[{
"dict_name": "test_dict",
"shard": 1,
"dup": 1,
"timeout": 200,
"retry": 3,
"backup_request": 100,
"type": "ipport_list",
"load_balancer": "rr",
"nodes": [{
"ipport_list": "list://127.0.0.1:8027"
}]
}]
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from __future__ import print_function
from args import parse_args
import os
import paddle.fluid as fluid
import sys
from network_conf import dnn_model
dense_feature_dim = 13
def train():
args = parse_args()
sparse_only = args.sparse_only
if not os.path.isdir(args.model_output_dir):
os.mkdir(args.model_output_dir)
dense_input = fluid.layers.data(
name="dense_input", shape=[dense_feature_dim], dtype='float32')
sparse_input_ids = [
fluid.layers.data(
name="C" + str(i), shape=[1], lod_level=1, dtype="int64")
for i in range(1, 27)
]
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
#nn_input = None if sparse_only else dense_input
nn_input = dense_input
predict_y, loss, auc_var, batch_auc_var, infer_vars = dnn_model(
nn_input, sparse_input_ids, label, args.embedding_size,
args.sparse_feature_dim)
optimizer = fluid.optimizer.SGD(learning_rate=1e-4)
optimizer.minimize(loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
dataset.set_use_var([dense_input] + sparse_input_ids + [label])
python_executable = "python"
pipe_command = "{} criteo_reader.py {}".format(python_executable,
args.sparse_feature_dim)
dataset.set_pipe_command(pipe_command)
dataset.set_batch_size(128)
thread_num = 10
dataset.set_thread(thread_num)
whole_filelist = [
"raw_data/part-%d" % x for x in range(len(os.listdir("raw_data")))
]
print(whole_filelist)
dataset.set_filelist(whole_filelist[:100])
dataset.load_into_memory()
fluid.layers.Print(auc_var)
epochs = 1
for i in range(epochs):
exe.train_from_dataset(
program=fluid.default_main_program(), dataset=dataset, debug=True)
print("epoch {} finished".format(i))
import paddle_serving_client.io as server_io
feed_var_dict = {}
feed_var_dict['dense_input'] = dense_input
for i, sparse in enumerate(sparse_input_ids):
feed_var_dict["embedding_{}.tmp_0".format(i)] = sparse
fetch_var_dict = {"prob": predict_y}
feed_kv_dict = {}
feed_kv_dict['dense_input'] = dense_input
for i, emb in enumerate(infer_vars):
feed_kv_dict["embedding_{}.tmp_0".format(i)] = emb
fetch_var_dict = {"prob": predict_y}
server_io.save_model("ctr_serving_model", "ctr_client_conf", feed_var_dict,
fetch_var_dict, fluid.default_main_program())
server_io.save_model("ctr_serving_model_kv", "ctr_client_conf_kv",
feed_kv_dict, fetch_var_dict,
fluid.default_main_program())
if __name__ == '__main__':
train()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import paddle.fluid as fluid
import math
def dnn_model(dense_input, sparse_inputs, label, embedding_size,
sparse_feature_dim):
def embedding_layer(input):
emb = fluid.layers.embedding(
input=input,
is_sparse=True,
is_distributed=False,
size=[sparse_feature_dim, embedding_size],
param_attr=fluid.ParamAttr(
name="SparseFeatFactors",
initializer=fluid.initializer.Uniform()))
x = fluid.layers.sequence_pool(input=emb, pool_type='sum')
return emb, x
def mlp_input_tensor(emb_sums, dense_tensor):
#if isinstance(dense_tensor, fluid.Variable):
# return fluid.layers.concat(emb_sums, axis=1)
#else:
return fluid.layers.concat(emb_sums + [dense_tensor], axis=1)
def mlp(mlp_input):
fc1 = fluid.layers.fc(input=mlp_input,
size=400,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(mlp_input.shape[1]))))
fc2 = fluid.layers.fc(input=fc1,
size=400,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(fc1.shape[1]))))
fc3 = fluid.layers.fc(input=fc2,
size=400,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(fc2.shape[1]))))
pre = fluid.layers.fc(input=fc3,
size=2,
act='softmax',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(fc3.shape[1]))))
return pre
emb_pair_sums = list(map(embedding_layer, sparse_inputs))
emb_sums = [x[1] for x in emb_pair_sums]
infer_vars = [x[0] for x in emb_pair_sums]
mlp_in = mlp_input_tensor(emb_sums, dense_input)
predict = mlp(mlp_in)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.reduce_sum(cost)
accuracy = fluid.layers.accuracy(input=predict, label=label)
auc_var, batch_auc_var, auc_states = \
fluid.layers.auc(input=predict, label=label, num_thresholds=2 ** 12, slide_steps=20)
return predict, avg_cost, auc_var, batch_auc_var, infer_vars
...@@ -21,7 +21,7 @@ import paddle.fluid as fluid ...@@ -21,7 +21,7 @@ import paddle.fluid as fluid
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid") logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO) logger.setLevel(logging.INFO)
paddle.enable_static()
def load_vocab(filename): def load_vocab(filename):
vocab = {} vocab = {}
......
...@@ -22,7 +22,10 @@ from paddle_serving_client import Client ...@@ -22,7 +22,10 @@ from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
from paddle_serving_server_gpu.web_service import WebService if sys.argv[1] == 'gpu':
from paddle_serving_server_gpu.web_service import WebService
elif sys.argv[1] == 'cpu':
from paddle_serving_server.web_service import WebService
import time import time
import re import re
import base64 import base64
...@@ -65,8 +68,12 @@ class OCRService(WebService): ...@@ -65,8 +68,12 @@ class OCRService(WebService):
ocr_service = OCRService(name="ocr") ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_rec_model") ocr_service.load_model_config("ocr_rec_model")
ocr_service.set_gpus("0") if sys.argv[1] == 'gpu':
ocr_service.init_rec() ocr_service.set_gpus("0")
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0) ocr_service.init_rec()
ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu", gpuid=0)
elif sys.argv[1] == 'cpu':
ocr_service.init_rec()
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
ocr_service.run_debugger_service() ocr_service.run_debugger_service()
ocr_service.run_web_service() ocr_service.run_web_service()
# Imagenet Pipeline WebService # Imagenet Pipeline WebService
这里以 Uci 服务为例来介绍 Pipeline WebService 的使用。 这里以 Imagenet 服务为例来介绍 Pipeline WebService 的使用。
## 获取模型 ## 获取模型
``` ```
...@@ -10,10 +10,11 @@ sh get_model.sh ...@@ -10,10 +10,11 @@ sh get_model.sh
## 启动服务 ## 启动服务
``` ```
python web_service.py &>log.txt & python resnet50_web_service.py &>log.txt &
``` ```
## 测试 ## 测试
``` ```
curl -X POST -k http://localhost:18082/uci/prediction -d '{"key": ["x"], "value": ["0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332"]}' python pipeline_rpc_client.py
``` ```
...@@ -11,7 +11,10 @@ ...@@ -11,7 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from paddle_serving_server_gpu.pipeline import PipelineClient try:
from paddle_serving_server_gpu.pipeline import PipelineClient
except ImportError:
from paddle_serving_server.pipeline import PipelineClient
import numpy as np import numpy as np
import requests import requests
import json import json
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from paddle_serving_server.pipeline import PipelineClient # from paddle_serving_server.pipeline import PipelineClient
import numpy as np import numpy as np
import requests import requests
import json import json
......
...@@ -11,7 +11,10 @@ ...@@ -11,7 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from paddle_serving_server_gpu.pipeline import PipelineClient try:
from paddle_serving_server_gpu.pipeline import PipelineClient
except ImportError:
from paddle_serving_server.pipeline import PipelineClient
import numpy as np import numpy as np
import requests import requests
import json import json
......
# Fit a line prediction example
([简体中文](./README_CN.md)|English)
## Get data
```shell
sh get_data.sh
```
## RPC service
### Start server
```shell
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9393 --use_lite --use_xpu --ir_optim
```
### Client prediction
The `paddlepaddle` package is used in `test_client.py`, and you may need to download the corresponding package(`pip install paddlepaddle`).
``` shell
python test_client.py uci_housing_client/serving_client_conf.prototxt
```
## HTTP service
### Start server
Start a web service with default web service hosting modules:
``` shell
python test_server.py
```
### Client prediction
``` shell
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
# 线性回归预测服务示例
(简体中文|[English](./README.md))
## 获取数据
```shell
sh get_data.sh
```
## RPC服务
### 开启服务端
``` shell
python test_server.py uci_housing_model/
```
也可以通过下面的一行代码开启默认RPC服务:
```shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393 --use_lite --use_xpu --ir_optim
```
### 客户端预测
`test_client.py`中使用了`paddlepaddle`包,需要进行下载(`pip install paddlepaddle`)。
``` shell
python test_client.py uci_housing_client/serving_client_conf.prototxt
```
## HTTP服务
### 开启服务端
通过下面的一行代码开启默认web服务:
``` shell
python test_server.py
```
### 客户端预测
``` shell
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import time
import paddle
import sys
import requests
args = benchmark_args()
def single_func(idx, resource):
if args.request == "rpc":
client = Client()
client.load_client_config(args.model)
client.connect([args.endpoint])
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=1)
start = time.time()
for data in train_reader():
fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["price"])
end = time.time()
return [[end - start]]
elif args.request == "http":
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=1)
start = time.time()
for data in train_reader():
r = requests.post(
'http://{}/uci/prediction'.format(args.endpoint),
data={"x": data[0]})
end = time.time()
return [[end - start]]
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
print(result)
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/data/ctr_prediction/ctr_data.tar.gz wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -zxvf ctr_data.tar.gz tar -xzf uci_housing.tar.gz
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import paddle
import paddle.fluid as fluid
paddle.enable_static()
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=16)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500),
batch_size=16)
x = fluid.data(name='x', shape=[None, 13], dtype='float32')
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(avg_loss)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
import paddle_serving_client.io as serving_io
for pass_id in range(30):
for data_train in train_reader():
avg_loss_value, = exe.run(fluid.default_main_program(),
feed=feeder.feed(data_train),
fetch_list=[avg_loss])
serving_io.save_model("uci_housing_model", "uci_housing_client", {"x": x},
{"price": y_predict}, fluid.default_main_program())
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
# pylint: disable=doc-string-missing # pylint: disable=doc-string-missing
from paddle_serving_client import Client from paddle_serving_client import Client
import numpy as np
import sys import sys
import numpy as np
client = Client() client = Client()
client.load_client_config(sys.argv[1]) client.load_client_config(sys.argv[1])
...@@ -28,6 +28,8 @@ test_reader = paddle.batch( ...@@ -28,6 +28,8 @@ test_reader = paddle.batch(
batch_size=1) batch_size=1)
for data in test_reader(): for data in test_reader():
new_data = np.zeros((1, 1, 13)).astype("float32")
new_data[0] = data[0][0]
fetch_map = client.predict( fetch_map = client.predict(
feed={"x": np.array(data[0][0])}, fetch=["price"]) feed={"x": new_data}, fetch=["price"], batch=True)
print("{} {}".format(fetch_map["price"][0][0], data[0][1][0])) print(fetch_map)
...@@ -11,31 +11,32 @@ ...@@ -11,31 +11,32 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# pylint: disable=doc-string-missing
import os from paddle_serving_client import Client
import sys from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_server import OpMaker import paddle
from paddle_serving_server import OpSeqMaker import numpy as np
from paddle_serving_server import MultiLangServer as Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_dist_kv_infer_op = op_maker.create('general_dist_kv_quant_infer')
response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker() def single_func(idx, resource):
op_seq_maker.add_op(read_op) client = Client()
op_seq_maker.add_op(general_dist_kv_infer_op) client.load_client_config(
op_seq_maker.add_op(response_op) "./uci_housing_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9293", "127.0.0.1:9292"])
x = [
0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584,
0.6283, 0.4919, 0.1856, 0.0795, -0.0332
]
x = np.array(x)
for i in range(1000):
fetch_map = client.predict(feed={"x": x}, fetch=["price"])
if fetch_map is None:
return [[None]]
return [[0]]
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence()) multi_thread_runner = MultiThreadRunner()
server.set_num_threads(4) thread_num = 4
server.load_model_config(sys.argv[1], sys.argv[2]) result = multi_thread_runner.run(single_func, thread_num, {})
server.prepare_server( if None in result[0]:
workdir="work_dir1", exit(1)
port=9292,
device="cpu",
cube_conf="./cube/conf/cube.conf")
server.run_server()
...@@ -13,29 +13,24 @@ ...@@ -13,29 +13,24 @@
# limitations under the License. # limitations under the License.
# pylint: disable=doc-string-missing # pylint: disable=doc-string-missing
import os from paddle_serving_server_gpu.web_service import WebService
import sys import numpy as np
from paddle_serving_server import OpMaker
from paddle_serving_server import OpSeqMaker
from paddle_serving_server import MultiLangServer as Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_dist_kv_infer_op = op_maker.create('general_dist_kv_infer')
response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker() class UciService(WebService):
op_seq_maker.add_op(read_op) def preprocess(self, feed=[], fetch=[]):
op_seq_maker.add_op(general_dist_kv_infer_op) feed_batch = []
op_seq_maker.add_op(response_op) is_batch = True
new_data = np.zeros((len(feed), 1, 13)).astype("float32")
for i, ins in enumerate(feed):
nums = np.array(ins["x"]).reshape(1, 1, 13)
new_data[i] = nums
feed = {"x": new_data}
return feed, fetch, is_batch
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence()) uci_service = UciService(name="uci")
server.set_num_threads(4) uci_service.load_model_config("uci_housing_model")
server.load_model_config(sys.argv[1], sys.argv[2]) uci_service.prepare_server(workdir="workdir", port=9393, use_lite=True, use_xpu=True, ir_optim=True)
server.prepare_server( uci_service.run_rpc_service()
workdir="work_dir1", uci_service.run_web_service()
port=9292,
device="cpu",
cube_conf="./cube/conf/cube.conf")
server.run_server()
# Image Classification
## Get Model
```
python -m paddle_serving_app.package --get_model resnet_v2_50_imagenet
tar -xzvf resnet_v2_50_imagenet.tar.gz
```
## RPC Service
### Start Service
```
python -m paddle_serving_server_gpu.serve --model resnet_v2_50_imagenet_model --port 9393 --use_lite --use_xpu --ir_optim
```
### Client Prediction
```
python resnet50_v2_client.py
```
# 图像分类
## 获取模型
```
python -m paddle_serving_app.package --get_model resnet_v2_50_imagenet
tar -xzvf resnet_v2_50_imagenet.tar.gz
```
## RPC 服务
### 启动服务端
```
python -m paddle_serving_server_gpu.serve --model resnet_v2_50_imagenet_model --port 9393 --use_lite --use_xpu --ir_optim
```
### 客户端预测
```
python resnet50_v2_client.py
```
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop
from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize
from paddle_serving_app.local_predict import LocalPredictor
import sys
predictor = LocalPredictor()
predictor.load_model_config(sys.argv[1], use_lite=True, use_xpu=True, ir_optim=True)
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
image_file = "daisy.jpg"
img = seq(image_file)
fetch_map = predictor.predict(feed={"image": img}, fetch=["score"])
print(fetch_map["score"].reshape(-1))
...@@ -11,12 +11,22 @@ ...@@ -11,12 +11,22 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# pylint: disable=doc-string-missing
#! /bin/bash
mkdir -p cube_model from paddle_serving_client import Client
mkdir -p cube/data from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop
./seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature 8 from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize
./cube/cube-builder -dict_name=test_dict -job_mode=base -last_version=0 -cur_version=0 -depend_version=0 -input_path=./cube_model -output_path=${PWD}/cube/data -shard_num=1 -only_build=false
mv ./cube/data/0_0/test_dict_part0/* ./cube/data/ client = Client()
cd cube && ./cube client.load_client_config(
"resnet_v2_50_imagenet_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9393"])
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
image_file = "daisy.jpg"
img = seq(image_file)
fetch_map = client.predict(feed={"image": img}, fetch=["score"])
print(fetch_map["score"].reshape(-1))
...@@ -152,8 +152,8 @@ class MainService(BaseHTTPRequestHandler): ...@@ -152,8 +152,8 @@ class MainService(BaseHTTPRequestHandler):
if "key" not in post_data: if "key" not in post_data:
return False return False
else: else:
key = base64.b64decode(post_data["key"]) key = base64.b64decode(post_data["key"].encode())
with open(args.model + "/key", "w") as f: with open(args.model + "/key", "wb") as f:
f.write(key) f.write(key)
return True return True
...@@ -161,8 +161,8 @@ class MainService(BaseHTTPRequestHandler): ...@@ -161,8 +161,8 @@ class MainService(BaseHTTPRequestHandler):
if "key" not in post_data: if "key" not in post_data:
return False return False
else: else:
key = base64.b64decode(post_data["key"]) key = base64.b64decode(post_data["key"].encode())
with open(args.model + "/key", "r") as f: with open(args.model + "/key", "rb") as f:
cur_key = f.read() cur_key = f.read()
return (key == cur_key) return (key == cur_key)
...@@ -203,7 +203,7 @@ class MainService(BaseHTTPRequestHandler): ...@@ -203,7 +203,7 @@ class MainService(BaseHTTPRequestHandler):
self.send_response(200) self.send_response(200)
self.send_header('Content-type', 'application/json') self.send_header('Content-type', 'application/json')
self.end_headers() self.end_headers()
self.wfile.write(json.dumps(response)) self.wfile.write(json.dumps(response).encode())
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -155,8 +155,8 @@ class MainService(BaseHTTPRequestHandler): ...@@ -155,8 +155,8 @@ class MainService(BaseHTTPRequestHandler):
if "key" not in post_data: if "key" not in post_data:
return False return False
else: else:
key = base64.b64decode(post_data["key"]) key = base64.b64decode(post_data["key"].encode())
with open(args.model + "/key", "w") as f: with open(args.model + "/key", "wb") as f:
f.write(key) f.write(key)
return True return True
...@@ -164,8 +164,8 @@ class MainService(BaseHTTPRequestHandler): ...@@ -164,8 +164,8 @@ class MainService(BaseHTTPRequestHandler):
if "key" not in post_data: if "key" not in post_data:
return False return False
else: else:
key = base64.b64decode(post_data["key"]) key = base64.b64decode(post_data["key"].encode())
with open(args.model + "/key", "r") as f: with open(args.model + "/key", "rb") as f:
cur_key = f.read() cur_key = f.read()
return (key == cur_key) return (key == cur_key)
...@@ -206,7 +206,7 @@ class MainService(BaseHTTPRequestHandler): ...@@ -206,7 +206,7 @@ class MainService(BaseHTTPRequestHandler):
self.send_response(200) self.send_response(200)
self.send_header('Content-type', 'application/json') self.send_header('Content-type', 'application/json')
self.end_headers() self.end_headers()
self.wfile.write(json.dumps(response)) self.wfile.write(json.dumps(response).encode())
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -33,7 +33,7 @@ if '${PACK}' == 'ON': ...@@ -33,7 +33,7 @@ if '${PACK}' == 'ON':
REQUIRED_PACKAGES = [ REQUIRED_PACKAGES = [
'six >= 1.10.0', 'sentencepiece<=0.1.83', 'opencv-python<=4.2.0.32', 'pillow', 'six >= 1.10.0', 'sentencepiece<=0.1.83', 'opencv-python<=4.2.0.32', 'pillow',
'pyclipper' 'pyclipper', 'shapely'
] ]
packages=['paddle_serving_app', packages=['paddle_serving_app',
......
FROM centos:7.3.1611 # A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment
RUN yum -y install wget && \ # When you modify it, please be aware of cudnn-runtime version
yum -y install epel-release && yum -y install patchelf && \ FROM hub.baidubce.com/ctr/cuda:9.0-cudnn7-devel-ubuntu16.04
yum -y install gcc gcc-c++ make python-devel && \ MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
yum -y install libSM-1.2.2-2.el7.x86_64 --setopt=protected_multilib=false && \
yum -y install libXrender-0.9.10-1.el7.x86_64 --setopt=protected_multilib=false && \ # ENV variables
yum -y install libXext-1.3.3-3.el7.x86_64 --setopt=protected_multilib=false && \ ARG WITH_GPU
yum -y install python3 python3-devel && \ ARG WITH_AVX
yum clean all
ENV WITH_GPU=${WITH_GPU:-ON}
RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \ ENV WITH_AVX=${WITH_AVX:-ON}
python get-pip.py && rm get-pip.py && \
localedef -c -i en_US -f UTF-8 en_US.UTF-8 && \ ENV HOME /root
echo "export LANG=en_US.utf8" >> /root/.bashrc && \ # Add bash enhancements
echo "export LANGUAGE=en_US.utf8" >> /root/.bashrc COPY tools/dockerfile/scripts/root/ /root/
# Prepare packages for Python
RUN apt-get update && \
apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev libffi-dev liblzma-dev
RUN apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages \
patchelf git python-pip python-dev python-opencv openssh-server bison \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib \
automake locales clang-format swig \
liblapack-dev liblapacke-dev libcurl4-openssl-dev \
net-tools libtool module-init-tools vim && \
apt-get clean -y
RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so /usr/lib/libssl.so.10 && \
ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so /usr/lib/libcrypto.so.10
RUN wget https://github.com/koalaman/shellcheck/releases/download/v0.7.1/shellcheck-v0.7.1.linux.x86_64.tar.xz -O shellcheck-v0.7.1.linux.x86_64.tar.xz && \
tar -xf shellcheck-v0.7.1.linux.x86_64.tar.xz && cp shellcheck-v0.7.1/shellcheck /usr/bin/shellcheck && \
rm -rf shellcheck-v0.7.1.linux.x86_64.tar.xz shellcheck-v0.7.1
# Downgrade gcc&&g++
WORKDIR /usr/bin
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_gcc.sh gcc82 && rm -rf /build_scripts
RUN cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++
ENV PATH=/usr/local/gcc-8.2/bin:$PATH
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.5
RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python
WORKDIR /home
ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2
RUN python setup.py build && python setup.py install
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0
RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install && \
python3.5 setup.py install
WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python3.5 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
FROM nvidia/cuda:10.0-cudnn7-devel-centos7 as builder # A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment
FROM nvidia/cuda:10.0-cudnn7-runtime-centos7 # When you modify it, please be aware of cudnn-runtime version
RUN yum -y install wget && \ FROM hub.baidubce.com/ctr/cuda:10.0-cudnn7-devel-ubuntu16.04
yum -y install epel-release && yum -y install patchelf && \ MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
yum -y install gcc gcc-c++ make python-devel && \
yum -y install libSM-1.2.2-2.el7.x86_64 --setopt=protected_multilib=false && \ # ENV variables
yum -y install libXrender-0.9.10-1.el7.x86_64 --setopt=protected_multilib=false && \ ARG WITH_GPU
yum -y install libXext-1.3.3-3.el7.x86_64 --setopt=protected_multilib=false && \ ARG WITH_AVX
yum -y install python3 python3-devel && \
yum clean all ENV WITH_GPU=${WITH_GPU:-ON}
ENV WITH_AVX=${WITH_AVX:-ON}
RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
python get-pip.py && rm get-pip.py ENV HOME /root
# Add bash enhancements
RUN ln -s /usr/local/cuda-10.0/lib64/libcublas.so.10.0 /usr/local/cuda-10.0/lib64/libcublas.so && \ COPY tools/dockerfile/scripts/root/ /root/
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> /root/.bashrc && \
ln -s /usr/local/cuda-10.0/targets/x86_64-linux/lib/libcudnn.so.7 /usr/local/cuda-10.0/targets/x86_64-linux/lib/libcudnn.so && \ # Prepare packages for Python
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-10.0/targets/x86_64-linux/lib:$LD_LIBRARY_PATH' >> /root/.bashrc && \ RUN apt-get update && \
echo "export LANG=en_US.utf8" >> /root/.bashrc && \ apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
echo "export LANGUAGE=en_US.utf8" >> /root/.bashrc && \ libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
mkdir -p /usr/local/cuda/extras xz-utils tk-dev libffi-dev liblzma-dev
COPY --from=builder /usr/local/cuda/extras/CUPTI /usr/local/cuda/extras/CUPTI RUN apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages \
patchelf git python-pip python-dev python-opencv openssh-server bison \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib \
automake locales clang-format swig \
liblapack-dev liblapacke-dev libcurl4-openssl-dev \
net-tools libtool module-init-tools vim && \
apt-get clean -y
RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so /usr/lib/libssl.so.10 && \
ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so /usr/lib/libcrypto.so.10
RUN wget https://github.com/koalaman/shellcheck/releases/download/v0.7.1/shellcheck-v0.7.1.linux.x86_64.tar.xz -O shellcheck-v0.7.1.linux.x86_64.tar.xz && \
tar -xf shellcheck-v0.7.1.linux.x86_64.tar.xz && cp shellcheck-v0.7.1/shellcheck /usr/bin/shellcheck && \
rm -rf shellcheck-v0.7.1.linux.x86_64.tar.xz shellcheck-v0.7.1
# Downgrade gcc&&g++
RUN apt-get update
WORKDIR /usr/bin
RUN apt install -y gcc-4.8 g++-4.8 && cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++ && ln -s gcc-4.8 gcc && ln -s g++-4.8 g++
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.5
RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python
WORKDIR /home
ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2
RUN python setup.py build && python setup.py install
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0
RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install && \
python3.5 setup.py install
WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python3.5 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
FROM nvidia/cuda:10.0-cudnn7-devel-centos7 # A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment
RUN yum -y install wget >/dev/null \ # When you modify it, please be aware of cudnn-runtime version
&& yum -y install gcc gcc-c++ make glibc-static which \ FROM hub.baidubce.com/ctr/cuda:10.0-cudnn7-devel-ubuntu16.04
&& yum -y install git openssl-devel curl-devel bzip2-devel python-devel \ MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
&& yum -y install libSM-1.2.2-2.el7.x86_64 --setopt=protected_multilib=false \
&& yum -y install libXrender-0.9.10-1.el7.x86_64 --setopt=protected_multilib=false \
&& yum -y install libXext-1.3.3-3.el7.x86_64 --setopt=protected_multilib=false
RUN wget https://github.com/protocolbuffers/protobuf/releases/download/v3.11.2/protobuf-all-3.11.2.tar.gz && \
tar zxf protobuf-all-3.11.2.tar.gz && \
cd protobuf-3.11.2 && \
./configure && make -j4 && make install && \
make clean && \
cd .. && rm -rf protobuf-*
RUN wget https://cmake.org/files/v3.2/cmake-3.2.0-Linux-x86_64.tar.gz >/dev/null \
&& tar xzf cmake-3.2.0-Linux-x86_64.tar.gz \
&& mv cmake-3.2.0-Linux-x86_64 /usr/local/cmake3.2.0 \
&& echo 'export PATH=/usr/local/cmake3.2.0/bin:$PATH' >> /root/.bashrc \
&& rm cmake-3.2.0-Linux-x86_64.tar.gz
RUN wget https://dl.google.com/go/go1.14.linux-amd64.tar.gz >/dev/null \
&& tar xzf go1.14.linux-amd64.tar.gz \
&& mv go /usr/local/go \
&& echo 'export GOROOT=/usr/local/go' >> /root/.bashrc \
&& echo 'export PATH=/usr/local/go/bin:$PATH' >> /root/.bashrc \
&& rm go1.14.linux-amd64.tar.gz
RUN yum -y install python-devel sqlite-devel \
&& curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py >/dev/null \
&& python get-pip.py >/dev/null \
&& rm get-pip.py \
&& pip install requests
RUN yum install -y python3 python3-devel \
&& yum -y install epel-release && yum -y install patchelf libXext libSM libXrender\
&& yum clean all \
&& pip3 install requests
RUN localedef -c -i en_US -f UTF-8 en_US.UTF-8 \
&& echo "export LANG=en_US.utf8" >> /root/.bashrc \
&& echo "export LANGUAGE=en_US.utf8" >> /root/.bashrc
# ENV variables
ARG WITH_GPU
ARG WITH_AVX
ENV WITH_GPU=${WITH_GPU:-ON}
ENV WITH_AVX=${WITH_AVX:-ON}
ENV HOME /root
# Add bash enhancements
COPY tools/dockerfile/scripts/root/ /root/
# Prepare packages for Python
RUN apt-get update && \
apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev libffi-dev liblzma-dev
RUN apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages \
patchelf git python-pip python-dev python-opencv openssh-server bison \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib \
automake locales clang-format swig \
liblapack-dev liblapacke-dev libcurl4-openssl-dev \
net-tools libtool module-init-tools vim && \
apt-get clean -y
RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so /usr/lib/libssl.so.10 && \
ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so /usr/lib/libcrypto.so.10
RUN wget https://github.com/koalaman/shellcheck/releases/download/v0.7.1/shellcheck-v0.7.1.linux.x86_64.tar.xz -O shellcheck-v0.7.1.linux.x86_64.tar.xz && \
tar -xf shellcheck-v0.7.1.linux.x86_64.tar.xz && cp shellcheck-v0.7.1/shellcheck /usr/bin/shellcheck && \
rm -rf shellcheck-v0.7.1.linux.x86_64.tar.xz shellcheck-v0.7.1
# Downgrade gcc&&g++
RUN apt-get update
WORKDIR /usr/bin
RUN apt install -y gcc-4.8 g++-4.8 && cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++ && ln -s gcc-4.8 gcc && ln -s g++-4.8 g++
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.5
RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python
WORKDIR /home
ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2
RUN python setup.py build && python setup.py install
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0
RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install && \
python3.5 setup.py install
WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python3.5 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
# A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment
# When you modify it, please be aware of cudnn-runtime version
FROM hub.baidubce.com/ctr/cuda:10.1-cudnn7-devel-ubuntu16.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
# ENV variables
ARG WITH_GPU
ARG WITH_AVX
ENV WITH_GPU=${WITH_GPU:-ON}
ENV WITH_AVX=${WITH_AVX:-ON}
ENV HOME /root
# Add bash enhancements
COPY tools/dockerfile/scripts/root/ /root/
# Prepare packages for Python
RUN apt-get update && \
apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev libffi-dev liblzma-dev
RUN apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages \
patchelf git python-pip python-dev python-opencv openssh-server bison \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib \
automake locales clang-format swig \
liblapack-dev liblapacke-dev libcurl4-openssl-dev \
net-tools libtool module-init-tools vim && \
apt-get clean -y
RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so /usr/lib/libssl.so.10 && \
ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so /usr/lib/libcrypto.so.10
RUN wget https://github.com/koalaman/shellcheck/releases/download/v0.7.1/shellcheck-v0.7.1.linux.x86_64.tar.xz -O shellcheck-v0.7.1.linux.x86_64.tar.xz && \
tar -xf shellcheck-v0.7.1.linux.x86_64.tar.xz && cp shellcheck-v0.7.1/shellcheck /usr/bin/shellcheck && \
rm -rf shellcheck-v0.7.1.linux.x86_64.tar.xz shellcheck-v0.7.1
# Downgrade gcc&&g++
WORKDIR /usr/bin
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_gcc.sh gcc82 && rm -rf /build_scripts
RUN cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++
ENV PATH=/usr/local/gcc-8.2/bin:$PATH
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.5
RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python
WORKDIR /home
ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2
RUN python setup.py build && python setup.py install
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0
RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install && \
python3.5 setup.py install
WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python3.5 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
# A image for building paddle binaries # A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment # Use cuda devel base image for both cpu and gpu environment
# When you modify it, please be aware of cudnn-runtime version # When you modify it, please be aware of cudnn-runtime version
FROM nvidia/cuda:8.0-cudnn7-devel-ubuntu16.04 FROM hub.baidubce.com/ctr/cuda:10.1-cudnn7-devel-ubuntu16.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com> MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com/ubuntu#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
# ENV variables # ENV variables
ARG WITH_GPU ARG WITH_GPU
ARG WITH_AVX ARG WITH_AVX
...@@ -16,7 +13,7 @@ ENV WITH_AVX=${WITH_AVX:-ON} ...@@ -16,7 +13,7 @@ ENV WITH_AVX=${WITH_AVX:-ON}
ENV HOME /root ENV HOME /root
# Add bash enhancements # Add bash enhancements
COPY ./paddle/scripts/docker/root/ /root/ COPY tools/dockerfile/scripts/root/ /root/
# Prepare packages for Python # Prepare packages for Python
RUN apt-get update && \ RUN apt-get update && \
...@@ -24,27 +21,39 @@ RUN apt-get update && \ ...@@ -24,27 +21,39 @@ RUN apt-get update && \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \ libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev libffi-dev liblzma-dev xz-utils tk-dev libffi-dev liblzma-dev
# Downgrade gcc&&g++ RUN apt-get update && \
RUN apt-get update apt-get install -y --allow-downgrades --allow-change-held-packages \
WORKDIR /usr/bin patchelf git python-pip python-dev python-opencv openssh-server bison \
RUN apt install -y gcc-4.8 g++-4.8 wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
RUN cp gcc gcc.bak curl sed grep graphviz libjpeg-dev zlib1g-dev \
RUN cp g++ g++.bak python-matplotlib \
RUN rm gcc automake locales clang-format swig \
RUN rm g++ liblapack-dev liblapacke-dev libcurl4-openssl-dev \
RUN ln -s gcc-4.8 gcc net-tools libtool module-init-tools vim && \
RUN ln -s g++-4.8 g++ apt-get clean -y
# Install cmake3.16.0 RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so /usr/lib/libssl.so.10 && \
RUN mkdir -p /root/cmake_build && wget -q https://cmake.org/files/v3.16/cmake-3.16.0.tar.gz && \ ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so /usr/lib/libcrypto.so.10
tar -zxvf cmake-3.16.0.tar.gz && rm cmake-3.16.0.tar.gz && \
cd cmake-3.16.0 && ./bootstrap > /dev/null && \
make -j8 > /dev/null && make install > /dev/null && \
ln -s /usr/local/bin/cmake /usr/bin/cmake
ENV PATH=/usr/local/bin:$PATH RUN wget https://github.com/koalaman/shellcheck/releases/download/v0.7.1/shellcheck-v0.7.1.linux.x86_64.tar.xz -O shellcheck-v0.7.1.linux.x86_64.tar.xz && \
tar -xf shellcheck-v0.7.1.linux.x86_64.tar.xz && cp shellcheck-v0.7.1/shellcheck /usr/bin/shellcheck && \
rm -rf shellcheck-v0.7.1.linux.x86_64.tar.xz shellcheck-v0.7.1
RUN rm -r /root/cmake_build # Downgrade gcc&&g++
WORKDIR /usr/bin
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_gcc.sh gcc82 && rm -rf /build_scripts
RUN cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++
ENV PATH=/usr/local/gcc-8.2/bin:$PATH
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6 # Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \ RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
...@@ -53,79 +62,76 @@ RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-a ...@@ -53,79 +62,76 @@ RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-a
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \ wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \ tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \ CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7 # Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \ RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \ tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \ CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
RUN rm -r /root/python_build # Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.5
RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN apt-get update && \ RUN rm -r /root/python_build
apt-get install -y --allow-downgrades --allow-change-held-packages \
python3 python3-dev python3-pip \
git python-pip python-dev python-opencv openssh-server bison \
libnccl2=2.1.2-1+cuda8.0 libnccl-dev=2.1.2-1+cuda8.0 \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib gcc-4.8 g++-4.8 \
automake locales clang-format swig \
liblapack-dev liblapacke-dev \
clang-3.8 llvm-3.8 libclang-3.8-dev \
net-tools libtool ccache && \
apt-get clean -y
# Install Python2.7.15 to replace original python # Install Python2.7.15 to replace original python
WORKDIR /home WORKDIR /home
ENV version=2.7.15 ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
RUN tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
RUN echo "export PATH=/usr/local/bin:${PATH}" >> ~/.bashrc
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc
RUN echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc
RUN echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc
RUN echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH} ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH} ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH} ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
RUN ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python
RUN ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
RUN apt-get -y install unzip
RUN unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2 WORKDIR /home/setuptools-40.6.2
RUN python setup.py build RUN python setup.py build && python setup.py install
RUN python setup.py install
WORKDIR /home WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
RUN tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0 WORKDIR pip-18.0
RUN python setup.py install RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install && \
python3.5 setup.py install
WORKDIR /home WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \ RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0 rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide # Install Go and glide
RUN wget -qO- https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz | \ RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \ tar -xz -C /usr/local && \
mkdir /root/gopath && \ mkdir /root/go && \
mkdir /root/gopath/bin && \ mkdir /root/go/bin && \
mkdir /root/gopath/src mkdir /root/go/src && \
ENV GOROOT=/usr/local/go GOPATH=/root/gopath echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT. # should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# install glide
RUN curl -s -q https://glide.sh/get | sh
# Install TensorRT # Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes: # following TensorRT.tar.gz is not the default official one, we do two miny changes:
...@@ -134,10 +140,10 @@ RUN curl -s -q https://glide.sh/get | sh ...@@ -134,10 +140,10 @@ RUN curl -s -q https://glide.sh/get | sh
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle. # 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details. # See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
RUN wget -q https://paddlepaddledeps.bj.bcebos.com/TensorRT-4.0.1.6-ubuntu14.04.x86_64-gnu.cuda.8.0.cudnn7.0.tar.gz --no-check-certificate && \ # Downgrade TensorRT
tar -zxf TensorRT-4.0.1.6-ubuntu14.04.x86_64-gnu.cuda.8.0.cudnn7.0.tar.gz -C /usr/local && \ COPY tools/dockerfile/build_scripts /build_scripts
cp -rf /usr/local/TensorRT/include/* /usr/include/ && \ RUN bash /build_scripts/install_trt.sh
cp -rf /usr/local/TensorRT/lib/* /usr/lib/ RUN rm -rf /build_scripts
# git credential to skip password typing # git credential to skip password typing
RUN git config --global credential.helper store RUN git config --global credential.helper store
...@@ -145,75 +151,37 @@ RUN git config --global credential.helper store ...@@ -145,75 +151,37 @@ RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8 # Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8 RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# FIXME: due to temporary ipykernel dependency issue, specify ipykernel jupyter RUN apt-get install libprotobuf-dev -y
# version util jupyter fixes this issue.
RUN pip3 --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
pip3.6 --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
pip3.7 --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
pip --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
RUN pip3 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.6 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.6 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.7 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.7 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip --no-cache-dir install 'ipykernel==4.6.0'
#For docstring checker
RUN pip3 --no-cache-dir install pylint pytest astroid isort
RUN pip3.6 --no-cache-dir install pylint pytest astroid isort
RUN pip3.7 --no-cache-dir install pylint pytest astroid isort
RUN pip --no-cache-dir install pylint pytest astroid isort LinkChecker
RUN pip3 --no-cache-dir install coverage
RUN pip3.6 --no-cache-dir install coverage
RUN pip3.7 --no-cache-dir install coverage
RUN pip --no-cache-dir install coverage
COPY ./python/requirements.txt /root/
RUN pip3 --no-cache-dir install -r /root/requirements.txt
RUN pip3.6 --no-cache-dir install -r /root/requirements.txt
RUN pip3.7 --no-cache-dir install -r /root/requirements.txt
RUN pip --no-cache-dir install -r /root/requirements.txt
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev && apt-get clean -y
RUN pip3 --no-cache-dir install certifi urllib3[secure]
RUN pip3.6 --no-cache-dir install certifi urllib3[secure]
RUN pip3.7 --no-cache-dir install certifi urllib3[secure]
RUN pip --no-cache-dir install certifi urllib3[secure]
# ar mishandles 4GB files
# https://sourceware.org/bugzilla/show_bug.cgi?id=14625
# remove them when apt-get support 2.27 and higher version
RUN wget -q https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/binutils/2.27-9ubuntu1/binutils_2.27.orig.tar.gz && \
tar -xzf binutils_2.27.orig.tar.gz && \
cd binutils-2.27 && \
./configure && make -j && make install && cd .. && rm -rf binutils-2.27 binutils_2.27.orig.tar.gz
RUN wget --no-check-certificate https://pslib.bj.bcebos.com/openmpi-1.4.5.tar.gz && tar -xzf openmpi-1.4.5.tar.gz && \
cd openmpi-1.4.5 && ./configure --prefix=/usr/local && make all -j8 && make install -j8 && \
export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH && export PATH=/usr/local/bin:$PATH && cd .. && \
rm -rf openmpi-1.4.5.tar.gz && pip --no-cache-dir install mpi4py && ln -fs /bin/bash /bin/sh && \
apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr. # Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa # https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here. # So install a newer version here.
RUN wget -q http://mirrors.kernel.org/ubuntu/pool/universe/p/patchelf/patchelf_0.10-2_amd64.deb && \ RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service # Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
RUN echo 'root:root' | chpasswd
RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python3.5 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22 EXPOSE 22
# A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment
# When you modify it, please be aware of cudnn-runtime version
FROM hub.baidubce.com/ctr/cuda:10.2-cudnn8-devel-ubuntu16.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
# ENV variables
ARG WITH_GPU
ARG WITH_AVX
ENV WITH_GPU=${WITH_GPU:-ON}
ENV WITH_AVX=${WITH_AVX:-ON}
ENV HOME /root
# Add bash enhancements
COPY tools/dockerfile/scripts/root/ /root/
# Prepare packages for Python
RUN apt-get update && \
apt-get install -y make build-essential
RUN apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages \
python-pip python-dev python-opencv \
wget tar xz-utils bzip2 \
curl sed grep \
python-matplotlib \
vim && \
apt-get clean -y
# Downgrade gcc&&g++
WORKDIR /usr/bin
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_gcc.sh gcc82 && rm -rf /build_scripts
RUN cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++
ENV PATH=/usr/local/gcc-8.2/bin:$PATH
# install cmake
WORKDIR /home
RUN apt-get install -y make automake
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:${PATH}
ENV PATH=/usr/local/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python
WORKDIR /home
ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2
RUN python setup.py build && python setup.py install
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0
RUN python setup.py install && \
python3.6 setup.py install
WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc
RUN python3.6 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
# A image for building paddle binaries # A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment # Use cuda devel base image for both cpu and gpu environment
# When you modify it, please be aware of cudnn-runtime version # When you modify it, please be aware of cudnn-runtime version
FROM nvidia/cuda:8.0-cudnn7-devel-ubuntu16.04 FROM hub.baidubce.com/ctr/cuda:10.2-cudnn8-devel-ubuntu16.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com> MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com/ubuntu#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
# ENV variables # ENV variables
ARG WITH_GPU ARG WITH_GPU
ARG WITH_AVX ARG WITH_AVX
...@@ -16,35 +13,35 @@ ENV WITH_AVX=${WITH_AVX:-ON} ...@@ -16,35 +13,35 @@ ENV WITH_AVX=${WITH_AVX:-ON}
ENV HOME /root ENV HOME /root
# Add bash enhancements # Add bash enhancements
COPY ./paddle/scripts/docker/root/ /root/ COPY tools/dockerfile/scripts/root/ /root/
# Prepare packages for Python # Prepare packages for Python
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \ apt-get install -y make build-essential
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev libffi-dev liblzma-dev RUN apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages \
python-pip python-dev python-opencv \
wget tar xz-utils bzip2 \
curl sed grep \
python-matplotlib \
vim && \
apt-get clean -y
# Downgrade gcc&&g++ # Downgrade gcc&&g++
RUN apt-get update
WORKDIR /usr/bin WORKDIR /usr/bin
RUN apt install -y gcc-4.8 g++-4.8 COPY tools/dockerfile/build_scripts /build_scripts
RUN cp gcc gcc.bak RUN bash /build_scripts/install_gcc.sh gcc82 && rm -rf /build_scripts
RUN cp g++ g++.bak RUN cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++
RUN rm gcc RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc
RUN rm g++ RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++
RUN ln -s gcc-4.8 gcc RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc
RUN ln -s g++-4.8 g++ RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++
ENV PATH=/usr/local/gcc-8.2/bin:$PATH
# Install cmake3.16.0
RUN mkdir -p /root/cmake_build && wget -q https://cmake.org/files/v3.16/cmake-3.16.0.tar.gz && \ # install cmake
tar -zxvf cmake-3.16.0.tar.gz && rm cmake-3.16.0.tar.gz && \ WORKDIR /home
cd cmake-3.16.0 && ./bootstrap > /dev/null && \ RUN apt-get install -y make automake
make -j8 > /dev/null && make install > /dev/null && \
ln -s /usr/local/bin/cmake /usr/bin/cmake
ENV PATH=/usr/local/bin:$PATH
RUN rm -r /root/cmake_build
# Install Python3.6 # Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \ RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
...@@ -53,79 +50,56 @@ RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-a ...@@ -53,79 +50,56 @@ RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-a
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \ wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \ tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \ CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7 ENV PATH=/usr/local/include/python3.6m/:${PATH}
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \ ENV PATH=/usr/local/bin:${PATH}
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \ ENV LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH}
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \ ENV CPLUS_INCLUDE_PATH=/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
make -j8 > /dev/null && make altinstall > /dev/null RUN ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build RUN rm -r /root/python_build
RUN apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages \
python3 python3-dev python3-pip \
git python-pip python-dev python-opencv openssh-server bison \
libnccl2=2.1.2-1+cuda8.0 libnccl-dev=2.1.2-1+cuda8.0 \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib gcc-4.8 g++-4.8 \
automake locales clang-format swig \
liblapack-dev liblapacke-dev \
clang-3.8 llvm-3.8 libclang-3.8-dev \
net-tools libtool ccache && \
apt-get clean -y
# Install Python2.7.15 to replace original python # Install Python2.7.15 to replace original python
WORKDIR /home WORKDIR /home
ENV version=2.7.15 ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
RUN tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
RUN echo "export PATH=/usr/local/bin:${PATH}" >> ~/.bashrc
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc
RUN echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc
RUN echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc
RUN echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH} ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH} ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH} ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
RUN ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python
RUN ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
RUN apt-get -y install unzip
RUN unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2 WORKDIR /home/setuptools-40.6.2
RUN python setup.py build RUN python setup.py build && python setup.py install
RUN python setup.py install
WORKDIR /home WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
RUN tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0 WORKDIR pip-18.0
RUN python setup.py install RUN python setup.py install && \
python3.6 setup.py install
WORKDIR /home WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \ RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0 rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide # Install Go and glide
RUN wget -qO- https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz | \ RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \ tar -xz -C /usr/local && \
mkdir /root/gopath && \ mkdir /root/go && \
mkdir /root/gopath/bin && \ mkdir /root/go/bin && \
mkdir /root/gopath/src mkdir /root/go/src && \
ENV GOROOT=/usr/local/go GOPATH=/root/gopath echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT. # should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# install glide
RUN curl -s -q https://glide.sh/get | sh
# Install TensorRT # Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes: # following TensorRT.tar.gz is not the default official one, we do two miny changes:
...@@ -134,10 +108,10 @@ RUN curl -s -q https://glide.sh/get | sh ...@@ -134,10 +108,10 @@ RUN curl -s -q https://glide.sh/get | sh
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle. # 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details. # See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
RUN wget -q https://paddlepaddledeps.bj.bcebos.com/TensorRT-4.0.1.6-ubuntu14.04.x86_64-gnu.cuda.8.0.cudnn7.0.tar.gz --no-check-certificate && \ # Downgrade TensorRT
tar -zxf TensorRT-4.0.1.6-ubuntu14.04.x86_64-gnu.cuda.8.0.cudnn7.0.tar.gz -C /usr/local && \ COPY tools/dockerfile/build_scripts /build_scripts
cp -rf /usr/local/TensorRT/include/* /usr/include/ && \ RUN bash /build_scripts/install_trt.sh
cp -rf /usr/local/TensorRT/lib/* /usr/lib/ RUN rm -rf /build_scripts
# git credential to skip password typing # git credential to skip password typing
RUN git config --global credential.helper store RUN git config --global credential.helper store
...@@ -145,75 +119,23 @@ RUN git config --global credential.helper store ...@@ -145,75 +119,23 @@ RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8 # Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8 RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# FIXME: due to temporary ipykernel dependency issue, specify ipykernel jupyter
# version util jupyter fixes this issue.
RUN pip3 --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
pip3.6 --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
pip3.7 --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
pip --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
RUN pip3 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.6 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.6 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.7 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.7 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip --no-cache-dir install 'ipykernel==4.6.0'
#For docstring checker
RUN pip3 --no-cache-dir install pylint pytest astroid isort
RUN pip3.6 --no-cache-dir install pylint pytest astroid isort
RUN pip3.7 --no-cache-dir install pylint pytest astroid isort
RUN pip --no-cache-dir install pylint pytest astroid isort LinkChecker
RUN pip3 --no-cache-dir install coverage
RUN pip3.6 --no-cache-dir install coverage
RUN pip3.7 --no-cache-dir install coverage
RUN pip --no-cache-dir install coverage
COPY ./python/requirements.txt /root/
RUN pip3 --no-cache-dir install -r /root/requirements.txt
RUN pip3.6 --no-cache-dir install -r /root/requirements.txt
RUN pip3.7 --no-cache-dir install -r /root/requirements.txt
RUN pip --no-cache-dir install -r /root/requirements.txt
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev && apt-get clean -y
RUN pip3 --no-cache-dir install certifi urllib3[secure]
RUN pip3.6 --no-cache-dir install certifi urllib3[secure]
RUN pip3.7 --no-cache-dir install certifi urllib3[secure]
RUN pip --no-cache-dir install certifi urllib3[secure]
# ar mishandles 4GB files
# https://sourceware.org/bugzilla/show_bug.cgi?id=14625
# remove them when apt-get support 2.27 and higher version
RUN wget -q https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/binutils/2.27-9ubuntu1/binutils_2.27.orig.tar.gz && \
tar -xzf binutils_2.27.orig.tar.gz && \
cd binutils-2.27 && \
./configure && make -j && make install && cd .. && rm -rf binutils-2.27 binutils_2.27.orig.tar.gz
RUN wget --no-check-certificate https://pslib.bj.bcebos.com/openmpi-1.4.5.tar.gz && tar -xzf openmpi-1.4.5.tar.gz && \
cd openmpi-1.4.5 && ./configure --prefix=/usr/local && make all -j8 && make install -j8 && \
export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH && export PATH=/usr/local/bin:$PATH && cd .. && \
rm -rf openmpi-1.4.5.tar.gz && pip --no-cache-dir install mpi4py && ln -fs /bin/bash /bin/sh && \
apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr. # Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa # https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here. # So install a newer version here.
RUN wget -q http://mirrors.kernel.org/ubuntu/pool/universe/p/patchelf/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service # Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
RUN echo 'root:root' | chpasswd
RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc CMD source ~/.bashrc
RUN python3.6 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22 EXPOSE 22
# A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment
# When you modify it, please be aware of cudnn-runtime version
FROM hub.baidubce.com/ctr/cuda:11.0-cudnn8-devel-ubuntu18.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
# ENV variables
ARG WITH_GPU
ARG WITH_AVX
ENV WITH_GPU=${WITH_GPU:-ON}
ENV WITH_AVX=${WITH_AVX:-ON}
ENV DEBIAN_FRONTEND=noninteractive
ENV LD_LIBRARY_PATH=/usr/local/cuda-11.0/targets/x86_64-linux/lib:$LD_LIBRARY_PATH
ENV HOME /root
# Add bash enhancements
COPY tools/dockerfile/scripts/root/ /root/
RUN apt-get update && \
apt-get install -y software-properties-common && add-apt-repository ppa:deadsnakes/ppa && \
apt-get update && \
apt-get install -y curl wget vim git unzip unrar tar xz-utils libssl-dev bzip2 gzip \
coreutils ntp language-pack-zh-hans python-qt4 libsm6 libxext6 libxrender-dev libgl1-mesa-glx \
bison graphviz libjpeg-dev zlib1g-dev automake locales swig net-tools libtool module-init-tools libcurl4-openssl-dev libffi-dev
RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so.1.0.0 /usr/lib/libssl.so.10 && \
ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so.1.0.0 /usr/lib/libcrypto.so.10
# Downgrade gcc&&g++
WORKDIR /usr/bin
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN bash /build_scripts/install_gcc.sh gcc82 && rm -rf /build_scripts
RUN cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++
ENV PATH=/usr/local/gcc-8.2/bin:$PATH
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.5
RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python
WORKDIR /home
ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2
RUN python setup.py build && python setup.py install
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0
RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install
WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0
# remove them when apt-get support 2.27 and higher version
RUN wget -q https://ftp.gnu.org/gnu/binutils/binutils-2.33.1.tar.gz && \
tar -xzf binutils-2.33.1.tar.gz && \
cd binutils-2.33.1 && \
./configure && make -j && make install && cd .. && rm -rf binutils-2.33.1 binutils-2.33.1.tar.gz
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
ENV PATH=/usr/local/go/bin:/root/go/bin:$PATH
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
#RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
#CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN ln -s /usr/share/pyshared/lsb_release.py /usr/bin/lsb_release.py
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
# A image for building paddle binaries # A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment # Use cuda devel base image for both cpu and gpu environment
# When you modify it, please be aware of cudnn-runtime version # When you modify it, please be aware of cudnn-runtime version
FROM nvidia/cuda:8.0-cudnn7-devel-ubuntu16.04 FROM hub.baidubce.com/ctr/cuda:11.0-cudnn8-devel-ubuntu18.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com> MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com/ubuntu#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
# ENV variables # ENV variables
ARG WITH_GPU ARG WITH_GPU
ARG WITH_AVX ARG WITH_AVX
ENV WITH_GPU=${WITH_GPU:-ON} ENV WITH_GPU=${WITH_GPU:-ON}
ENV WITH_AVX=${WITH_AVX:-ON} ENV WITH_AVX=${WITH_AVX:-ON}
ENV DEBIAN_FRONTEND=noninteractive
ENV LD_LIBRARY_PATH=/usr/local/cuda-11.0/targets/x86_64-linux/lib:$LD_LIBRARY_PATH
ENV HOME /root ENV HOME /root
# Add bash enhancements # Add bash enhancements
COPY ./paddle/scripts/docker/root/ /root/ COPY tools/dockerfile/scripts/root/ /root/
# Prepare packages for Python
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \ apt-get install -y software-properties-common && add-apt-repository ppa:deadsnakes/ppa && \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \ apt-get update && \
xz-utils tk-dev libffi-dev liblzma-dev apt-get install -y curl wget vim git unzip unrar tar xz-utils libssl-dev bzip2 gzip \
coreutils ntp language-pack-zh-hans python-qt4 libsm6 libxext6 libxrender-dev libgl1-mesa-glx \
bison graphviz libjpeg-dev zlib1g-dev automake locales swig net-tools libtool module-init-tools libcurl4-openssl-dev libffi-dev
RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so.1.0.0 /usr/lib/libssl.so.10 && \
ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so.1.0.0 /usr/lib/libcrypto.so.10
# Downgrade gcc&&g++ # Downgrade gcc&&g++
RUN apt-get update
WORKDIR /usr/bin WORKDIR /usr/bin
RUN apt install -y gcc-4.8 g++-4.8 COPY tools/dockerfile/build_scripts /build_scripts
RUN cp gcc gcc.bak RUN bash /build_scripts/install_trt.sh
RUN cp g++ g++.bak RUN bash /build_scripts/install_gcc.sh gcc82 && rm -rf /build_scripts
RUN rm gcc RUN cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++
RUN rm g++ RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc
RUN ln -s gcc-4.8 gcc RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++
RUN ln -s g++-4.8 g++ RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++
# Install cmake3.16.0 ENV PATH=/usr/local/gcc-8.2/bin:$PATH
RUN mkdir -p /root/cmake_build && wget -q https://cmake.org/files/v3.16/cmake-3.16.0.tar.gz && \
tar -zxvf cmake-3.16.0.tar.gz && rm cmake-3.16.0.tar.gz && \
cd cmake-3.16.0 && ./bootstrap > /dev/null && \ # install cmake
make -j8 > /dev/null && make install > /dev/null && \ WORKDIR /home
ln -s /usr/local/bin/cmake /usr/bin/cmake RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
ENV PATH=/usr/local/bin:$PATH
RUN rm -r /root/cmake_build # install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6 # Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \ RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
...@@ -53,79 +57,83 @@ RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-a ...@@ -53,79 +57,83 @@ RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-a
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \ wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \ tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \ CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7 # Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \ RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \ tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \ CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
RUN rm -r /root/python_build # Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
RUN apt-get update && \ # Install Python3.5
apt-get install -y --allow-downgrades --allow-change-held-packages \ RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
python3 python3-dev python3-pip \ tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
git python-pip python-dev python-opencv openssh-server bison \ CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
libnccl2=2.1.2-1+cuda8.0 libnccl-dev=2.1.2-1+cuda8.0 \ make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \ ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
python-matplotlib gcc-4.8 g++-4.8 \ ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
automake locales clang-format swig \ ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
liblapack-dev liblapacke-dev \ ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
clang-3.8 llvm-3.8 libclang-3.8-dev \ RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
net-tools libtool ccache && \
apt-get clean -y RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python # Install Python2.7.15 to replace original python
WORKDIR /home WORKDIR /home
ENV version=2.7.15 ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
RUN tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
RUN echo "export PATH=/usr/local/bin:${PATH}" >> ~/.bashrc
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc
RUN echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc
RUN echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc
RUN echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH} ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH} ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH} ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
RUN ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python
RUN ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
RUN apt-get -y install unzip
RUN unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2 WORKDIR /home/setuptools-40.6.2
RUN python setup.py build RUN python setup.py build && python setup.py install
RUN python setup.py install
WORKDIR /home WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
RUN tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0 WORKDIR pip-18.0
RUN python setup.py install RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install
WORKDIR /home WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \ RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0 rm -r Python-$version setuptools-40.6.2 pip-18.0
# remove them when apt-get support 2.27 and higher version
RUN wget -q https://ftp.gnu.org/gnu/binutils/binutils-2.33.1.tar.gz && \
tar -xzf binutils-2.33.1.tar.gz && \
cd binutils-2.33.1 && \
./configure && make -j && make install && cd .. && rm -rf binutils-2.33.1 binutils-2.33.1.tar.gz
# Install Go and glide # Install Go and glide
RUN wget -qO- https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz | \ RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \ tar -xz -C /usr/local && \
mkdir /root/gopath && \ mkdir /root/go && \
mkdir /root/gopath/bin && \ mkdir /root/go/bin && \
mkdir /root/gopath/src mkdir /root/go/src && \
ENV GOROOT=/usr/local/go GOPATH=/root/gopath echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT. echo "GOPATH=/root/go" >> /root/.bashrc && \
ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
# install glide ENV GOROOT=/usr/local/go GOPATH=/root/go
RUN curl -s -q https://glide.sh/get | sh ENV PATH=/usr/local/go/bin:/root/go/bin:$PATH
# Install TensorRT # Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes: # following TensorRT.tar.gz is not the default official one, we do two miny changes:
...@@ -134,10 +142,10 @@ RUN curl -s -q https://glide.sh/get | sh ...@@ -134,10 +142,10 @@ RUN curl -s -q https://glide.sh/get | sh
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle. # 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details. # See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
RUN wget -q https://paddlepaddledeps.bj.bcebos.com/TensorRT-4.0.1.6-ubuntu14.04.x86_64-gnu.cuda.8.0.cudnn7.0.tar.gz --no-check-certificate && \ # Downgrade TensorRT
tar -zxf TensorRT-4.0.1.6-ubuntu14.04.x86_64-gnu.cuda.8.0.cudnn7.0.tar.gz -C /usr/local && \ COPY tools/dockerfile/build_scripts /build_scripts
cp -rf /usr/local/TensorRT/include/* /usr/include/ && \ RUN bash /build_scripts/install_trt.sh
cp -rf /usr/local/TensorRT/lib/* /usr/lib/ RUN rm -rf /build_scripts
# git credential to skip password typing # git credential to skip password typing
RUN git config --global credential.helper store RUN git config --global credential.helper store
...@@ -145,75 +153,37 @@ RUN git config --global credential.helper store ...@@ -145,75 +153,37 @@ RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8 # Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8 RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# FIXME: due to temporary ipykernel dependency issue, specify ipykernel jupyter RUN apt-get install libprotobuf-dev -y
# version util jupyter fixes this issue.
RUN pip3 --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
pip3.6 --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
pip3.7 --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
pip --no-cache-dir install -U wheel py-cpuinfo==5.0.0 && \
RUN pip3 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.6 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.6 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.7 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.7 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip --no-cache-dir install 'ipykernel==4.6.0'
#For docstring checker
RUN pip3 --no-cache-dir install pylint pytest astroid isort
RUN pip3.6 --no-cache-dir install pylint pytest astroid isort
RUN pip3.7 --no-cache-dir install pylint pytest astroid isort
RUN pip --no-cache-dir install pylint pytest astroid isort LinkChecker
RUN pip3 --no-cache-dir install coverage
RUN pip3.6 --no-cache-dir install coverage
RUN pip3.7 --no-cache-dir install coverage
RUN pip --no-cache-dir install coverage
COPY ./python/requirements.txt /root/
RUN pip3 --no-cache-dir install -r /root/requirements.txt
RUN pip3.6 --no-cache-dir install -r /root/requirements.txt
RUN pip3.7 --no-cache-dir install -r /root/requirements.txt
RUN pip --no-cache-dir install -r /root/requirements.txt
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev && apt-get clean -y
RUN pip3 --no-cache-dir install certifi urllib3[secure]
RUN pip3.6 --no-cache-dir install certifi urllib3[secure]
RUN pip3.7 --no-cache-dir install certifi urllib3[secure]
RUN pip --no-cache-dir install certifi urllib3[secure]
# ar mishandles 4GB files
# https://sourceware.org/bugzilla/show_bug.cgi?id=14625
# remove them when apt-get support 2.27 and higher version
RUN wget -q https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/binutils/2.27-9ubuntu1/binutils_2.27.orig.tar.gz && \
tar -xzf binutils_2.27.orig.tar.gz && \
cd binutils-2.27 && \
./configure && make -j && make install && cd .. && rm -rf binutils-2.27 binutils_2.27.orig.tar.gz
RUN wget --no-check-certificate https://pslib.bj.bcebos.com/openmpi-1.4.5.tar.gz && tar -xzf openmpi-1.4.5.tar.gz && \
cd openmpi-1.4.5 && ./configure --prefix=/usr/local && make all -j8 && make install -j8 && \
export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH && export PATH=/usr/local/bin:$PATH && cd .. && \
rm -rf openmpi-1.4.5.tar.gz && pip --no-cache-dir install mpi4py && ln -fs /bin/bash /bin/sh && \
apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr. # Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa # https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here. # So install a newer version here.
RUN wget -q http://mirrors.kernel.org/ubuntu/pool/universe/p/patchelf/patchelf_0.10-2_amd64.deb && \ RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service # Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd #RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
RUN echo 'root:root' | chpasswd #CMD source ~/.bashrc
RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config # ccache 3.7.9
CMD source ~/.bashrc RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN ln -s /usr/share/pyshared/lsb_release.py /usr/bin/lsb_release.py
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22 EXPOSE 22
FROM nvidia/cuda:9.0-cudnn7-devel-centos7 as builder # A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment
FROM nvidia/cuda:9.0-cudnn7-runtime-centos7 # When you modify it, please be aware of cudnn-runtime version
RUN yum -y install wget && \ FROM hub.baidubce.com/ctr/cuda:9.0-cudnn7-devel-ubuntu16.04
yum -y install epel-release && yum -y install patchelf && \ MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
yum -y install gcc gcc-c++ make python-devel && \
yum -y install libSM-1.2.2-2.el7.x86_64 --setopt=protected_multilib=false && \ # ENV variables
yum -y install libXrender-0.9.10-1.el7.x86_64 --setopt=protected_multilib=false && \ ARG WITH_GPU
yum -y install libXext-1.3.3-3.el7.x86_64 --setopt=protected_multilib=false && \ ARG WITH_AVX
yum -y install python3 python3-devel && \
yum clean all ENV WITH_GPU=${WITH_GPU:-ON}
ENV WITH_AVX=${WITH_AVX:-ON}
RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py && \
python get-pip.py && rm get-pip.py ENV HOME /root
# Add bash enhancements
RUN ln -s /usr/local/cuda-9.0/lib64/libcublas.so.9.0 /usr/local/cuda-9.0/lib64/libcublas.so && \ COPY tools/dockerfile/scripts/root/ /root/
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> /root/.bashrc && \
ln -s /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudnn.so.7 /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudnn.so && \ # Prepare packages for Python
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-9.0/targets/x86_64-linux/lib:$LD_LIBRARY_PATH' >> /root/.bashrc && \ RUN apt-get update && \
echo "export LANG=en_US.utf8" >> /root/.bashrc && \ apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
echo "export LANGUAGE=en_US.utf8" >> /root/.bashrc && \ libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
mkdir -p /usr/local/cuda/extras xz-utils tk-dev libffi-dev liblzma-dev
COPY --from=builder /usr/local/cuda/extras/CUPTI /usr/local/cuda/extras/CUPTI RUN apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages \
patchelf git python-pip python-dev python-opencv openssh-server bison \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib \
automake locales clang-format swig \
liblapack-dev liblapacke-dev libcurl4-openssl-dev \
net-tools libtool module-init-tools vim && \
apt-get clean -y
RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so /usr/lib/libssl.so.10 && \
ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so /usr/lib/libcrypto.so.10
RUN wget https://github.com/koalaman/shellcheck/releases/download/v0.7.1/shellcheck-v0.7.1.linux.x86_64.tar.xz -O shellcheck-v0.7.1.linux.x86_64.tar.xz && \
tar -xf shellcheck-v0.7.1.linux.x86_64.tar.xz && cp shellcheck-v0.7.1/shellcheck /usr/bin/shellcheck && \
rm -rf shellcheck-v0.7.1.linux.x86_64.tar.xz shellcheck-v0.7.1
# Downgrade gcc&&g++
RUN apt-get update
WORKDIR /usr/bin
RUN apt install -y gcc-4.8 g++-4.8 && cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++ && ln -s gcc-4.8 gcc && ln -s g++-4.8 g++
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.5
RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python
WORKDIR /home
ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2
RUN python setup.py build && python setup.py install
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0
RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install && \
python3.5 setup.py install
WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python3.5 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
FROM nvidia/cuda:9.0-cudnn7-devel-centos7 # A image for building paddle binaries
RUN yum -y install wget >/dev/null \ # Use cuda devel base image for both cpu and gpu environment
&& yum -y install gcc gcc-c++ make glibc-static which \ # When you modify it, please be aware of cudnn-runtime version
&& yum -y install git openssl-devel curl-devel bzip2-devel python-devel \ FROM hub.baidubce.com/ctr/cuda:9.0-cudnn7-devel-ubuntu16.04
&& yum -y install libSM-1.2.2-2.el7.x86_64 --setopt=protected_multilib=false \ MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
&& yum -y install libXrender-0.9.10-1.el7.x86_64 --setopt=protected_multilib=false \
&& yum -y install libXext-1.3.3-3.el7.x86_64 --setopt=protected_multilib=false # ENV variables
ARG WITH_GPU
RUN wget https://github.com/protocolbuffers/protobuf/releases/download/v3.11.2/protobuf-all-3.11.2.tar.gz && \ ARG WITH_AVX
tar zxf protobuf-all-3.11.2.tar.gz && \
cd protobuf-3.11.2 && \ ENV WITH_GPU=${WITH_GPU:-ON}
./configure && make -j4 && make install && \ ENV WITH_AVX=${WITH_AVX:-ON}
make clean && \
cd .. && rm -rf protobuf-* ENV HOME /root
# Add bash enhancements
RUN wget https://cmake.org/files/v3.2/cmake-3.2.0-Linux-x86_64.tar.gz >/dev/null \ COPY tools/dockerfile/scripts/root/ /root/
&& tar xzf cmake-3.2.0-Linux-x86_64.tar.gz \
&& mv cmake-3.2.0-Linux-x86_64 /usr/local/cmake3.2.0 \ # Prepare packages for Python
&& echo 'export PATH=/usr/local/cmake3.2.0/bin:$PATH' >> /root/.bashrc \ RUN apt-get update && \
&& rm cmake-3.2.0-Linux-x86_64.tar.gz apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
RUN wget https://dl.google.com/go/go1.14.linux-amd64.tar.gz >/dev/null \ xz-utils tk-dev libffi-dev liblzma-dev
&& tar xzf go1.14.linux-amd64.tar.gz \
&& mv go /usr/local/go \ RUN apt-get update && \
&& echo 'export GOROOT=/usr/local/go' >> /root/.bashrc \ apt-get install -y --allow-downgrades --allow-change-held-packages \
&& echo 'export PATH=/usr/local/go/bin:$PATH' >> /root/.bashrc \ patchelf git python-pip python-dev python-opencv openssh-server bison \
&& rm go1.14.linux-amd64.tar.gz wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
RUN yum -y install python-devel sqlite-devel \ python-matplotlib \
&& curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py >/dev/null \ automake locales clang-format swig \
&& python get-pip.py >/dev/null \ liblapack-dev liblapacke-dev libcurl4-openssl-dev \
&& rm get-pip.py \ net-tools libtool module-init-tools vim && \
&& pip install requests apt-get clean -y
RUN yum install -y python3 python3-devel \ RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so /usr/lib/libssl.so.10 && \
&& yum -y install epel-release && yum -y install patchelf libXext libSM libXrender\ ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so /usr/lib/libcrypto.so.10
&& yum clean all \
&& pip3 install requests RUN wget https://github.com/koalaman/shellcheck/releases/download/v0.7.1/shellcheck-v0.7.1.linux.x86_64.tar.xz -O shellcheck-v0.7.1.linux.x86_64.tar.xz && \
tar -xf shellcheck-v0.7.1.linux.x86_64.tar.xz && cp shellcheck-v0.7.1/shellcheck /usr/bin/shellcheck && \
RUN localedef -c -i en_US -f UTF-8 en_US.UTF-8 \ rm -rf shellcheck-v0.7.1.linux.x86_64.tar.xz shellcheck-v0.7.1
&& echo "export LANG=en_US.utf8" >> /root/.bashrc \
&& echo "export LANGUAGE=en_US.utf8" >> /root/.bashrc # Downgrade gcc&&g++
RUN apt-get update
WORKDIR /usr/bin
RUN apt install -y gcc-4.8 g++-4.8 && cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++ && ln -s gcc-4.8 gcc && ln -s g++-4.8 g++
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.5
RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python
WORKDIR /home
ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2
RUN python setup.py build && python setup.py install
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0
RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install && \
python3.5 setup.py install
WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python3.5 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
FROM centos:7.3.1611 # A image for building paddle binaries
RUN yum -y install wget \ # Use cuda devel base image for both cpu and gpu environment
&& yum -y install gcc gcc-c++ make glibc-static which \ # When you modify it, please be aware of cudnn-runtime version
&& yum -y install git openssl-devel curl-devel bzip2-devel python-devel FROM hub.baidubce.com/ctr/cuda:9.0-cudnn7-devel-ubuntu16.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
RUN wget https://cmake.org/files/v3.2/cmake-3.2.0-Linux-x86_64.tar.gz >/dev/null \
&& tar xzf cmake-3.2.0-Linux-x86_64.tar.gz \ # ENV variables
&& mv cmake-3.2.0-Linux-x86_64 /usr/local/cmake3.2.0 \ ARG WITH_GPU
&& echo 'export PATH=/usr/local/cmake3.2.0/bin:$PATH' >> /root/.bashrc \ ARG WITH_AVX
&& rm cmake-3.2.0-Linux-x86_64.tar.gz
ENV WITH_GPU=${WITH_GPU:-ON}
RUN wget https://dl.google.com/go/go1.14.linux-amd64.tar.gz >/dev/null \ ENV WITH_AVX=${WITH_AVX:-ON}
&& tar xzf go1.14.linux-amd64.tar.gz \
&& mv go /usr/local/go \ ENV HOME /root
&& echo 'export GOROOT=/usr/local/go' >> /root/.bashrc \ # Add bash enhancements
&& echo 'export PATH=/usr/local/go/bin:$PATH' >> /root/.bashrc \ COPY tools/dockerfile/scripts/root/ /root/
&& rm go1.14.linux-amd64.tar.gz
# Prepare packages for Python
RUN yum -y install python-devel sqlite-devel \ RUN apt-get update && \
&& curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py >/dev/null \ apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
&& python get-pip.py >/dev/null \ libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
&& rm get-pip.py \ xz-utils tk-dev libffi-dev liblzma-dev
&& pip install requests
RUN apt-get update && \
RUN yum install -y python3 python3-devel \ apt-get install -y --allow-downgrades --allow-change-held-packages \
&& yum -y install epel-release && yum -y install patchelf libXext libSM libXrender\ patchelf git python-pip python-dev python-opencv openssh-server bison \
&& yum clean all \ wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
&& pip3 install requests curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib \
RUN localedef -c -i en_US -f UTF-8 en_US.UTF-8 \ automake locales clang-format swig \
&& echo "export LANG=en_US.utf8" >> /root/.bashrc \ liblapack-dev liblapacke-dev libcurl4-openssl-dev \
&& echo "export LANGUAGE=en_US.utf8" >> /root/.bashrc net-tools libtool module-init-tools vim && \
apt-get clean -y
RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so /usr/lib/libssl.so.10 && \
ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so /usr/lib/libcrypto.so.10
RUN wget https://github.com/koalaman/shellcheck/releases/download/v0.7.1/shellcheck-v0.7.1.linux.x86_64.tar.xz -O shellcheck-v0.7.1.linux.x86_64.tar.xz && \
tar -xf shellcheck-v0.7.1.linux.x86_64.tar.xz && cp shellcheck-v0.7.1/shellcheck /usr/bin/shellcheck && \
rm -rf shellcheck-v0.7.1.linux.x86_64.tar.xz shellcheck-v0.7.1
# Downgrade gcc&&g++
WORKDIR /usr/bin
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_gcc.sh gcc82 && rm -rf /build_scripts
RUN cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++
ENV PATH=/usr/local/gcc-8.2/bin:$PATH
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
# Install Python3.5
RUN wget -q https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz && \
tar -xzf Python-3.5.1.tgz && cd Python-3.5.1 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/python3.5.1 --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig
ENV PATH=/usr/local/include/python3.6m/:/usr/local/python3.5.1/include:${PATH}
ENV PATH=/usr/local/bin:/usr/local/python3.5.1/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/python3.5.1/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python3.5.1/include/python3.5:/usr/local/include/python3.6m/:$CPLUS_INCLUDE_PATH
RUN ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/local/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/python3.5 /usr/bin/python3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/local/bin/pip3.5 && ln -sf /usr/local/python3.5.1/bin/pip3.5 /usr/bin/pip3.5 && ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Python2.7.15 to replace original python
WORKDIR /home
ENV version=2.7.15
RUN wget https://www.python.org/ftp/python/$version/Python-$version.tgz && tar -xvf Python-$version.tgz
WORKDIR /home/Python-$version
RUN ./configure --enable-unicode=ucs4 --enable-shared CFLAGS=-fPIC --prefix=/usr/local/python2.7.15 && make && make install
RUN echo "export PATH=/usr/local/python2.7.15/include:${PATH}" >> ~/.bashrc && echo "export PATH=/usr/local/python2.7.15/bin:${PATH}" >> ~/.bashrc && echo "export LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}" >> ~/.bashrc && echo "export CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH" >> ~/.bashrc
ENV PATH=/usr/local/python2.7.15/include:${PATH}
ENV PATH=/usr/local/python2.7.15/bin:${PATH}
ENV LD_LIBRARY_PATH=/usr/local/python2.7.15/lib:${LD_LIBRARY_PATH}
ENV CPLUS_INCLUDE_PATH=/usr/local/python2.7.15/include/python2.7:$CPLUS_INCLUDE_PATH
RUN mv /usr/bin/python /usr/bin/python.bak && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/local/bin/python && ln -s /usr/local/python2.7.15/bin/python2.7 /usr/bin/python
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/b0/d1/8acb42f391cba52e35b131e442e80deffbb8d0676b93261d761b1f0ef8fb/setuptools-40.6.2.zip && apt-get -y install unzip && unzip setuptools-40.6.2.zip
WORKDIR /home/setuptools-40.6.2
RUN python setup.py build && python setup.py install
WORKDIR /home
RUN wget https://files.pythonhosted.org/packages/69/81/52b68d0a4de760a2f1979b0931ba7889202f302072cc7a0d614211bc7579/pip-18.0.tar.gz && tar -zxvf pip-18.0.tar.gz
WORKDIR pip-18.0
RUN python setup.py install && \
python3.8 setup.py install && \
python3.7 setup.py install && \
python3.6 setup.py install && \
python3.5 setup.py install
WORKDIR /home
RUN rm Python-$version.tgz setuptools-40.6.2.zip pip-18.0.tar.gz && \
rm -r Python-$version setuptools-40.6.2 pip-18.0
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfile/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN python3.8 -m pip install --upgrade pip requests && \
python3.7 -m pip install --upgrade pip requests && \
python3.6 -m pip install --upgrade pip requests && \
python3.5 -m pip install --upgrade pip requests && \
python2.7 -m pip install --upgrade pip requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Top-level build script called from Dockerfile
# Stop at any error, show all commands
set -ex
# Python versions to be installed in /opt/$VERSION_NO
# NOTE Only need python 2.7.11 for nupic.core/nupic.bindings at this time, so
# remove others to expedite build and reduce docker image size. The original
# manylinux docker image project builds many python versions.
# NOTE We added back 3.5.1, since auditwheel requires python 3.3+
CPYTHON_VERSIONS="3.8.0 3.7.0 3.6.0 3.5.1 2.7.15"
# openssl version to build, with expected sha256 hash of .tar.gz
# archive
OPENSSL_ROOT=openssl-1.0.2g
OPENSSL_HASH=b784b1b3907ce39abf4098702dade6365522a253ad1552e267a9a0e89594aa33
PATCHELF_HASH=f2aa40a6148cb3b0ca807a1bf836b081793e55ec9e5540a5356d800132be7e0a
CURL_ROOT=curl-7.49.1
CURL_HASH=eb63cec4bef692eab9db459033f409533e6d10e20942f4b060b32819e81885f1
AUTOCONF_ROOT=autoconf-2.69
AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969
# Dependencies for compiling Python that we want to remove from
# the final image after compiling Python
PYTHON_COMPILE_DEPS="zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel libffi-devel"
# Libraries that are allowed as part of the manylinux1 profile
MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel freetype-devel libpng-devel"
# Get build utilities
MY_DIR=$(dirname "${BASH_SOURCE[0]}")
source $MY_DIR/build_utils.sh
# EPEL support
yum -y install wget curl epel-release
# Development tools and libraries
yum -y install bzip2 make git patch unzip bison yasm diffutils \
automake which file \
kernel-devel-`uname -r` \
devtoolset-2-binutils devtoolset-2-gcc \
devtoolset-2-gcc-c++ devtoolset-2-gcc-gfortran \
${PYTHON_COMPILE_DEPS}
# Install more recent version of cmake
# curl -O https://cmake.org/files/v3.8/cmake-3.8.1-Linux-x86_64.sh
# /bin/sh cmake-3.8.1-Linux-x86_64.sh --prefix=/usr/local --skip-license
# rm cmake-3.8.1-Linux-x86_64.sh
wget -q https://cmake.org/files/v3.16/cmake-3.16.0.tar.gz && tar xzf cmake-3.16.0.tar.gz && \
cd cmake-3.16.0 && ./bootstrap && \
make -j8 && make install && cd .. && rm cmake-3.16.0.tar.gz && rm -rf cmake-3.16.0
# Install newest autoconf
build_autoconf $AUTOCONF_ROOT $AUTOCONF_HASH
autoconf --version
# Compile the latest Python releases.
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
build_openssl $OPENSSL_ROOT $OPENSSL_HASH
mkdir -p /opt/python
build_cpythons $CPYTHON_VERSIONS
PY35_BIN=/opt/python/cp35-cp35m/bin
PY36_BIN=/opt/python/cp36-cp36m/bin
PY37_BIN=/opt/python/cp37-cp37m/bin
PY38_BIN=/opt/python/cp38-cp38m/bin
# NOTE Since our custom manylinux image builds pythons with shared
# libpython, we need to add libpython's dir to LD_LIBRARY_PATH before running
# python.
ORIGINAL_LD_LIBRARY_PATH="${LD_LIBRARY_PATH}"
LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname ${PY35_BIN})/lib:$(dirname ${PY36_BIN})/lib:$(dirname ${PY37_BIN})/lib:$(dirname ${PY38_BIN})/lib"
# Our openssl doesn't know how to find the system CA trust store
# (https://github.com/pypa/manylinux/issues/53)
# And it's not clear how up-to-date that is anyway
# So let's just use the same one pip and everyone uses
LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname ${PY35_BIN})/lib" $PY35_BIN/pip install certifi
ln -s $($PY35_BIN/python -c 'import certifi; print(certifi.where())') \
/opt/_internal/certs.pem
# If you modify this line you also have to modify the versions in the
# Dockerfiles:
export SSL_CERT_FILE=/opt/_internal/certs.pem
# Install newest curl
build_curl $CURL_ROOT $CURL_HASH
rm -rf /usr/local/include/curl /usr/local/lib/libcurl* /usr/local/lib/pkgconfig/libcurl.pc
hash -r
curl --version
curl-config --features
# Install patchelf (latest with unreleased bug fixes)
# FIXME(typhoonzero): restore this when the link is fixed.
# curl -sLO http://nipy.bic.berkeley.edu/manylinux/patchelf-0.9njs2.tar.gz
# check_sha256sum patchelf-0.9njs2.tar.gz $PATCHELF_HASH
# tar -xzf patchelf-0.9njs2.tar.gz
# (cd patchelf-0.9njs2 && ./configure && make && make install)
# rm -rf patchelf-0.9njs2.tar.gz patchelf-0.9njs2
yum install -y patchelf
# Install latest pypi release of auditwheel
LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname ${PY35_BIN})/lib" $PY35_BIN/pip install auditwheel
ln -s $PY35_BIN/auditwheel /usr/local/bin/auditwheel
# Clean up development headers and other unnecessary stuff for
# final image
yum -y erase wireless-tools gtk2 libX11 hicolor-icon-theme \
avahi freetype bitstream-vera-fonts \
${PYTHON_COMPILE_DEPS} > /dev/null 2>&1 || true
yum -y install ${MANYLINUX1_DEPS} && yum -y clean all > /dev/null 2>&1 || true
yum list installed
# we don't need libpython*.a, and they're many megabytes
find /opt/_internal -name '*.a' -print0 | xargs -0 rm -f
# Strip what we can -- and ignore errors, because this just attempts to strip
# *everything*, including non-ELF files:
find /opt/_internal -type f -print0 \
| xargs -0 -n1 strip --strip-unneeded 2>/dev/null || true
# We do not need the Python test suites, or indeed the precompiled .pyc and
# .pyo files. Partially cribbed from:
# https://github.com/docker-library/python/blob/master/3.4/slim/Dockerfile
find /opt/_internal \
\( -type d -a -name test -o -name tests \) \
-o \( -type f -a -name '*.pyc' -o -name '*.pyo' \) \
-print0 | xargs -0 rm -f
for PYTHON in /opt/python/*/bin/python; do
# Add matching directory of libpython shared library to library lookup path
LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname $(dirname ${PYTHON}))/lib"
# Smoke test to make sure that our Pythons work, and do indeed detect as
# being manylinux compatible:
LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname $(dirname ${PYTHON}))/lib" $PYTHON $MY_DIR/manylinux1-check.py
# Make sure that SSL cert checking works
LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}:$(dirname $(dirname ${PYTHON}))/lib" $PYTHON $MY_DIR/ssl-check.py
done
# Restore LD_LIBRARY_PATH
LD_LIBRARY_PATH="${ORIGINAL_LD_LIBRARY_PATH}"
# According to ar issues: https://lists.gnu.org/archive/html/bug-binutils/2016-05/msg00211.html
# we should install new version ar with 64-bit supported here
wget https://ftp.gnu.org/gnu/binutils/binutils-2.27.tar.gz
tar xzf binutils-2.27.tar.gz && cd binutils-2.27
./configure --prefix=/opt/rh/devtoolset-2/root/usr/ --enable-64-bit-archive && make -j `nproc` && make install
cd .. && rm binutils-2.27.tar.gz && rm -rf binutils-2.27
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Helper utilities for build
PYTHON_DOWNLOAD_URL=https://www.python.org/ftp/python
# XXX: the official https server at www.openssl.org cannot be reached
# with the old versions of openssl and curl in Centos 5.11 hence the fallback
# to the ftp mirror:
# OPENSSL_DOWNLOAD_URL=ftp://ftp.openssl.org/source
OPENSSL_DOWNLOAD_URL=https://www.openssl.org/source
# Ditto the curl sources
CURL_DOWNLOAD_URL=http://curl.askapache.com/download
GET_PIP_URL=https://bootstrap.pypa.io/get-pip.py
AUTOCONF_DOWNLOAD_URL=http://ftp.gnu.org/gnu/autoconf
function check_var {
if [ -z "$1" ]; then
echo "required variable not defined"
exit 1
fi
}
function lex_pyver {
# Echoes Python version string padded with zeros
# Thus:
# 3.2.1 -> 003002001
# 3 -> 003000000
echo $1 | awk -F "." '{printf "%03d%03d%03d", $1, $2, $3}'
}
function do_cpython_build {
local py_ver=$1
check_var $py_ver
local ucs_setting=$2
check_var $ucs_setting
tar -xzf Python-$py_ver.tgz
pushd Python-$py_ver
if [ "$ucs_setting" = "none" ]; then
unicode_flags=""
dir_suffix=""
else
local unicode_flags="--enable-unicode=$ucs_setting"
local dir_suffix="-$ucs_setting"
fi
local prefix="/opt/_internal/cpython-${py_ver}${dir_suffix}"
mkdir -p ${prefix}/lib
# -Wformat added for https://bugs.python.org/issue17547 on Python 2.6
if [ $(lex_pyver $py_ver) -ge $(lex_pyver 3.6) ]; then
wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz
tar -zxf sqlite-autoconf-3250300.tar.gz
cd sqlite-autoconf-3250300
./configure --prefix=/usr/local
make -j8 && make install
cd ../ && rm sqlite-autoconf-3250300.tar.gz
fi
# NOTE --enable-shared for generating libpython shared library needed for
# linking of some of the nupic.core test executables.
if [ $(lex_pyver $py_ver) -ge $(lex_pyver 3.7) ]; then
# NOTE python 3.7 should be installed via make altinstall rather than
# make install, and we should specify the location of ssl
CFLAGS="-Wformat" ./configure --prefix=${prefix} --with-openssl=/usr/local/ssl --enable-shared $unicode_flags > /dev/null
make -j8 > /dev/null
make altinstall > /dev/null
else
LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH} CFLAGS="-Wformat" ./configure --prefix=${prefix} --enable-shared $unicode_flags > /dev/null
LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH} make -j8 > /dev/null
LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH} make install > /dev/null
fi
popd
echo "ZZZ looking for libpython"
find / -name 'libpython*.so*'
rm -rf Python-$py_ver
# Some python's install as bin/python3. Make them available as
# bin/python.
if [ -e ${prefix}/bin/python3 ]; then
ln -s python3 ${prefix}/bin/python
fi
if [ -e ${prefix}/bin/python3.7 ]; then
ln -s python3.7 ${prefix}/bin/python
fi
if [ -e ${prefix}/bin/python3.8 ]; then
ln -s python3.8 ${prefix}/bin/python
fi
# NOTE Make libpython shared library visible to python calls below
LD_LIBRARY_PATH="/usr/local/ssl/lib:${prefix}/lib" ${prefix}/bin/python get-pip.py
LD_LIBRARY_PATH="/usr/local/ssl/lib:${prefix}/lib" ${prefix}/bin/pip install wheel==0.32.2
cd /
ls ${MY_DIR}
local abi_tag=$(LD_LIBRARY_PATH="${prefix}/lib" ${prefix}/bin/python ${MY_DIR}/python-tag-abi-tag.py)
ln -s ${prefix} /opt/python/${abi_tag}
}
function build_cpython {
local py_ver=$1
check_var $py_ver
check_var $PYTHON_DOWNLOAD_URL
wget -q $PYTHON_DOWNLOAD_URL/$py_ver/Python-$py_ver.tgz
if [ $(lex_pyver $py_ver) -lt $(lex_pyver 3.3) ]; then
# NOTE We only need wide unicode for nupic.bindings wheel
do_cpython_build $py_ver ucs2
do_cpython_build $py_ver ucs4
else
do_cpython_build $py_ver none
fi
rm -f Python-$py_ver.tgz
}
function build_cpythons {
for py_ver in $@; do
check_var $GET_PIP_URL
curl -sLO $GET_PIP_URL
if [ $py_ver == "2.7.15" ]; then
curl -sLO https://bootstrap.pypa.io/2.7/get-pip.py
fi
if [ $py_ver == "3.5.1" ]; then
curl -sLO https://bootstrap.pypa.io/3.5/get-pip.py
fi
build_cpython $py_ver
done
rm get-pip.py
}
function do_openssl_build {
./config -fPIC --prefix=/usr/local/ssl > /dev/null
make > /dev/null
make install > /dev/null
}
function check_sha256sum {
local fname=$1
check_var ${fname}
local sha256=$2
check_var ${sha256}
echo "${sha256} ${fname}" > ${fname}.sha256
sha256sum -c ${fname}.sha256
rm ${fname}.sha256
}
function build_openssl {
local openssl_fname=$1
check_var ${openssl_fname}
local openssl_sha256=$2
check_var ${openssl_sha256}
check_var ${OPENSSL_DOWNLOAD_URL}
curl -sLO ${OPENSSL_DOWNLOAD_URL}/${openssl_fname}.tar.gz
check_sha256sum ${openssl_fname}.tar.gz ${openssl_sha256}
tar -xzf ${openssl_fname}.tar.gz
(cd ${openssl_fname} && do_openssl_build)
rm -rf ${openssl_fname} ${openssl_fname}.tar.gz
}
function do_curl_build {
LIBS=-ldl ./configure --with-ssl --disable-shared > /dev/null
make > /dev/null
make install > /dev/null
ln -s /usr/local/ssl/lib/libcrypto.so /usr/lib/libcrypto.so
ln -s /usr/local/ssl/lib/libssl.so /usr/lib/libssl.so
ln -s /usr/local/ssl/bin/openssl /usr/local/bin/openssl
}
function build_curl {
local curl_fname=$1
check_var ${curl_fname}
local curl_sha256=$2
check_var ${curl_sha256}
check_var ${CURL_DOWNLOAD_URL}
curl -sLO ${CURL_DOWNLOAD_URL}/${curl_fname}.tar.bz2
check_sha256sum ${curl_fname}.tar.bz2 ${curl_sha256}
tar -jxf ${curl_fname}.tar.bz2
(cd ${curl_fname} && do_curl_build)
rm -rf ${curl_fname} ${curl_fname}.tar.bz2
}
function do_standard_install {
./configure > /dev/null
make > /dev/null
make install > /dev/null
}
function build_autoconf {
local autoconf_fname=$1
check_var ${autoconf_fname}
local autoconf_sha256=$2
check_var ${autoconf_sha256}
check_var ${AUTOCONF_DOWNLOAD_URL}
curl -sLO ${AUTOCONF_DOWNLOAD_URL}/${autoconf_fname}.tar.gz
check_sha256sum ${autoconf_fname}.tar.gz ${autoconf_sha256}
tar -zxf ${autoconf_fname}.tar.gz
(cd ${autoconf_fname} && do_standard_install)
rm -rf ${autoconf_fname} ${autoconf_fname}.tar.gz
}
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
...@@ -11,39 +13,34 @@ ...@@ -11,39 +13,34 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient as Client # Top-level build script called from Dockerfile
import sys
import os
import criteo as criteo
import time
from paddle_serving_client.metric import auc
import grpc
client = Client() # Stop at any error, show all commands
client.connect(["127.0.0.1:9292"]) set -ex
batch = 1 if [ -f "/etc/redhat-release" ];then
buf_size = 100 lib_so_5=/usr/lib64/libgfortran.so.5
dataset = criteo.CriteoDataset() lib_so_6=/usr/lib64/libstdc++.so.6
dataset.setup(1000001) lib_path=/usr/lib64
test_filelists = ["{}/part-0".format(sys.argv[1])] else
reader = dataset.infer_reader(test_filelists, batch, buf_size) lib_so_5=/usr/lib/x86_64-linux-gnu/libstdc++.so.5
label_list = [] lib_so_6=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
prob_list = [] lib_path=/usr/lib/x86_64-linux-gnu
start = time.time() fi
for ei in range(10000):
data = reader().next()
feed_dict = {}
feed_dict['dense_input'] = data[0][0]
for i in range(1, 27):
feed_dict["embedding_{}.tmp_0".format(i - 1)] = data[0][i]
fetch_map = client.predict(feed=feed_dict, fetch=["prob"])
if fetch_map["serving_status_code"] == 0:
prob_list.append(fetch_map['prob'][0][1])
label_list.append(data[0][-1][0])
print(auc(label_list, prob_list)) if [ "$1" == "gcc82" ]; then
end = time.time() wget -q https://paddle-ci.gz.bcebos.com/gcc-8.2.0.tar.xz
print(end - start) tar -xvf gcc-8.2.0.tar.xz && \
cd gcc-8.2.0 && \
unset LIBRARY_PATH CPATH C_INCLUDE_PATH PKG_CONFIG_PATH CPLUS_INCLUDE_PATH INCLUDE && \
./contrib/download_prerequisites && \
cd .. && mkdir temp_gcc82 && cd temp_gcc82 && \
../gcc-8.2.0/configure --prefix=/usr/local/gcc-8.2 --enable-threads=posix --disable-checking --disable-multilib && \
make -j8 && make install
cd .. && rm -rf temp_gcc82
cp ${lib_so_6} ${lib_so_6}.bak && rm -f ${lib_so_6} &&
ln -s /usr/local/gcc-8.2/lib64/libgfortran.so.5 ${lib_so_5} && \
ln -s /usr/local/gcc-8.2/lib64/libstdc++.so.6 ${lib_so_6} && \
cp /usr/local/gcc-8.2/lib64/libstdc++.so.6.0.25 ${lib_path}
fi
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
VERSION=$(nvcc --version | grep release | grep -oEi "release ([0-9]+)\.([0-9])"| sed "s/release //")
if [ "$VERSION" == "10.0" ]; then
DEB="nccl-repo-ubuntu1604-2.4.7-ga-cuda10.0_1-1_amd64.deb"
elif [ "$VERSION" == "10.2" ] || [ "$VERSION" == "10.1" ] || [ "$VERSION" == "11.0" ]; then
if [ -f "/etc/redhat-release" ];then
rm -f /usr/local/lib/libnccl.so
wget --no-check-certificate -q https://nccl2-deb.cdn.bcebos.com/libnccl-2.7.8-1+cuda10.2.x86_64.rpm
wget --no-check-certificate -q https://nccl2-deb.cdn.bcebos.com/libnccl-devel-2.7.8-1+cuda10.2.x86_64.rpm
wget --no-check-certificate -q https://nccl2-deb.cdn.bcebos.com/libnccl-static-2.7.8-1+cuda10.2.x86_64.rpm
rpm -ivh libnccl-2.7.8-1+cuda10.2.x86_64.rpm
rpm -ivh libnccl-devel-2.7.8-1+cuda10.2.x86_64.rpm
rpm -ivh libnccl-static-2.7.8-1+cuda10.2.x86_64.rpm && rm -f libnccl-*
exit 0
fi
DEB="nccl-repo-ubuntu1604-2.7.8-ga-cuda10.2_1-1_amd64.deb"
elif [ "$VERSION" == "9.0" ]; then
DEB="nccl-repo-ubuntu1604-2.3.7-ga-cuda9.0_1-1_amd64.deb"
else
echo "nccl not found"
exit 2
fi
URL="http://nccl2-deb.cdn.bcebos.com/$DEB"
DIR="/nccl2"
mkdir -p $DIR
# we cached the nccl2 deb package in BOS, so we can download it with wget
# install nccl2: http://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#down
wget -q -O $DIR/$DEB $URL
cd $DIR && ar x $DEB && tar xf data.tar.xz
DEBS=$(find ./var/ -name "*.deb")
for sub_deb in $DEBS; do
echo $sub_deb
ar x $sub_deb && tar xf data.tar.xz
done
mv -f usr/include/nccl.h /usr/local/include/
mv -f usr/lib/x86_64-linux-gnu/libnccl* /usr/local/lib/
rm /usr/include/nccl.h
rm -rf $DIR
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
VERSION=$(nvcc --version | grep release | grep -oEi "release ([0-9]+)\.([0-9])"| sed "s/release //")
if [[ "$VERSION" == "10.1" ]];then
wget -q https://paddle-ci.gz.bcebos.com/TRT/TensorRT6-cuda10.1-cudnn7.tar.gz --no-check-certificate
tar -zxf TensorRT6-cuda10.1-cudnn7.tar.gz -C /usr/local
cp -rf /usr/local/TensorRT6-cuda10.1-cudnn7/include/* /usr/include/ && cp -rf /usr/local/TensorRT6-cuda10.1-cudnn7/lib/* /usr/lib/
rm TensorRT6-cuda10.1-cudnn7.tar.gz
elif [[ "$VERSION" == "11.0" ]];then
wget -q https://paddle-ci.cdn.bcebos.com/TRT/TensorRT-7.1.3.4.Ubuntu-16.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz --no-check-certificate
tar -zxf TensorRT-7.1.3.4.Ubuntu-16.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz -C /usr/local
cp -rf /usr/local/TensorRT-7.1.3.4/include/* /usr/include/ && cp -rf /usr/local/TensorRT-7.1.3.4/lib/* /usr/lib/
rm TensorRT-7.1.3.4.Ubuntu-16.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz
elif [[ "$VERSION" == "10.2" ]];then
wget https://paddle-ci.gz.bcebos.com/TRT/TensorRT7-cuda10.2-cudnn8.tar.gz --no-check-certificate
tar -zxf TensorRT7-cuda10.2-cudnn8.tar.gz -C /usr/local
cp -rf /usr/local/TensorRT-7.1.3.4/include/* /usr/include/ && cp -rf /usr/local/TensorRT-7.1.3.4/lib/* /usr/lib/
rm TensorRT7-cuda10.2-cudnn8.tar.gz
elif [[ "$VERSION" == "10.0" ]];then
wget -q https://paddle-ci.gz.bcebos.com/TRT/TensorRT6-cuda10.0-cudnn7.tar.gz --no-check-certificate
tar -zxf TensorRT6-cuda10.0-cudnn7.tar.gz -C /usr/local
cp -rf /usr/local/TensorRT6-cuda10.0-cudnn7/include/* /usr/include/ && cp -rf /usr/local/TensorRT6-cuda10.0-cudnn7/lib/* /usr/lib/
rm TensorRT6-cuda10.0-cudnn7.tar.gz
elif [[ "$VERSION" == "9.0" ]];then
wget -q https://paddle-ci.gz.bcebos.com/TRT/TensorRT6-cuda9.0-cudnn7.tar.gz --no-check-certificate
tar -zxf TensorRT6-cuda9.0-cudnn7.tar.gz -C /usr/local
cp -rf /usr/local/TensorRT6-cuda9.0-cudnn7/include/* /usr/include/ && cp -rf /usr/local/TensorRT6-cuda9.0-cudnn7/lib/* /usr/lib/
rm TensorRT6-cuda9.0-cudnn7.tar.gz
fi
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Logic copied from PEP 513
def is_manylinux1_compatible():
# Only Linux, and only x86-64 / i686
from distutils.util import get_platform
if get_platform() not in ["linux-x86_64", "linux-i686"]:
return False
# Check for presence of _manylinux module
try:
import _manylinux
return bool(_manylinux.manylinux1_compatible)
except (ImportError, AttributeError):
# Fall through to heuristic check below
pass
# Check glibc version. CentOS 5 uses glibc 2.5.
return have_compatible_glibc(2, 5)
def have_compatible_glibc(major, minimum_minor):
import ctypes
process_namespace = ctypes.CDLL(None)
try:
gnu_get_libc_version = process_namespace.gnu_get_libc_version
except AttributeError:
# Symbol doesn't exist -> therefore, we are not linked to
# glibc.
return False
# Call gnu_get_libc_version, which returns a string like "2.5".
gnu_get_libc_version.restype = ctypes.c_char_p
version_str = gnu_get_libc_version()
# py2 / py3 compatibility:
if not isinstance(version_str, str):
version_str = version_str.decode("ascii")
# Parse string and check against requested version.
version = [int(piece) for piece in version_str.split(".")]
assert len(version) == 2
if major != version[0]:
return False
if minimum_minor > version[1]:
return False
return True
import sys
if is_manylinux1_compatible():
print("%s is manylinux1 compatible" % (sys.executable, ))
sys.exit(0)
else:
print("%s is NOT manylinux1 compatible" % (sys.executable, ))
sys.exit(1)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -11,12 +11,11 @@ ...@@ -11,12 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# pylint: disable=doc-string-missing
#! /bin/bash
mkdir -p cube_model # Utility script to print the python tag + the abi tag for a Python
mkdir -p cube/data # See PEP 425 for exactly what these are, but an example would be:
./seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature # cp27-cp27mu
./cube/cube-builder -dict_name=test_dict -job_mode=base -last_version=0 -cur_version=0 -depend_version=0 -input_path=./cube_model -output_path=${PWD}/cube/data -shard_num=1 -only_build=false
mv ./cube/data/0_0/test_dict_part0/* ./cube/data/ from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag
cd cube && ./cube
print("{0}{1}-{2}".format(get_abbr_impl(), get_impl_ver(), get_abi_tag()))
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -11,31 +11,36 @@ ...@@ -11,31 +11,36 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# pylint: disable=doc-string-missing
import os # cf. https://github.com/pypa/manylinux/issues/53
GOOD_SSL = "https://google.com"
BAD_SSL = "https://self-signed.badssl.com"
import sys import sys
from paddle_serving_server_gpu import OpMaker
from paddle_serving_server_gpu import OpSeqMaker print("Testing SSL certificate checking for Python:", sys.version)
from paddle_serving_server_gpu import MultiLangServer as Server
if (sys.version_info[:2] < (2, 7) or sys.version_info[:2] < (3, 4)):
op_maker = OpMaker() print("This version never checks SSL certs; skipping tests")
read_op = op_maker.create('general_reader') sys.exit(0)
general_dist_kv_infer_op = op_maker.create('general_dist_kv_infer')
response_op = op_maker.create('general_response') if sys.version_info[0] >= 3:
from urllib.request import urlopen
op_seq_maker = OpSeqMaker() EXC = OSError
op_seq_maker.add_op(read_op) else:
op_seq_maker.add_op(general_dist_kv_infer_op) from urllib import urlopen
op_seq_maker.add_op(response_op) EXC = IOError
server = Server() print("Connecting to %s should work" % (GOOD_SSL, ))
server.set_op_sequence(op_seq_maker.get_op_sequence()) urlopen(GOOD_SSL)
server.set_num_threads(4) print("...it did, yay.")
server.load_model_config(sys.argv[1], sys.argv[2])
server.prepare_server( print("Connecting to %s should fail" % (BAD_SSL, ))
workdir="work_dir1", try:
port=9292, urlopen(BAD_SSL)
device="cpu", # If we get here then we failed:
cube_conf="./cube/conf/cube.conf") print("...it DIDN'T!!!!!11!!1one!")
server.run_server() sys.exit(1)
except EXC:
print("...it did, yay.")
# Locales
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8
export LANGUAGE=en_US.UTF-8
# Aliases
alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'
alias ls='ls -hFG'
alias l='ls -lF'
alias ll='ls -alF'
alias lt='ls -ltrF'
alias ll='ls -alF'
alias lls='ls -alSrF'
alias llt='ls -altrF'
# Colorize directory listing
alias ls="ls -ph --color=auto"
# Colorize grep
if echo hello|grep --color=auto l >/dev/null 2>&1; then
export GREP_OPTIONS="--color=auto" GREP_COLOR="1;31"
fi
# Shell
export CLICOLOR="1"
YELLOW="\[\033[1;33m\]"
NO_COLOUR="\[\033[0m\]"
GREEN="\[\033[1;32m\]"
WHITE="\[\033[1;37m\]"
source ~/.scripts/git-prompt.sh
export PS1="\[\033[1;33m\]λ $WHITE\h $GREEN\w$YELLOW\$(__git_ps1 \" \[\033[35m\]{\[\033[36m\]%s\[\033[35m\]}\")$NO_COLOUR "
# Git
source ~/.scripts/git-completion.sh
[user]
name =
email =
[alias]
st = status --branch --short
ci = commit
br = branch
co = checkout
df = diff
l = log --pretty=format:\"%h %ad | %s%d [%an]\" --graph --date=short
ll = log --stat
[merge]
tool = vimdiff
[core]
excludesfile = ~/.gitignore
editor = vim
[color]
branch = auto
diff = auto
status = auto
[color "branch"]
current = yellow reverse
local = yellow
remote = green
[color "diff"]
meta = yellow bold
frag = magenta bold
old = red bold
new = green bold
[color "status"]
added = yellow
changed = green
untracked = cyan
[push]
default = matching
\ No newline at end of file
#!bash
#
# bash/zsh completion support for core Git.
#
# Copyright (C) 2006,2007 Shawn O. Pearce <spearce@spearce.org>
# Conceptually based on gitcompletion (http://gitweb.hawaga.org.uk/).
# Distributed under the GNU General Public License, version 2.0.
#
# The contained completion routines provide support for completing:
#
# *) local and remote branch names
# *) local and remote tag names
# *) .git/remotes file names
# *) git 'subcommands'
# *) tree paths within 'ref:path/to/file' expressions
# *) file paths within current working directory and index
# *) common --long-options
#
# To use these routines:
#
# 1) Copy this file to somewhere (e.g. ~/.git-completion.sh).
# 2) Add the following line to your .bashrc/.zshrc:
# source ~/.git-completion.sh
# 3) Consider changing your PS1 to also show the current branch,
# see git-prompt.sh for details.
case "$COMP_WORDBREAKS" in
*:*) : great ;;
*) COMP_WORDBREAKS="$COMP_WORDBREAKS:"
esac
# __gitdir accepts 0 or 1 arguments (i.e., location)
# returns location of .git repo
__gitdir ()
{
if [ -z "${1-}" ]; then
if [ -n "${__git_dir-}" ]; then
echo "$__git_dir"
elif [ -n "${GIT_DIR-}" ]; then
test -d "${GIT_DIR-}" || return 1
echo "$GIT_DIR"
elif [ -d .git ]; then
echo .git
else
git rev-parse --git-dir 2>/dev/null
fi
elif [ -d "$1/.git" ]; then
echo "$1/.git"
else
echo "$1"
fi
}
# The following function is based on code from:
#
# bash_completion - programmable completion functions for bash 3.2+
#
# Copyright © 2006-2008, Ian Macdonald <ian@caliban.org>
# © 2009-2010, Bash Completion Maintainers
# <bash-completion-devel@lists.alioth.debian.org>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# The latest version of this software can be obtained here:
#
# http://bash-completion.alioth.debian.org/
#
# RELEASE: 2.x
# This function can be used to access a tokenized list of words
# on the command line:
#
# __git_reassemble_comp_words_by_ref '=:'
# if test "${words_[cword_-1]}" = -w
# then
# ...
# fi
#
# The argument should be a collection of characters from the list of
# word completion separators (COMP_WORDBREAKS) to treat as ordinary
# characters.
#
# This is roughly equivalent to going back in time and setting
# COMP_WORDBREAKS to exclude those characters. The intent is to
# make option types like --date=<type> and <rev>:<path> easy to
# recognize by treating each shell word as a single token.
#
# It is best not to set COMP_WORDBREAKS directly because the value is
# shared with other completion scripts. By the time the completion
# function gets called, COMP_WORDS has already been populated so local
# changes to COMP_WORDBREAKS have no effect.
#
# Output: words_, cword_, cur_.
__git_reassemble_comp_words_by_ref()
{
local exclude i j first
# Which word separators to exclude?
exclude="${1//[^$COMP_WORDBREAKS]}"
cword_=$COMP_CWORD
if [ -z "$exclude" ]; then
words_=("${COMP_WORDS[@]}")
return
fi
# List of word completion separators has shrunk;
# re-assemble words to complete.
for ((i=0, j=0; i < ${#COMP_WORDS[@]}; i++, j++)); do
# Append each nonempty word consisting of just
# word separator characters to the current word.
first=t
while
[ $i -gt 0 ] &&
[ -n "${COMP_WORDS[$i]}" ] &&
# word consists of excluded word separators
[ "${COMP_WORDS[$i]//[^$exclude]}" = "${COMP_WORDS[$i]}" ]
do
# Attach to the previous token,
# unless the previous token is the command name.
if [ $j -ge 2 ] && [ -n "$first" ]; then
((j--))
fi
first=
words_[$j]=${words_[j]}${COMP_WORDS[i]}
if [ $i = $COMP_CWORD ]; then
cword_=$j
fi
if (($i < ${#COMP_WORDS[@]} - 1)); then
((i++))
else
# Done.
return
fi
done
words_[$j]=${words_[j]}${COMP_WORDS[i]}
if [ $i = $COMP_CWORD ]; then
cword_=$j
fi
done
}
if ! type _get_comp_words_by_ref >/dev/null 2>&1; then
_get_comp_words_by_ref ()
{
local exclude cur_ words_ cword_
if [ "$1" = "-n" ]; then
exclude=$2
shift 2
fi
__git_reassemble_comp_words_by_ref "$exclude"
cur_=${words_[cword_]}
while [ $# -gt 0 ]; do
case "$1" in
cur)
cur=$cur_
;;
prev)
prev=${words_[$cword_-1]}
;;
words)
words=("${words_[@]}")
;;
cword)
cword=$cword_
;;
esac
shift
done
}
fi
__gitcompadd ()
{
local i=0
for x in $1; do
if [[ "$x" == "$3"* ]]; then
COMPREPLY[i++]="$2$x$4"
fi
done
}
# Generates completion reply, appending a space to possible completion words,
# if necessary.
# It accepts 1 to 4 arguments:
# 1: List of possible completion words.
# 2: A prefix to be added to each possible completion word (optional).
# 3: Generate possible completion matches for this word (optional).
# 4: A suffix to be appended to each possible completion word (optional).
__gitcomp ()
{
local cur_="${3-$cur}"
case "$cur_" in
--*=)
;;
*)
local c i=0 IFS=$' \t\n'
for c in $1; do
c="$c${4-}"
if [[ $c == "$cur_"* ]]; then
case $c in
--*=*|*.) ;;
*) c="$c " ;;
esac
COMPREPLY[i++]="${2-}$c"
fi
done
;;
esac
}
# Generates completion reply from newline-separated possible completion words
# by appending a space to all of them.
# It accepts 1 to 4 arguments:
# 1: List of possible completion words, separated by a single newline.
# 2: A prefix to be added to each possible completion word (optional).
# 3: Generate possible completion matches for this word (optional).
# 4: A suffix to be appended to each possible completion word instead of
# the default space (optional). If specified but empty, nothing is
# appended.
__gitcomp_nl ()
{
local IFS=$'\n'
__gitcompadd "$1" "${2-}" "${3-$cur}" "${4- }"
}
# Generates completion reply with compgen from newline-separated possible
# completion filenames.
# It accepts 1 to 3 arguments:
# 1: List of possible completion filenames, separated by a single newline.
# 2: A directory prefix to be added to each possible completion filename
# (optional).
# 3: Generate possible completion matches for this word (optional).
__gitcomp_file ()
{
local IFS=$'\n'
# XXX does not work when the directory prefix contains a tilde,
# since tilde expansion is not applied.
# This means that COMPREPLY will be empty and Bash default
# completion will be used.
__gitcompadd "$1" "${2-}" "${3-$cur}" ""
# use a hack to enable file mode in bash < 4
compopt -o filenames +o nospace 2>/dev/null ||
compgen -f /non-existing-dir/ > /dev/null
}
# Execute 'git ls-files', unless the --committable option is specified, in
# which case it runs 'git diff-index' to find out the files that can be
# committed. It return paths relative to the directory specified in the first
# argument, and using the options specified in the second argument.
__git_ls_files_helper ()
{
(
test -n "${CDPATH+set}" && unset CDPATH
cd "$1"
if [ "$2" == "--committable" ]; then
git diff-index --name-only --relative HEAD
else
# NOTE: $2 is not quoted in order to support multiple options
git ls-files --exclude-standard $2
fi
) 2>/dev/null
}
# __git_index_files accepts 1 or 2 arguments:
# 1: Options to pass to ls-files (required).
# 2: A directory path (optional).
# If provided, only files within the specified directory are listed.
# Sub directories are never recursed. Path must have a trailing
# slash.
__git_index_files ()
{
local dir="$(__gitdir)" root="${2-.}" file
if [ -d "$dir" ]; then
__git_ls_files_helper "$root" "$1" |
while read -r file; do
case "$file" in
?*/*) echo "${file%%/*}" ;;
*) echo "$file" ;;
esac
done | sort | uniq
fi
}
__git_heads ()
{
local dir="$(__gitdir)"
if [ -d "$dir" ]; then
git --git-dir="$dir" for-each-ref --format='%(refname:short)' \
refs/heads
return
fi
}
__git_tags ()
{
local dir="$(__gitdir)"
if [ -d "$dir" ]; then
git --git-dir="$dir" for-each-ref --format='%(refname:short)' \
refs/tags
return
fi
}
# __git_refs accepts 0, 1 (to pass to __gitdir), or 2 arguments
# presence of 2nd argument means use the guess heuristic employed
# by checkout for tracking branches
__git_refs ()
{
local i hash dir="$(__gitdir "${1-}")" track="${2-}"
local format refs
if [ -d "$dir" ]; then
case "$cur" in
refs|refs/*)
format="refname"
refs="${cur%/*}"
track=""
;;
*)
for i in HEAD FETCH_HEAD ORIG_HEAD MERGE_HEAD; do
if [ -e "$dir/$i" ]; then echo $i; fi
done
format="refname:short"
refs="refs/tags refs/heads refs/remotes"
;;
esac
git --git-dir="$dir" for-each-ref --format="%($format)" \
$refs
if [ -n "$track" ]; then
# employ the heuristic used by git checkout
# Try to find a remote branch that matches the completion word
# but only output if the branch name is unique
local ref entry
git --git-dir="$dir" for-each-ref --shell --format="ref=%(refname:short)" \
"refs/remotes/" | \
while read -r entry; do
eval "$entry"
ref="${ref#*/}"
if [[ "$ref" == "$cur"* ]]; then
echo "$ref"
fi
done | sort | uniq -u
fi
return
fi
case "$cur" in
refs|refs/*)
git ls-remote "$dir" "$cur*" 2>/dev/null | \
while read -r hash i; do
case "$i" in
*^{}) ;;
*) echo "$i" ;;
esac
done
;;
*)
echo "HEAD"
git for-each-ref --format="%(refname:short)" -- "refs/remotes/$dir/" | sed -e "s#^$dir/##"
;;
esac
}
# __git_refs2 requires 1 argument (to pass to __git_refs)
__git_refs2 ()
{
local i
for i in $(__git_refs "$1"); do
echo "$i:$i"
done
}
# __git_refs_remotes requires 1 argument (to pass to ls-remote)
__git_refs_remotes ()
{
local i hash
git ls-remote "$1" 'refs/heads/*' 2>/dev/null | \
while read -r hash i; do
echo "$i:refs/remotes/$1/${i#refs/heads/}"
done
}
__git_remotes ()
{
local i IFS=$'\n' d="$(__gitdir)"
test -d "$d/remotes" && ls -1 "$d/remotes"
for i in $(git --git-dir="$d" config --get-regexp 'remote\..*\.url' 2>/dev/null); do
i="${i#remote.}"
echo "${i/.url*/}"
done
}
__git_list_merge_strategies ()
{
git merge -s help 2>&1 |
sed -n -e '/[Aa]vailable strategies are: /,/^$/{
s/\.$//
s/.*://
s/^[ ]*//
s/[ ]*$//
p
}'
}
__git_merge_strategies=
# 'git merge -s help' (and thus detection of the merge strategy
# list) fails, unfortunately, if run outside of any git working
# tree. __git_merge_strategies is set to the empty string in
# that case, and the detection will be repeated the next time it
# is needed.
__git_compute_merge_strategies ()
{
test -n "$__git_merge_strategies" ||
__git_merge_strategies=$(__git_list_merge_strategies)
}
__git_complete_revlist_file ()
{
local pfx ls ref cur_="$cur"
case "$cur_" in
*..?*:*)
return
;;
?*:*)
ref="${cur_%%:*}"
cur_="${cur_#*:}"
case "$cur_" in
?*/*)
pfx="${cur_%/*}"
cur_="${cur_##*/}"
ls="$ref:$pfx"
pfx="$pfx/"
;;
*)
ls="$ref"
;;
esac
case "$COMP_WORDBREAKS" in
*:*) : great ;;
*) pfx="$ref:$pfx" ;;
esac
__gitcomp_nl "$(git --git-dir="$(__gitdir)" ls-tree "$ls" 2>/dev/null \
| sed '/^100... blob /{
s,^.* ,,
s,$, ,
}
/^120000 blob /{
s,^.* ,,
s,$, ,
}
/^040000 tree /{
s,^.* ,,
s,$,/,
}
s/^.* //')" \
"$pfx" "$cur_" ""
;;
*...*)
pfx="${cur_%...*}..."
cur_="${cur_#*...}"
__gitcomp_nl "$(__git_refs)" "$pfx" "$cur_"
;;
*..*)
pfx="${cur_%..*}.."
cur_="${cur_#*..}"
__gitcomp_nl "$(__git_refs)" "$pfx" "$cur_"
;;
*)
__gitcomp_nl "$(__git_refs)"
;;
esac
}
# __git_complete_index_file requires 1 argument:
# 1: the options to pass to ls-file
#
# The exception is --committable, which finds the files appropriate commit.
__git_complete_index_file ()
{
local pfx="" cur_="$cur"
case "$cur_" in
?*/*)
pfx="${cur_%/*}"
cur_="${cur_##*/}"
pfx="${pfx}/"
;;
esac
__gitcomp_file "$(__git_index_files "$1" "$pfx")" "$pfx" "$cur_"
}
__git_complete_file ()
{
__git_complete_revlist_file
}
__git_complete_revlist ()
{
__git_complete_revlist_file
}
__git_complete_remote_or_refspec ()
{
local cur_="$cur" cmd="${words[1]}"
local i c=2 remote="" pfx="" lhs=1 no_complete_refspec=0
if [ "$cmd" = "remote" ]; then
((c++))
fi
while [ $c -lt $cword ]; do
i="${words[c]}"
case "$i" in
--mirror) [ "$cmd" = "push" ] && no_complete_refspec=1 ;;
--all)
case "$cmd" in
push) no_complete_refspec=1 ;;
fetch)
return
;;
*) ;;
esac
;;
-*) ;;
*) remote="$i"; break ;;
esac
((c++))
done
if [ -z "$remote" ]; then
__gitcomp_nl "$(__git_remotes)"
return
fi
if [ $no_complete_refspec = 1 ]; then
return
fi
[ "$remote" = "." ] && remote=
case "$cur_" in
*:*)
case "$COMP_WORDBREAKS" in
*:*) : great ;;
*) pfx="${cur_%%:*}:" ;;
esac
cur_="${cur_#*:}"
lhs=0
;;
+*)
pfx="+"
cur_="${cur_#+}"
;;
esac
case "$cmd" in
fetch)
if [ $lhs = 1 ]; then
__gitcomp_nl "$(__git_refs2 "$remote")" "$pfx" "$cur_"
else
__gitcomp_nl "$(__git_refs)" "$pfx" "$cur_"
fi
;;
pull|remote)
if [ $lhs = 1 ]; then
__gitcomp_nl "$(__git_refs "$remote")" "$pfx" "$cur_"
else
__gitcomp_nl "$(__git_refs)" "$pfx" "$cur_"
fi
;;
push)
if [ $lhs = 1 ]; then
__gitcomp_nl "$(__git_refs)" "$pfx" "$cur_"
else
__gitcomp_nl "$(__git_refs "$remote")" "$pfx" "$cur_"
fi
;;
esac
}
__git_complete_strategy ()
{
__git_compute_merge_strategies
case "$prev" in
-s|--strategy)
__gitcomp "$__git_merge_strategies"
return 0
esac
case "$cur" in
--strategy=*)
__gitcomp "$__git_merge_strategies" "" "${cur##--strategy=}"
return 0
;;
esac
return 1
}
__git_commands () {
if test -n "${GIT_TESTING_COMMAND_COMPLETION:-}"
then
printf "%s" "${GIT_TESTING_COMMAND_COMPLETION}"
else
git help -a|egrep '^ [a-zA-Z0-9]'
fi
}
__git_list_all_commands ()
{
local i IFS=" "$'\n'
for i in $(__git_commands)
do
case $i in
*--*) : helper pattern;;
*) echo $i;;
esac
done
}
__git_all_commands=
__git_compute_all_commands ()
{
test -n "$__git_all_commands" ||
__git_all_commands=$(__git_list_all_commands)
}
__git_list_porcelain_commands ()
{
local i IFS=" "$'\n'
__git_compute_all_commands
for i in $__git_all_commands
do
case $i in
*--*) : helper pattern;;
applymbox) : ask gittus;;
applypatch) : ask gittus;;
archimport) : import;;
cat-file) : plumbing;;
check-attr) : plumbing;;
check-ignore) : plumbing;;
check-mailmap) : plumbing;;
check-ref-format) : plumbing;;
checkout-index) : plumbing;;
commit-tree) : plumbing;;
count-objects) : infrequent;;
credential-cache) : credentials helper;;
credential-store) : credentials helper;;
cvsexportcommit) : export;;
cvsimport) : import;;
cvsserver) : daemon;;
daemon) : daemon;;
diff-files) : plumbing;;
diff-index) : plumbing;;
diff-tree) : plumbing;;
fast-import) : import;;
fast-export) : export;;
fsck-objects) : plumbing;;
fetch-pack) : plumbing;;
fmt-merge-msg) : plumbing;;
for-each-ref) : plumbing;;
hash-object) : plumbing;;
http-*) : transport;;
index-pack) : plumbing;;
init-db) : deprecated;;
local-fetch) : plumbing;;
lost-found) : infrequent;;
ls-files) : plumbing;;
ls-remote) : plumbing;;
ls-tree) : plumbing;;
mailinfo) : plumbing;;
mailsplit) : plumbing;;
merge-*) : plumbing;;
mktree) : plumbing;;
mktag) : plumbing;;
pack-objects) : plumbing;;
pack-redundant) : plumbing;;
pack-refs) : plumbing;;
parse-remote) : plumbing;;
patch-id) : plumbing;;
peek-remote) : plumbing;;
prune) : plumbing;;
prune-packed) : plumbing;;
quiltimport) : import;;
read-tree) : plumbing;;
receive-pack) : plumbing;;
remote-*) : transport;;
repo-config) : deprecated;;
rerere) : plumbing;;
rev-list) : plumbing;;
rev-parse) : plumbing;;
runstatus) : plumbing;;
sh-setup) : internal;;
shell) : daemon;;
show-ref) : plumbing;;
send-pack) : plumbing;;
show-index) : plumbing;;
ssh-*) : transport;;
stripspace) : plumbing;;
symbolic-ref) : plumbing;;
tar-tree) : deprecated;;
unpack-file) : plumbing;;
unpack-objects) : plumbing;;
update-index) : plumbing;;
update-ref) : plumbing;;
update-server-info) : daemon;;
upload-archive) : plumbing;;
upload-pack) : plumbing;;
write-tree) : plumbing;;
var) : infrequent;;
verify-pack) : infrequent;;
verify-tag) : plumbing;;
*) echo $i;;
esac
done
}
__git_porcelain_commands=
__git_compute_porcelain_commands ()
{
__git_compute_all_commands
test -n "$__git_porcelain_commands" ||
__git_porcelain_commands=$(__git_list_porcelain_commands)
}
__git_pretty_aliases ()
{
local i IFS=$'\n'
for i in $(git --git-dir="$(__gitdir)" config --get-regexp "pretty\..*" 2>/dev/null); do
case "$i" in
pretty.*)
i="${i#pretty.}"
echo "${i/ */}"
;;
esac
done
}
__git_aliases ()
{
local i IFS=$'\n'
for i in $(git --git-dir="$(__gitdir)" config --get-regexp "alias\..*" 2>/dev/null); do
case "$i" in
alias.*)
i="${i#alias.}"
echo "${i/ */}"
;;
esac
done
}
# __git_aliased_command requires 1 argument
__git_aliased_command ()
{
local word cmdline=$(git --git-dir="$(__gitdir)" \
config --get "alias.$1")
for word in $cmdline; do
case "$word" in
\!gitk|gitk)
echo "gitk"
return
;;
\!*) : shell command alias ;;
-*) : option ;;
*=*) : setting env ;;
git) : git itself ;;
*)
echo "$word"
return
esac
done
}
# __git_find_on_cmdline requires 1 argument
__git_find_on_cmdline ()
{
local word subcommand c=1
while [ $c -lt $cword ]; do
word="${words[c]}"
for subcommand in $1; do
if [ "$subcommand" = "$word" ]; then
echo "$subcommand"
return
fi
done
((c++))
done
}
__git_has_doubledash ()
{
local c=1
while [ $c -lt $cword ]; do
if [ "--" = "${words[c]}" ]; then
return 0
fi
((c++))
done
return 1
}
# Try to count non option arguments passed on the command line for the
# specified git command.
# When options are used, it is necessary to use the special -- option to
# tell the implementation were non option arguments begin.
# XXX this can not be improved, since options can appear everywhere, as
# an example:
# git mv x -n y
#
# __git_count_arguments requires 1 argument: the git command executed.
__git_count_arguments ()
{
local word i c=0
# Skip "git" (first argument)
for ((i=1; i < ${#words[@]}; i++)); do
word="${words[i]}"
case "$word" in
--)
# Good; we can assume that the following are only non
# option arguments.
((c = 0))
;;
"$1")
# Skip the specified git command and discard git
# main options
((c = 0))
;;
?*)
((c++))
;;
esac
done
printf "%d" $c
}
__git_whitespacelist="nowarn warn error error-all fix"
_git_am ()
{
local dir="$(__gitdir)"
if [ -d "$dir"/rebase-apply ]; then
__gitcomp "--skip --continue --resolved --abort"
return
fi
case "$cur" in
--whitespace=*)
__gitcomp "$__git_whitespacelist" "" "${cur##--whitespace=}"
return
;;
--*)
__gitcomp "
--3way --committer-date-is-author-date --ignore-date
--ignore-whitespace --ignore-space-change
--interactive --keep --no-utf8 --signoff --utf8
--whitespace= --scissors
"
return
esac
}
_git_apply ()
{
case "$cur" in
--whitespace=*)
__gitcomp "$__git_whitespacelist" "" "${cur##--whitespace=}"
return
;;
--*)
__gitcomp "
--stat --numstat --summary --check --index
--cached --index-info --reverse --reject --unidiff-zero
--apply --no-add --exclude=
--ignore-whitespace --ignore-space-change
--whitespace= --inaccurate-eof --verbose
"
return
esac
}
_git_add ()
{
case "$cur" in
--*)
__gitcomp "
--interactive --refresh --patch --update --dry-run
--ignore-errors --intent-to-add
"
return
esac
# XXX should we check for --update and --all options ?
__git_complete_index_file "--others --modified"
}
_git_archive ()
{
case "$cur" in
--format=*)
__gitcomp "$(git archive --list)" "" "${cur##--format=}"
return
;;
--remote=*)
__gitcomp_nl "$(__git_remotes)" "" "${cur##--remote=}"
return
;;
--*)
__gitcomp "
--format= --list --verbose
--prefix= --remote= --exec=
"
return
;;
esac
__git_complete_file
}
_git_bisect ()
{
__git_has_doubledash && return
local subcommands="start bad good skip reset visualize replay log run"
local subcommand="$(__git_find_on_cmdline "$subcommands")"
if [ -z "$subcommand" ]; then
if [ -f "$(__gitdir)"/BISECT_START ]; then
__gitcomp "$subcommands"
else
__gitcomp "replay start"
fi
return
fi
case "$subcommand" in
bad|good|reset|skip|start)
__gitcomp_nl "$(__git_refs)"
;;
*)
;;
esac
}
_git_branch ()
{
local i c=1 only_local_ref="n" has_r="n"
while [ $c -lt $cword ]; do
i="${words[c]}"
case "$i" in
-d|-m) only_local_ref="y" ;;
-r) has_r="y" ;;
esac
((c++))
done
case "$cur" in
--set-upstream-to=*)
__gitcomp "$(__git_refs)" "" "${cur##--set-upstream-to=}"
;;
--*)
__gitcomp "
--color --no-color --verbose --abbrev= --no-abbrev
--track --no-track --contains --merged --no-merged
--set-upstream-to= --edit-description --list
--unset-upstream
"
;;
*)
if [ $only_local_ref = "y" -a $has_r = "n" ]; then
__gitcomp_nl "$(__git_heads)"
else
__gitcomp_nl "$(__git_refs)"
fi
;;
esac
}
_git_bundle ()
{
local cmd="${words[2]}"
case "$cword" in
2)
__gitcomp "create list-heads verify unbundle"
;;
3)
# looking for a file
;;
*)
case "$cmd" in
create)
__git_complete_revlist
;;
esac
;;
esac
}
_git_checkout ()
{
__git_has_doubledash && return
case "$cur" in
--conflict=*)
__gitcomp "diff3 merge" "" "${cur##--conflict=}"
;;
--*)
__gitcomp "
--quiet --ours --theirs --track --no-track --merge
--conflict= --orphan --patch
"
;;
*)
# check if --track, --no-track, or --no-guess was specified
# if so, disable DWIM mode
local flags="--track --no-track --no-guess" track=1
if [ -n "$(__git_find_on_cmdline "$flags")" ]; then
track=''
fi
__gitcomp_nl "$(__git_refs '' $track)"
;;
esac
}
_git_cherry ()
{
__gitcomp "$(__git_refs)"
}
_git_cherry_pick ()
{
local dir="$(__gitdir)"
if [ -f "$dir"/CHERRY_PICK_HEAD ]; then
__gitcomp "--continue --quit --abort"
return
fi
case "$cur" in
--*)
__gitcomp "--edit --no-commit --signoff --strategy= --mainline"
;;
*)
__gitcomp_nl "$(__git_refs)"
;;
esac
}
_git_clean ()
{
case "$cur" in
--*)
__gitcomp "--dry-run --quiet"
return
;;
esac
# XXX should we check for -x option ?
__git_complete_index_file "--others"
}
_git_clone ()
{
case "$cur" in
--*)
__gitcomp "
--local
--no-hardlinks
--shared
--reference
--quiet
--no-checkout
--bare
--mirror
--origin
--upload-pack
--template=
--depth
--single-branch
--branch
"
return
;;
esac
}
_git_commit ()
{
case "$prev" in
-c|-C)
__gitcomp_nl "$(__git_refs)" "" "${cur}"
return
;;
esac
case "$cur" in
--cleanup=*)
__gitcomp "default strip verbatim whitespace
" "" "${cur##--cleanup=}"
return
;;
--reuse-message=*|--reedit-message=*|\
--fixup=*|--squash=*)
__gitcomp_nl "$(__git_refs)" "" "${cur#*=}"
return
;;
--untracked-files=*)
__gitcomp "all no normal" "" "${cur##--untracked-files=}"
return
;;
--*)
__gitcomp "
--all --author= --signoff --verify --no-verify
--edit --no-edit
--amend --include --only --interactive
--dry-run --reuse-message= --reedit-message=
--reset-author --file= --message= --template=
--cleanup= --untracked-files --untracked-files=
--verbose --quiet --fixup= --squash=
"
return
esac
if git rev-parse --verify --quiet HEAD >/dev/null; then
__git_complete_index_file "--committable"
else
# This is the first commit
__git_complete_index_file "--cached"
fi
}
_git_describe ()
{
case "$cur" in
--*)
__gitcomp "
--all --tags --contains --abbrev= --candidates=
--exact-match --debug --long --match --always
"
return
esac
__gitcomp_nl "$(__git_refs)"
}
__git_diff_algorithms="myers minimal patience histogram"
__git_diff_common_options="--stat --numstat --shortstat --summary
--patch-with-stat --name-only --name-status --color
--no-color --color-words --no-renames --check
--full-index --binary --abbrev --diff-filter=
--find-copies-harder
--text --ignore-space-at-eol --ignore-space-change
--ignore-all-space --exit-code --quiet --ext-diff
--no-ext-diff
--no-prefix --src-prefix= --dst-prefix=
--inter-hunk-context=
--patience --histogram --minimal
--raw --word-diff
--dirstat --dirstat= --dirstat-by-file
--dirstat-by-file= --cumulative
--diff-algorithm=
"
_git_diff ()
{
__git_has_doubledash && return
case "$cur" in
--diff-algorithm=*)
__gitcomp "$__git_diff_algorithms" "" "${cur##--diff-algorithm=}"
return
;;
--*)
__gitcomp "--cached --staged --pickaxe-all --pickaxe-regex
--base --ours --theirs --no-index
$__git_diff_common_options
"
return
;;
esac
__git_complete_revlist_file
}
__git_mergetools_common="diffuse ecmerge emerge kdiff3 meld opendiff
tkdiff vimdiff gvimdiff xxdiff araxis p4merge bc3 codecompare
"
_git_difftool ()
{
__git_has_doubledash && return
case "$cur" in
--tool=*)
__gitcomp "$__git_mergetools_common kompare" "" "${cur##--tool=}"
return
;;
--*)
__gitcomp "--cached --staged --pickaxe-all --pickaxe-regex
--base --ours --theirs
--no-renames --diff-filter= --find-copies-harder
--relative --ignore-submodules
--tool="
return
;;
esac
__git_complete_revlist_file
}
__git_fetch_options="
--quiet --verbose --append --upload-pack --force --keep --depth=
--tags --no-tags --all --prune --dry-run
"
_git_fetch ()
{
case "$cur" in
--*)
__gitcomp "$__git_fetch_options"
return
;;
esac
__git_complete_remote_or_refspec
}
__git_format_patch_options="
--stdout --attach --no-attach --thread --thread= --no-thread
--numbered --start-number --numbered-files --keep-subject --signoff
--signature --no-signature --in-reply-to= --cc= --full-index --binary
--not --all --cover-letter --no-prefix --src-prefix= --dst-prefix=
--inline --suffix= --ignore-if-in-upstream --subject-prefix=
--output-directory --reroll-count --to= --quiet --notes
"
_git_format_patch ()
{
case "$cur" in
--thread=*)
__gitcomp "
deep shallow
" "" "${cur##--thread=}"
return
;;
--*)
__gitcomp "$__git_format_patch_options"
return
;;
esac
__git_complete_revlist
}
_git_fsck ()
{
case "$cur" in
--*)
__gitcomp "
--tags --root --unreachable --cache --no-reflogs --full
--strict --verbose --lost-found
"
return
;;
esac
}
_git_gc ()
{
case "$cur" in
--*)
__gitcomp "--prune --aggressive"
return
;;
esac
}
_git_gitk ()
{
_gitk
}
__git_match_ctag() {
awk "/^${1////\\/}/ { print \$1 }" "$2"
}
_git_grep ()
{
__git_has_doubledash && return
case "$cur" in
--*)
__gitcomp "
--cached
--text --ignore-case --word-regexp --invert-match
--full-name --line-number
--extended-regexp --basic-regexp --fixed-strings
--perl-regexp
--files-with-matches --name-only
--files-without-match
--max-depth
--count
--and --or --not --all-match
"
return
;;
esac
case "$cword,$prev" in
2,*|*,-*)
if test -r tags; then
__gitcomp_nl "$(__git_match_ctag "$cur" tags)"
return
fi
;;
esac
__gitcomp_nl "$(__git_refs)"
}
_git_help ()
{
case "$cur" in
--*)
__gitcomp "--all --info --man --web"
return
;;
esac
__git_compute_all_commands
__gitcomp "$__git_all_commands $(__git_aliases)
attributes cli core-tutorial cvs-migration
diffcore gitk glossary hooks ignore modules
namespaces repository-layout tutorial tutorial-2
workflows
"
}
_git_init ()
{
case "$cur" in
--shared=*)
__gitcomp "
false true umask group all world everybody
" "" "${cur##--shared=}"
return
;;
--*)
__gitcomp "--quiet --bare --template= --shared --shared="
return
;;
esac
}
_git_ls_files ()
{
case "$cur" in
--*)
__gitcomp "--cached --deleted --modified --others --ignored
--stage --directory --no-empty-directory --unmerged
--killed --exclude= --exclude-from=
--exclude-per-directory= --exclude-standard
--error-unmatch --with-tree= --full-name
--abbrev --ignored --exclude-per-directory
"
return
;;
esac
# XXX ignore options like --modified and always suggest all cached
# files.
__git_complete_index_file "--cached"
}
_git_ls_remote ()
{
__gitcomp_nl "$(__git_remotes)"
}
_git_ls_tree ()
{
__git_complete_file
}
# Options that go well for log, shortlog and gitk
__git_log_common_options="
--not --all
--branches --tags --remotes
--first-parent --merges --no-merges
--max-count=
--max-age= --since= --after=
--min-age= --until= --before=
--min-parents= --max-parents=
--no-min-parents --no-max-parents
"
# Options that go well for log and gitk (not shortlog)
__git_log_gitk_options="
--dense --sparse --full-history
--simplify-merges --simplify-by-decoration
--left-right --notes --no-notes
"
# Options that go well for log and shortlog (not gitk)
__git_log_shortlog_options="
--author= --committer= --grep=
--all-match
"
__git_log_pretty_formats="oneline short medium full fuller email raw format:"
__git_log_date_formats="relative iso8601 rfc2822 short local default raw"
_git_log ()
{
__git_has_doubledash && return
local g="$(git rev-parse --git-dir 2>/dev/null)"
local merge=""
if [ -f "$g/MERGE_HEAD" ]; then
merge="--merge"
fi
case "$cur" in
--pretty=*|--format=*)
__gitcomp "$__git_log_pretty_formats $(__git_pretty_aliases)
" "" "${cur#*=}"
return
;;
--date=*)
__gitcomp "$__git_log_date_formats" "" "${cur##--date=}"
return
;;
--decorate=*)
__gitcomp "long short" "" "${cur##--decorate=}"
return
;;
--*)
__gitcomp "
$__git_log_common_options
$__git_log_shortlog_options
$__git_log_gitk_options
--root --topo-order --date-order --reverse
--follow --full-diff
--abbrev-commit --abbrev=
--relative-date --date=
--pretty= --format= --oneline
--cherry-pick
--graph
--decorate --decorate=
--walk-reflogs
--parents --children
$merge
$__git_diff_common_options
--pickaxe-all --pickaxe-regex
"
return
;;
esac
__git_complete_revlist
}
__git_merge_options="
--no-commit --no-stat --log --no-log --squash --strategy
--commit --stat --no-squash --ff --no-ff --ff-only --edit --no-edit
"
_git_merge ()
{
__git_complete_strategy && return
case "$cur" in
--*)
__gitcomp "$__git_merge_options"
return
esac
__gitcomp_nl "$(__git_refs)"
}
_git_mergetool ()
{
case "$cur" in
--tool=*)
__gitcomp "$__git_mergetools_common tortoisemerge" "" "${cur##--tool=}"
return
;;
--*)
__gitcomp "--tool="
return
;;
esac
}
_git_merge_base ()
{
__gitcomp_nl "$(__git_refs)"
}
_git_mv ()
{
case "$cur" in
--*)
__gitcomp "--dry-run"
return
;;
esac
if [ $(__git_count_arguments "mv") -gt 0 ]; then
# We need to show both cached and untracked files (including
# empty directories) since this may not be the last argument.
__git_complete_index_file "--cached --others --directory"
else
__git_complete_index_file "--cached"
fi
}
_git_name_rev ()
{
__gitcomp "--tags --all --stdin"
}
_git_notes ()
{
local subcommands='add append copy edit list prune remove show'
local subcommand="$(__git_find_on_cmdline "$subcommands")"
case "$subcommand,$cur" in
,--*)
__gitcomp '--ref'
;;
,*)
case "$prev" in
--ref)
__gitcomp_nl "$(__git_refs)"
;;
*)
__gitcomp "$subcommands --ref"
;;
esac
;;
add,--reuse-message=*|append,--reuse-message=*|\
add,--reedit-message=*|append,--reedit-message=*)
__gitcomp_nl "$(__git_refs)" "" "${cur#*=}"
;;
add,--*|append,--*)
__gitcomp '--file= --message= --reedit-message=
--reuse-message='
;;
copy,--*)
__gitcomp '--stdin'
;;
prune,--*)
__gitcomp '--dry-run --verbose'
;;
prune,*)
;;
*)
case "$prev" in
-m|-F)
;;
*)
__gitcomp_nl "$(__git_refs)"
;;
esac
;;
esac
}
_git_pull ()
{
__git_complete_strategy && return
case "$cur" in
--*)
__gitcomp "
--rebase --no-rebase
$__git_merge_options
$__git_fetch_options
"
return
;;
esac
__git_complete_remote_or_refspec
}
_git_push ()
{
case "$prev" in
--repo)
__gitcomp_nl "$(__git_remotes)"
return
esac
case "$cur" in
--repo=*)
__gitcomp_nl "$(__git_remotes)" "" "${cur##--repo=}"
return
;;
--*)
__gitcomp "
--all --mirror --tags --dry-run --force --verbose
--receive-pack= --repo= --set-upstream
"
return
;;
esac
__git_complete_remote_or_refspec
}
_git_rebase ()
{
local dir="$(__gitdir)"
if [ -d "$dir"/rebase-apply ] || [ -d "$dir"/rebase-merge ]; then
__gitcomp "--continue --skip --abort"
return
fi
__git_complete_strategy && return
case "$cur" in
--whitespace=*)
__gitcomp "$__git_whitespacelist" "" "${cur##--whitespace=}"
return
;;
--*)
__gitcomp "
--onto --merge --strategy --interactive
--preserve-merges --stat --no-stat
--committer-date-is-author-date --ignore-date
--ignore-whitespace --whitespace=
--autosquash
"
return
esac
__gitcomp_nl "$(__git_refs)"
}
_git_reflog ()
{
local subcommands="show delete expire"
local subcommand="$(__git_find_on_cmdline "$subcommands")"
if [ -z "$subcommand" ]; then
__gitcomp "$subcommands"
else
__gitcomp_nl "$(__git_refs)"
fi
}
__git_send_email_confirm_options="always never auto cc compose"
__git_send_email_suppresscc_options="author self cc bodycc sob cccmd body all"
_git_send_email ()
{
case "$cur" in
--confirm=*)
__gitcomp "
$__git_send_email_confirm_options
" "" "${cur##--confirm=}"
return
;;
--suppress-cc=*)
__gitcomp "
$__git_send_email_suppresscc_options
" "" "${cur##--suppress-cc=}"
return
;;
--smtp-encryption=*)
__gitcomp "ssl tls" "" "${cur##--smtp-encryption=}"
return
;;
--thread=*)
__gitcomp "
deep shallow
" "" "${cur##--thread=}"
return
;;
--*)
__gitcomp "--annotate --bcc --cc --cc-cmd --chain-reply-to
--compose --confirm= --dry-run --envelope-sender
--from --identity
--in-reply-to --no-chain-reply-to --no-signed-off-by-cc
--no-suppress-from --no-thread --quiet
--signed-off-by-cc --smtp-pass --smtp-server
--smtp-server-port --smtp-encryption= --smtp-user
--subject --suppress-cc= --suppress-from --thread --to
--validate --no-validate
$__git_format_patch_options"
return
;;
esac
__git_complete_revlist
}
_git_stage ()
{
_git_add
}
__git_config_get_set_variables ()
{
local prevword word config_file= c=$cword
while [ $c -gt 1 ]; do
word="${words[c]}"
case "$word" in
--system|--global|--local|--file=*)
config_file="$word"
break
;;
-f|--file)
config_file="$word $prevword"
break
;;
esac
prevword=$word
c=$((--c))
done
git --git-dir="$(__gitdir)" config $config_file --list 2>/dev/null |
while read -r line
do
case "$line" in
*.*=*)
echo "${line/=*/}"
;;
esac
done
}
_git_config ()
{
case "$prev" in
branch.*.remote|branch.*.pushremote)
__gitcomp_nl "$(__git_remotes)"
return
;;
branch.*.merge)
__gitcomp_nl "$(__git_refs)"
return
;;
branch.*.rebase)
__gitcomp "false true"
return
;;
remote.pushdefault)
__gitcomp_nl "$(__git_remotes)"
return
;;
remote.*.fetch)
local remote="${prev#remote.}"
remote="${remote%.fetch}"
if [ -z "$cur" ]; then
__gitcomp_nl "refs/heads/" "" "" ""
return
fi
__gitcomp_nl "$(__git_refs_remotes "$remote")"
return
;;
remote.*.push)
local remote="${prev#remote.}"
remote="${remote%.push}"
__gitcomp_nl "$(git --git-dir="$(__gitdir)" \
for-each-ref --format='%(refname):%(refname)' \
refs/heads)"
return
;;
pull.twohead|pull.octopus)
__git_compute_merge_strategies
__gitcomp "$__git_merge_strategies"
return
;;
color.branch|color.diff|color.interactive|\
color.showbranch|color.status|color.ui)
__gitcomp "always never auto"
return
;;
color.pager)
__gitcomp "false true"
return
;;
color.*.*)
__gitcomp "
normal black red green yellow blue magenta cyan white
bold dim ul blink reverse
"
return
;;
diff.submodule)
__gitcomp "log short"
return
;;
help.format)
__gitcomp "man info web html"
return
;;
log.date)
__gitcomp "$__git_log_date_formats"
return
;;
sendemail.aliasesfiletype)
__gitcomp "mutt mailrc pine elm gnus"
return
;;
sendemail.confirm)
__gitcomp "$__git_send_email_confirm_options"
return
;;
sendemail.suppresscc)
__gitcomp "$__git_send_email_suppresscc_options"
return
;;
--get|--get-all|--unset|--unset-all)
__gitcomp_nl "$(__git_config_get_set_variables)"
return
;;
*.*)
return
;;
esac
case "$cur" in
--*)
__gitcomp "
--system --global --local --file=
--list --replace-all
--get --get-all --get-regexp
--add --unset --unset-all
--remove-section --rename-section
"
return
;;
branch.*.*)
local pfx="${cur%.*}." cur_="${cur##*.}"
__gitcomp "remote pushremote merge mergeoptions rebase" "$pfx" "$cur_"
return
;;
branch.*)
local pfx="${cur%.*}." cur_="${cur#*.}"
__gitcomp_nl "$(__git_heads)" "$pfx" "$cur_" "."
return
;;
guitool.*.*)
local pfx="${cur%.*}." cur_="${cur##*.}"
__gitcomp "
argprompt cmd confirm needsfile noconsole norescan
prompt revprompt revunmerged title
" "$pfx" "$cur_"
return
;;
difftool.*.*)
local pfx="${cur%.*}." cur_="${cur##*.}"
__gitcomp "cmd path" "$pfx" "$cur_"
return
;;
man.*.*)
local pfx="${cur%.*}." cur_="${cur##*.}"
__gitcomp "cmd path" "$pfx" "$cur_"
return
;;
mergetool.*.*)
local pfx="${cur%.*}." cur_="${cur##*.}"
__gitcomp "cmd path trustExitCode" "$pfx" "$cur_"
return
;;
pager.*)
local pfx="${cur%.*}." cur_="${cur#*.}"
__git_compute_all_commands
__gitcomp_nl "$__git_all_commands" "$pfx" "$cur_"
return
;;
remote.*.*)
local pfx="${cur%.*}." cur_="${cur##*.}"
__gitcomp "
url proxy fetch push mirror skipDefaultUpdate
receivepack uploadpack tagopt pushurl
" "$pfx" "$cur_"
return
;;
remote.*)
local pfx="${cur%.*}." cur_="${cur#*.}"
__gitcomp_nl "$(__git_remotes)" "$pfx" "$cur_" "."
return
;;
url.*.*)
local pfx="${cur%.*}." cur_="${cur##*.}"
__gitcomp "insteadOf pushInsteadOf" "$pfx" "$cur_"
return
;;
esac
__gitcomp "
add.ignoreErrors
advice.commitBeforeMerge
advice.detachedHead
advice.implicitIdentity
advice.pushNonFastForward
advice.resolveConflict
advice.statusHints
alias.
am.keepcr
apply.ignorewhitespace
apply.whitespace
branch.autosetupmerge
branch.autosetuprebase
browser.
clean.requireForce
color.branch
color.branch.current
color.branch.local
color.branch.plain
color.branch.remote
color.decorate.HEAD
color.decorate.branch
color.decorate.remoteBranch
color.decorate.stash
color.decorate.tag
color.diff
color.diff.commit
color.diff.frag
color.diff.func
color.diff.meta
color.diff.new
color.diff.old
color.diff.plain
color.diff.whitespace
color.grep
color.grep.context
color.grep.filename
color.grep.function
color.grep.linenumber
color.grep.match
color.grep.selected
color.grep.separator
color.interactive
color.interactive.error
color.interactive.header
color.interactive.help
color.interactive.prompt
color.pager
color.showbranch
color.status
color.status.added
color.status.changed
color.status.header
color.status.nobranch
color.status.untracked
color.status.updated
color.ui
commit.status
commit.template
core.abbrev
core.askpass
core.attributesfile
core.autocrlf
core.bare
core.bigFileThreshold
core.compression
core.createObject
core.deltaBaseCacheLimit
core.editor
core.eol
core.excludesfile
core.fileMode
core.fsyncobjectfiles
core.gitProxy
core.ignoreStat
core.ignorecase
core.logAllRefUpdates
core.loosecompression
core.notesRef
core.packedGitLimit
core.packedGitWindowSize
core.pager
core.preferSymlinkRefs
core.preloadindex
core.quotepath
core.repositoryFormatVersion
core.safecrlf
core.sharedRepository
core.sparseCheckout
core.symlinks
core.trustctime
core.warnAmbiguousRefs
core.whitespace
core.worktree
diff.autorefreshindex
diff.external
diff.ignoreSubmodules
diff.mnemonicprefix
diff.noprefix
diff.renameLimit
diff.renames
diff.statGraphWidth
diff.submodule
diff.suppressBlankEmpty
diff.tool
diff.wordRegex
diff.algorithm
difftool.
difftool.prompt
fetch.recurseSubmodules
fetch.unpackLimit
format.attach
format.cc
format.headers
format.numbered
format.pretty
format.signature
format.signoff
format.subjectprefix
format.suffix
format.thread
format.to
gc.
gc.aggressiveWindow
gc.auto
gc.autopacklimit
gc.packrefs
gc.pruneexpire
gc.reflogexpire
gc.reflogexpireunreachable
gc.rerereresolved
gc.rerereunresolved
gitcvs.allbinary
gitcvs.commitmsgannotation
gitcvs.dbTableNamePrefix
gitcvs.dbdriver
gitcvs.dbname
gitcvs.dbpass
gitcvs.dbuser
gitcvs.enabled
gitcvs.logfile
gitcvs.usecrlfattr
guitool.
gui.blamehistoryctx
gui.commitmsgwidth
gui.copyblamethreshold
gui.diffcontext
gui.encoding
gui.fastcopyblame
gui.matchtrackingbranch
gui.newbranchtemplate
gui.pruneduringfetch
gui.spellingdictionary
gui.trustmtime
help.autocorrect
help.browser
help.format
http.lowSpeedLimit
http.lowSpeedTime
http.maxRequests
http.minSessions
http.noEPSV
http.postBuffer
http.proxy
http.sslCAInfo
http.sslCAPath
http.sslCert
http.sslCertPasswordProtected
http.sslKey
http.sslVerify
http.useragent
i18n.commitEncoding
i18n.logOutputEncoding
imap.authMethod
imap.folder
imap.host
imap.pass
imap.port
imap.preformattedHTML
imap.sslverify
imap.tunnel
imap.user
init.templatedir
instaweb.browser
instaweb.httpd
instaweb.local
instaweb.modulepath
instaweb.port
interactive.singlekey
log.date
log.decorate
log.showroot
mailmap.file
man.
man.viewer
merge.
merge.conflictstyle
merge.log
merge.renameLimit
merge.renormalize
merge.stat
merge.tool
merge.verbosity
mergetool.
mergetool.keepBackup
mergetool.keepTemporaries
mergetool.prompt
notes.displayRef
notes.rewrite.
notes.rewrite.amend
notes.rewrite.rebase
notes.rewriteMode
notes.rewriteRef
pack.compression
pack.deltaCacheLimit
pack.deltaCacheSize
pack.depth
pack.indexVersion
pack.packSizeLimit
pack.threads
pack.window
pack.windowMemory
pager.
pretty.
pull.octopus
pull.twohead
push.default
rebase.autosquash
rebase.stat
receive.autogc
receive.denyCurrentBranch
receive.denyDeleteCurrent
receive.denyDeletes
receive.denyNonFastForwards
receive.fsckObjects
receive.unpackLimit
receive.updateserverinfo
remote.pushdefault
remotes.
repack.usedeltabaseoffset
rerere.autoupdate
rerere.enabled
sendemail.
sendemail.aliasesfile
sendemail.aliasfiletype
sendemail.bcc
sendemail.cc
sendemail.cccmd
sendemail.chainreplyto
sendemail.confirm
sendemail.envelopesender
sendemail.from
sendemail.identity
sendemail.multiedit
sendemail.signedoffbycc
sendemail.smtpdomain
sendemail.smtpencryption
sendemail.smtppass
sendemail.smtpserver
sendemail.smtpserveroption
sendemail.smtpserverport
sendemail.smtpuser
sendemail.suppresscc
sendemail.suppressfrom
sendemail.thread
sendemail.to
sendemail.validate
showbranch.default
status.relativePaths
status.showUntrackedFiles
status.submodulesummary
submodule.
tar.umask
transfer.unpackLimit
url.
user.email
user.name
user.signingkey
web.browser
branch. remote.
"
}
_git_remote ()
{
local subcommands="add rename remove set-head set-branches set-url show prune update"
local subcommand="$(__git_find_on_cmdline "$subcommands")"
if [ -z "$subcommand" ]; then
__gitcomp "$subcommands"
return
fi
case "$subcommand" in
rename|remove|set-url|show|prune)
__gitcomp_nl "$(__git_remotes)"
;;
set-head|set-branches)
__git_complete_remote_or_refspec
;;
update)
local i c='' IFS=$'\n'
for i in $(git --git-dir="$(__gitdir)" config --get-regexp "remotes\..*" 2>/dev/null); do
i="${i#remotes.}"
c="$c ${i/ */}"
done
__gitcomp "$c"
;;
*)
;;
esac
}
_git_replace ()
{
__gitcomp_nl "$(__git_refs)"
}
_git_reset ()
{
__git_has_doubledash && return
case "$cur" in
--*)
__gitcomp "--merge --mixed --hard --soft --patch"
return
;;
esac
__gitcomp_nl "$(__git_refs)"
}
_git_revert ()
{
case "$cur" in
--*)
__gitcomp "--edit --mainline --no-edit --no-commit --signoff"
return
;;
esac
__gitcomp_nl "$(__git_refs)"
}
_git_rm ()
{
case "$cur" in
--*)
__gitcomp "--cached --dry-run --ignore-unmatch --quiet"
return
;;
esac
__git_complete_index_file "--cached"
}
_git_shortlog ()
{
__git_has_doubledash && return
case "$cur" in
--*)
__gitcomp "
$__git_log_common_options
$__git_log_shortlog_options
--numbered --summary
"
return
;;
esac
__git_complete_revlist
}
_git_show ()
{
__git_has_doubledash && return
case "$cur" in
--pretty=*|--format=*)
__gitcomp "$__git_log_pretty_formats $(__git_pretty_aliases)
" "" "${cur#*=}"
return
;;
--diff-algorithm=*)
__gitcomp "$__git_diff_algorithms" "" "${cur##--diff-algorithm=}"
return
;;
--*)
__gitcomp "--pretty= --format= --abbrev-commit --oneline
$__git_diff_common_options
"
return
;;
esac
__git_complete_revlist_file
}
_git_show_branch ()
{
case "$cur" in
--*)
__gitcomp "
--all --remotes --topo-order --current --more=
--list --independent --merge-base --no-name
--color --no-color
--sha1-name --sparse --topics --reflog
"
return
;;
esac
__git_complete_revlist
}
_git_stash ()
{
local save_opts='--keep-index --no-keep-index --quiet --patch'
local subcommands='save list show apply clear drop pop create branch'
local subcommand="$(__git_find_on_cmdline "$subcommands")"
if [ -z "$subcommand" ]; then
case "$cur" in
--*)
__gitcomp "$save_opts"
;;
*)
if [ -z "$(__git_find_on_cmdline "$save_opts")" ]; then
__gitcomp "$subcommands"
fi
;;
esac
else
case "$subcommand,$cur" in
save,--*)
__gitcomp "$save_opts"
;;
apply,--*|pop,--*)
__gitcomp "--index --quiet"
;;
show,--*|drop,--*|branch,--*)
;;
show,*|apply,*|drop,*|pop,*|branch,*)
__gitcomp_nl "$(git --git-dir="$(__gitdir)" stash list \
| sed -n -e 's/:.*//p')"
;;
*)
;;
esac
fi
}
_git_submodule ()
{
__git_has_doubledash && return
local subcommands="add status init deinit update summary foreach sync"
if [ -z "$(__git_find_on_cmdline "$subcommands")" ]; then
case "$cur" in
--*)
__gitcomp "--quiet --cached"
;;
*)
__gitcomp "$subcommands"
;;
esac
return
fi
}
_git_svn ()
{
local subcommands="
init fetch clone rebase dcommit log find-rev
set-tree commit-diff info create-ignore propget
proplist show-ignore show-externals branch tag blame
migrate mkdirs reset gc
"
local subcommand="$(__git_find_on_cmdline "$subcommands")"
if [ -z "$subcommand" ]; then
__gitcomp "$subcommands"
else
local remote_opts="--username= --config-dir= --no-auth-cache"
local fc_opts="
--follow-parent --authors-file= --repack=
--no-metadata --use-svm-props --use-svnsync-props
--log-window-size= --no-checkout --quiet
--repack-flags --use-log-author --localtime
--ignore-paths= --include-paths= $remote_opts
"
local init_opts="
--template= --shared= --trunk= --tags=
--branches= --stdlayout --minimize-url
--no-metadata --use-svm-props --use-svnsync-props
--rewrite-root= --prefix= --use-log-author
--add-author-from $remote_opts
"
local cmt_opts="
--edit --rmdir --find-copies-harder --copy-similarity=
"
case "$subcommand,$cur" in
fetch,--*)
__gitcomp "--revision= --fetch-all $fc_opts"
;;
clone,--*)
__gitcomp "--revision= $fc_opts $init_opts"
;;
init,--*)
__gitcomp "$init_opts"
;;
dcommit,--*)
__gitcomp "
--merge --strategy= --verbose --dry-run
--fetch-all --no-rebase --commit-url
--revision --interactive $cmt_opts $fc_opts
"
;;
set-tree,--*)
__gitcomp "--stdin $cmt_opts $fc_opts"
;;
create-ignore,--*|propget,--*|proplist,--*|show-ignore,--*|\
show-externals,--*|mkdirs,--*)
__gitcomp "--revision="
;;
log,--*)
__gitcomp "
--limit= --revision= --verbose --incremental
--oneline --show-commit --non-recursive
--authors-file= --color
"
;;
rebase,--*)
__gitcomp "
--merge --verbose --strategy= --local
--fetch-all --dry-run $fc_opts
"
;;
commit-diff,--*)
__gitcomp "--message= --file= --revision= $cmt_opts"
;;
info,--*)
__gitcomp "--url"
;;
branch,--*)
__gitcomp "--dry-run --message --tag"
;;
tag,--*)
__gitcomp "--dry-run --message"
;;
blame,--*)
__gitcomp "--git-format"
;;
migrate,--*)
__gitcomp "
--config-dir= --ignore-paths= --minimize
--no-auth-cache --username=
"
;;
reset,--*)
__gitcomp "--revision= --parent"
;;
*)
;;
esac
fi
}
_git_tag ()
{
local i c=1 f=0
while [ $c -lt $cword ]; do
i="${words[c]}"
case "$i" in
-d|-v)
__gitcomp_nl "$(__git_tags)"
return
;;
-f)
f=1
;;
esac
((c++))
done
case "$prev" in
-m|-F)
;;
-*|tag)
if [ $f = 1 ]; then
__gitcomp_nl "$(__git_tags)"
fi
;;
*)
__gitcomp_nl "$(__git_refs)"
;;
esac
}
_git_whatchanged ()
{
_git_log
}
__git_main ()
{
local i c=1 command __git_dir
while [ $c -lt $cword ]; do
i="${words[c]}"
case "$i" in
--git-dir=*) __git_dir="${i#--git-dir=}" ;;
--git-dir) ((c++)) ; __git_dir="${words[c]}" ;;
--bare) __git_dir="." ;;
--help) command="help"; break ;;
-c|--work-tree|--namespace) ((c++)) ;;
-*) ;;
*) command="$i"; break ;;
esac
((c++))
done
if [ -z "$command" ]; then
case "$cur" in
--*) __gitcomp "
--paginate
--no-pager
--git-dir=
--bare
--version
--exec-path
--exec-path=
--html-path
--man-path
--info-path
--work-tree=
--namespace=
--no-replace-objects
--help
"
;;
*) __git_compute_porcelain_commands
__gitcomp "$__git_porcelain_commands $(__git_aliases)" ;;
esac
return
fi
local completion_func="_git_${command//-/_}"
declare -f $completion_func >/dev/null && $completion_func && return
local expansion=$(__git_aliased_command "$command")
if [ -n "$expansion" ]; then
completion_func="_git_${expansion//-/_}"
declare -f $completion_func >/dev/null && $completion_func
fi
}
__gitk_main ()
{
__git_has_doubledash && return
local g="$(__gitdir)"
local merge=""
if [ -f "$g/MERGE_HEAD" ]; then
merge="--merge"
fi
case "$cur" in
--*)
__gitcomp "
$__git_log_common_options
$__git_log_gitk_options
$merge
"
return
;;
esac
__git_complete_revlist
}
if [[ -n ${ZSH_VERSION-} ]]; then
echo "WARNING: this script is deprecated, please see git-completion.zsh" 1>&2
autoload -U +X compinit && compinit
__gitcomp ()
{
emulate -L zsh
local cur_="${3-$cur}"
case "$cur_" in
--*=)
;;
*)
local c IFS=$' \t\n'
local -a array
for c in ${=1}; do
c="$c${4-}"
case $c in
--*=*|*.) ;;
*) c="$c " ;;
esac
array[$#array+1]="$c"
done
compset -P '*[=:]'
compadd -Q -S '' -p "${2-}" -a -- array && _ret=0
;;
esac
}
__gitcomp_nl ()
{
emulate -L zsh
local IFS=$'\n'
compset -P '*[=:]'
compadd -Q -S "${4- }" -p "${2-}" -- ${=1} && _ret=0
}
__gitcomp_file ()
{
emulate -L zsh
local IFS=$'\n'
compset -P '*[=:]'
compadd -Q -p "${2-}" -f -- ${=1} && _ret=0
}
_git ()
{
local _ret=1 cur cword prev
cur=${words[CURRENT]}
prev=${words[CURRENT-1]}
let cword=CURRENT-1
emulate ksh -c __${service}_main
let _ret && _default && _ret=0
return _ret
}
compdef _git git gitk
return
fi
__git_func_wrap ()
{
local cur words cword prev
_get_comp_words_by_ref -n =: cur words cword prev
$1
}
# Setup completion for certain functions defined above by setting common
# variables and workarounds.
# This is NOT a public function; use at your own risk.
__git_complete ()
{
local wrapper="__git_wrap${2}"
eval "$wrapper () { __git_func_wrap $2 ; }"
complete -o bashdefault -o default -o nospace -F $wrapper $1 2>/dev/null \
|| complete -o default -o nospace -F $wrapper $1
}
# wrapper for backwards compatibility
_git ()
{
__git_wrap__git_main
}
# wrapper for backwards compatibility
_gitk ()
{
__git_wrap__gitk_main
}
__git_complete git __git_main
__git_complete gitk __gitk_main
# The following are necessary only for Cygwin, and only are needed
# when the user has tab-completed the executable name and consequently
# included the '.exe' suffix.
#
if [ Cygwin = "$(uname -o 2>/dev/null)" ]; then
__git_complete git.exe __git_main
fi
# bash/zsh git prompt support
#
# Copyright (C) 2006,2007 Shawn O. Pearce <spearce@spearce.org>
# Distributed under the GNU General Public License, version 2.0.
#
# This script allows you to see repository status in your prompt.
#
# To enable:
#
# 1) Copy this file to somewhere (e.g. ~/.git-prompt.sh).
# 2) Add the following line to your .bashrc/.zshrc:
# source ~/.git-prompt.sh
# 3a) Change your PS1 to call __git_ps1 as
# command-substitution:
# Bash: PS1='[\u@\h \W$(__git_ps1 " (%s)")]\$ '
# ZSH: setopt PROMPT_SUBST ; PS1='[%n@%m %c$(__git_ps1 " (%s)")]\$ '
# the optional argument will be used as format string.
# 3b) Alternatively, for a slightly faster prompt, __git_ps1 can
# be used for PROMPT_COMMAND in Bash or for precmd() in Zsh
# with two parameters, <pre> and <post>, which are strings
# you would put in $PS1 before and after the status string
# generated by the git-prompt machinery. e.g.
# Bash: PROMPT_COMMAND='__git_ps1 "\u@\h:\w" "\\\$ "'
# will show username, at-sign, host, colon, cwd, then
# various status string, followed by dollar and SP, as
# your prompt.
# ZSH: precmd () { __git_ps1 "%n" ":%~$ " "|%s" }
# will show username, pipe, then various status string,
# followed by colon, cwd, dollar and SP, as your prompt.
# Optionally, you can supply a third argument with a printf
# format string to finetune the output of the branch status
#
# The repository status will be displayed only if you are currently in a
# git repository. The %s token is the placeholder for the shown status.
#
# The prompt status always includes the current branch name.
#
# In addition, if you set GIT_PS1_SHOWDIRTYSTATE to a nonempty value,
# unstaged (*) and staged (+) changes will be shown next to the branch
# name. You can configure this per-repository with the
# bash.showDirtyState variable, which defaults to true once
# GIT_PS1_SHOWDIRTYSTATE is enabled.
#
# You can also see if currently something is stashed, by setting
# GIT_PS1_SHOWSTASHSTATE to a nonempty value. If something is stashed,
# then a '$' will be shown next to the branch name.
#
# If you would like to see if there're untracked files, then you can set
# GIT_PS1_SHOWUNTRACKEDFILES to a nonempty value. If there're untracked
# files, then a '%' will be shown next to the branch name. You can
# configure this per-repository with the bash.showUntrackedFiles
# variable, which defaults to true once GIT_PS1_SHOWUNTRACKEDFILES is
# enabled.
#
# If you would like to see the difference between HEAD and its upstream,
# set GIT_PS1_SHOWUPSTREAM="auto". A "<" indicates you are behind, ">"
# indicates you are ahead, "<>" indicates you have diverged and "="
# indicates that there is no difference. You can further control
# behaviour by setting GIT_PS1_SHOWUPSTREAM to a space-separated list
# of values:
#
# verbose show number of commits ahead/behind (+/-) upstream
# legacy don't use the '--count' option available in recent
# versions of git-rev-list
# git always compare HEAD to @{upstream}
# svn always compare HEAD to your SVN upstream
#
# By default, __git_ps1 will compare HEAD to your SVN upstream if it can
# find one, or @{upstream} otherwise. Once you have set
# GIT_PS1_SHOWUPSTREAM, you can override it on a per-repository basis by
# setting the bash.showUpstream config variable.
#
# If you would like to see more information about the identity of
# commits checked out as a detached HEAD, set GIT_PS1_DESCRIBE_STYLE
# to one of these values:
#
# contains relative to newer annotated tag (v1.6.3.2~35)
# branch relative to newer tag or branch (master~4)
# describe relative to older annotated tag (v1.6.3.1-13-gdd42c2f)
# default exactly matching tag
#
# If you would like a colored hint about the current dirty state, set
# GIT_PS1_SHOWCOLORHINTS to a nonempty value. The colors are based on
# the colored output of "git status -sb" and are available only when
# using __git_ps1 for PROMPT_COMMAND or precmd.
# stores the divergence from upstream in $p
# used by GIT_PS1_SHOWUPSTREAM
__git_ps1_show_upstream ()
{
local key value
local svn_remote svn_url_pattern count n
local upstream=git legacy="" verbose=""
svn_remote=()
# get some config options from git-config
local output="$(git config -z --get-regexp '^(svn-remote\..*\.url|bash\.showupstream)$' 2>/dev/null | tr '\0\n' '\n ')"
while read -r key value; do
case "$key" in
bash.showupstream)
GIT_PS1_SHOWUPSTREAM="$value"
if [[ -z "${GIT_PS1_SHOWUPSTREAM}" ]]; then
p=""
return
fi
;;
svn-remote.*.url)
svn_remote[$((${#svn_remote[@]} + 1))]="$value"
svn_url_pattern+="\\|$value"
upstream=svn+git # default upstream is SVN if available, else git
;;
esac
done <<< "$output"
# parse configuration values
for option in ${GIT_PS1_SHOWUPSTREAM}; do
case "$option" in
git|svn) upstream="$option" ;;
verbose) verbose=1 ;;
legacy) legacy=1 ;;
esac
done
# Find our upstream
case "$upstream" in
git) upstream="@{upstream}" ;;
svn*)
# get the upstream from the "git-svn-id: ..." in a commit message
# (git-svn uses essentially the same procedure internally)
local -a svn_upstream
svn_upstream=($(git log --first-parent -1 \
--grep="^git-svn-id: \(${svn_url_pattern#??}\)" 2>/dev/null))
if [[ 0 -ne ${#svn_upstream[@]} ]]; then
svn_upstream=${svn_upstream[${#svn_upstream[@]} - 2]}
svn_upstream=${svn_upstream%@*}
local n_stop="${#svn_remote[@]}"
for ((n=1; n <= n_stop; n++)); do
svn_upstream=${svn_upstream#${svn_remote[$n]}}
done
if [[ -z "$svn_upstream" ]]; then
# default branch name for checkouts with no layout:
upstream=${GIT_SVN_ID:-git-svn}
else
upstream=${svn_upstream#/}
fi
elif [[ "svn+git" = "$upstream" ]]; then
upstream="@{upstream}"
fi
;;
esac
# Find how many commits we are ahead/behind our upstream
if [[ -z "$legacy" ]]; then
count="$(git rev-list --count --left-right \
"$upstream"...HEAD 2>/dev/null)"
else
# produce equivalent output to --count for older versions of git
local commits
if commits="$(git rev-list --left-right "$upstream"...HEAD 2>/dev/null)"
then
local commit behind=0 ahead=0
for commit in $commits
do
case "$commit" in
"<"*) ((behind++)) ;;
*) ((ahead++)) ;;
esac
done
count="$behind $ahead"
else
count=""
fi
fi
# calculate the result
if [[ -z "$verbose" ]]; then
case "$count" in
"") # no upstream
p="" ;;
"0 0") # equal to upstream
p="=" ;;
"0 "*) # ahead of upstream
p=">" ;;
*" 0") # behind upstream
p="<" ;;
*) # diverged from upstream
p="<>" ;;
esac
else
case "$count" in
"") # no upstream
p="" ;;
"0 0") # equal to upstream
p=" u=" ;;
"0 "*) # ahead of upstream
p=" u+${count#0 }" ;;
*" 0") # behind upstream
p=" u-${count% 0}" ;;
*) # diverged from upstream
p=" u+${count#* }-${count% *}" ;;
esac
fi
}
# Helper function that is meant to be called from __git_ps1. It
# injects color codes into the appropriate gitstring variables used
# to build a gitstring.
__git_ps1_colorize_gitstring ()
{
if [[ -n ${ZSH_VERSION-} ]]; then
local c_red='%F{red}'
local c_green='%F{green}'
local c_lblue='%F{blue}'
local c_clear='%f'
else
# Using \[ and \] around colors is necessary to prevent
# issues with command line editing/browsing/completion!
local c_red='\[\e[31m\]'
local c_green='\[\e[32m\]'
local c_lblue='\[\e[1;34m\]'
local c_clear='\[\e[0m\]'
fi
local bad_color=$c_red
local ok_color=$c_green
local flags_color="$c_lblue"
local branch_color=""
if [ $detached = no ]; then
branch_color="$ok_color"
else
branch_color="$bad_color"
fi
c="$branch_color$c"
z="$c_clear$z"
if [ "$w" = "*" ]; then
w="$bad_color$w"
fi
if [ -n "$i" ]; then
i="$ok_color$i"
fi
if [ -n "$s" ]; then
s="$flags_color$s"
fi
if [ -n "$u" ]; then
u="$bad_color$u"
fi
r="$c_clear$r"
}
# __git_ps1 accepts 0 or 1 arguments (i.e., format string)
# when called from PS1 using command substitution
# in this mode it prints text to add to bash PS1 prompt (includes branch name)
#
# __git_ps1 requires 2 or 3 arguments when called from PROMPT_COMMAND (pc)
# in that case it _sets_ PS1. The arguments are parts of a PS1 string.
# when two arguments are given, the first is prepended and the second appended
# to the state string when assigned to PS1.
# The optional third parameter will be used as printf format string to further
# customize the output of the git-status string.
# In this mode you can request colored hints using GIT_PS1_SHOWCOLORHINTS=true
__git_ps1 ()
{
local pcmode=no
local detached=no
local ps1pc_start='\u@\h:\w '
local ps1pc_end='\$ '
local printf_format=' (%s)'
case "$#" in
2|3) pcmode=yes
ps1pc_start="$1"
ps1pc_end="$2"
printf_format="${3:-$printf_format}"
;;
0|1) printf_format="${1:-$printf_format}"
;;
*) return
;;
esac
local repo_info rev_parse_exit_code
repo_info="$(git rev-parse --git-dir --is-inside-git-dir \
--is-bare-repository --is-inside-work-tree \
--short HEAD 2>/dev/null)"
rev_parse_exit_code="$?"
if [ -z "$repo_info" ]; then
if [ $pcmode = yes ]; then
#In PC mode PS1 always needs to be set
PS1="$ps1pc_start$ps1pc_end"
fi
return
fi
local short_sha
if [ "$rev_parse_exit_code" = "0" ]; then
short_sha="${repo_info##*$'\n'}"
repo_info="${repo_info%$'\n'*}"
fi
local inside_worktree="${repo_info##*$'\n'}"
repo_info="${repo_info%$'\n'*}"
local bare_repo="${repo_info##*$'\n'}"
repo_info="${repo_info%$'\n'*}"
local inside_gitdir="${repo_info##*$'\n'}"
local g="${repo_info%$'\n'*}"
local r=""
local b=""
local step=""
local total=""
if [ -d "$g/rebase-merge" ]; then
read b 2>/dev/null <"$g/rebase-merge/head-name"
read step 2>/dev/null <"$g/rebase-merge/msgnum"
read total 2>/dev/null <"$g/rebase-merge/end"
if [ -f "$g/rebase-merge/interactive" ]; then
r="|REBASE-i"
else
r="|REBASE-m"
fi
else
if [ -d "$g/rebase-apply" ]; then
read step 2>/dev/null <"$g/rebase-apply/next"
read total 2>/dev/null <"$g/rebase-apply/last"
if [ -f "$g/rebase-apply/rebasing" ]; then
read b 2>/dev/null <"$g/rebase-apply/head-name"
r="|REBASE"
elif [ -f "$g/rebase-apply/applying" ]; then
r="|AM"
else
r="|AM/REBASE"
fi
elif [ -f "$g/MERGE_HEAD" ]; then
r="|MERGING"
elif [ -f "$g/CHERRY_PICK_HEAD" ]; then
r="|CHERRY-PICKING"
elif [ -f "$g/REVERT_HEAD" ]; then
r="|REVERTING"
elif [ -f "$g/BISECT_LOG" ]; then
r="|BISECTING"
fi
if [ -n "$b" ]; then
:
elif [ -h "$g/HEAD" ]; then
# symlink symbolic ref
b="$(git symbolic-ref HEAD 2>/dev/null)"
else
local head=""
if ! read head 2>/dev/null <"$g/HEAD"; then
if [ $pcmode = yes ]; then
PS1="$ps1pc_start$ps1pc_end"
fi
return
fi
# is it a symbolic ref?
b="${head#ref: }"
if [ "$head" = "$b" ]; then
detached=yes
b="$(
case "${GIT_PS1_DESCRIBE_STYLE-}" in
(contains)
git describe --contains HEAD ;;
(branch)
git describe --contains --all HEAD ;;
(describe)
git describe HEAD ;;
(* | default)
git describe --tags --exact-match HEAD ;;
esac 2>/dev/null)" ||
b="$short_sha..."
b="($b)"
fi
fi
fi
if [ -n "$step" ] && [ -n "$total" ]; then
r="$r $step/$total"
fi
local w=""
local i=""
local s=""
local u=""
local c=""
local p=""
if [ "true" = "$inside_gitdir" ]; then
if [ "true" = "$bare_repo" ]; then
c="BARE:"
else
b="GIT_DIR!"
fi
elif [ "true" = "$inside_worktree" ]; then
if [ -n "${GIT_PS1_SHOWDIRTYSTATE-}" ] &&
[ "$(git config --bool bash.showDirtyState)" != "false" ]
then
git diff --no-ext-diff --quiet --exit-code || w="*"
if [ -n "$short_sha" ]; then
git diff-index --cached --quiet HEAD -- || i="+"
else
i="#"
fi
fi
if [ -n "${GIT_PS1_SHOWSTASHSTATE-}" ] &&
[ -r "$g/refs/stash" ]; then
s="$"
fi
if [ -n "${GIT_PS1_SHOWUNTRACKEDFILES-}" ] &&
[ "$(git config --bool bash.showUntrackedFiles)" != "false" ] &&
git ls-files --others --exclude-standard --error-unmatch -- '*' >/dev/null 2>/dev/null
then
u="%${ZSH_VERSION+%}"
fi
if [ -n "${GIT_PS1_SHOWUPSTREAM-}" ]; then
__git_ps1_show_upstream
fi
fi
local z="${GIT_PS1_STATESEPARATOR-" "}"
# NO color option unless in PROMPT_COMMAND mode
if [ $pcmode = yes ] && [ -n "${GIT_PS1_SHOWCOLORHINTS-}" ]; then
__git_ps1_colorize_gitstring
fi
local f="$w$i$s$u"
local gitstring="$c${b##refs/heads/}${f:+$z$f}$r$p"
if [ $pcmode = yes ]; then
if [[ -n ${ZSH_VERSION-} ]]; then
gitstring=$(printf -- "$printf_format" "$gitstring")
else
printf -v gitstring -- "$printf_format" "$gitstring"
fi
PS1="$ps1pc_start$gitstring$ps1pc_end"
else
printf -- "$printf_format" "$gitstring"
fi
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册