diff --git a/python/examples/ocr/rec_web_server.py b/python/examples/ocr/rec_web_server.py index 300c26be8f6b33c0cdd4a57e75648e444a25d763..a3de120aff910f72a224a61cdc67d1ff50e65ab2 100644 --- a/python/examples/ocr/rec_web_server.py +++ b/python/examples/ocr/rec_web_server.py @@ -43,25 +43,21 @@ class OCRService(WebService): data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) img_list.append(im) - feed_list = [] max_wh_ratio = 0 for i, boximg in enumerate(img_list): h, w = boximg.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) - for img in img_list: + _, w, h = self.ocr_reader.resize_norm_img(img_list[0], + max_wh_ratio).shape + imgs = np.zeros((len(img_list), 3, w, h)).astype('float32') + for i, img in enumerate(img_list): norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) - #feed = {"image": norm_img} - feed_list.append(norm_img) - if len(feed_list) == 1: - feed_batch = { - "image": np.concatenate( - feed_list, axis=0)[np.newaxis, :] - } - else: - feed_batch = {"image": np.concatenate(feed_list, axis=0)} + imgs[i] = norm_img + + feed = {"image": imgs.copy()} fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"] - return feed_batch, fetch, True + return feed, fetch, True def postprocess(self, feed={}, fetch=[], fetch_map=None): rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)