Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
2461e870
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
185
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
2461e870
编写于
2月 26, 2020
作者:
G
guru4elephant
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
send and recv through int64 and float value
上级
b0da500e
变更
18
显示空白变更内容
内联
并排
Showing
18 changed file
with
374 addition
and
109 deletion
+374
-109
cmake/paddlepaddle.cmake
cmake/paddlepaddle.cmake
+1
-1
core/configure/proto/general_model_config.proto
core/configure/proto/general_model_config.proto
+2
-1
core/general-client/include/general_model.h
core/general-client/include/general_model.h
+26
-9
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+55
-55
core/general-client/src/pybind_general_model.cpp
core/general-client/src/pybind_general_model.cpp
+27
-3
core/general-server/op/general_copy_op.cpp
core/general-server/op/general_copy_op.cpp
+95
-0
core/general-server/op/general_dist_kv_op.h
core/general-server/op/general_dist_kv_op.h
+48
-0
core/general-server/op/general_infer_helper.h
core/general-server/op/general_infer_helper.h
+13
-0
core/general-server/op/general_reader_op.cpp
core/general-server/op/general_reader_op.cpp
+24
-7
core/general-server/op/general_response_op.cpp
core/general-server/op/general_response_op.cpp
+50
-17
core/general-server/proto/general_model_service.proto
core/general-server/proto/general_model_service.proto
+4
-3
core/sdk-cpp/proto/general_model_service.proto
core/sdk-cpp/proto/general_model_service.proto
+6
-5
python/examples/criteo_ctr/network_conf.py
python/examples/criteo_ctr/network_conf.py
+1
-1
python/examples/criteo_ctr/test_client.py
python/examples/criteo_ctr/test_client.py
+1
-5
python/examples/criteo_ctr/test_server.py
python/examples/criteo_ctr/test_server.py
+4
-0
python/examples/imdb/test_client.py
python/examples/imdb/test_client.py
+1
-1
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+9
-1
python/paddle_serving_client/io/__init__.py
python/paddle_serving_client/io/__init__.py
+7
-0
未找到文件。
cmake/paddlepaddle.cmake
浏览文件 @
2461e870
...
...
@@ -31,7 +31,7 @@ message( "WITH_GPU = ${WITH_GPU}")
# Paddle Version should be one of:
# latest: latest develop build
# version number like 1.5.2
SET
(
PADDLE_VERSION
"
latest
"
)
SET
(
PADDLE_VERSION
"
1.6.3
"
)
if
(
WITH_GPU
)
SET
(
PADDLE_LIB_VERSION
"
${
PADDLE_VERSION
}
-gpu-cuda
${
CUDA_VERSION_MAJOR
}
-cudnn7-avx-mkl"
)
...
...
core/configure/proto/general_model_config.proto
浏览文件 @
2461e870
...
...
@@ -26,7 +26,8 @@ message FetchVar {
optional
string
name
=
1
;
optional
string
alias_name
=
2
;
optional
bool
is_lod_tensor
=
3
[
default
=
false
];
repeated
int32
shape
=
4
;
optional
int32
fetch_type
=
4
[
default
=
0
];
repeated
int32
shape
=
5
;
}
message
GeneralModelConfig
{
repeated
FeedVar
feed_var
=
1
;
...
...
core/general-client/include/general_model.h
浏览文件 @
2461e870
...
...
@@ -39,9 +39,25 @@ namespace baidu {
namespace
paddle_serving
{
namespace
general_model
{
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>
FetchedMap
;
class
PredictorRes
{
public:
PredictorRes
()
{}
~
PredictorRes
()
{}
public:
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
get_int64_by_name
(
const
std
::
string
&
name
)
{
return
_int64_map
[
name
];
}
const
std
::
vector
<
std
::
vector
<
float
>>
&
get_float_by_name
(
const
std
::
string
&
name
)
{
return
_float_map
[
name
];
}
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
float
>>>
BatchFetchedMap
;
public:
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
int64_t
>>>
_int64_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
float
>>>
_float_map
;
};
class
PredictorClient
{
public:
...
...
@@ -60,6 +76,13 @@ class PredictorClient {
int
create_predictor
();
int
destroy_predictor
();
int
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
int_feed
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res
);
// NOLINT
std
::
vector
<
std
::
vector
<
float
>>
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
...
...
@@ -74,13 +97,6 @@ class PredictorClient {
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
);
std
::
vector
<
std
::
vector
<
float
>>
predict_with_profile
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
int_feed
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
);
private:
PredictorApi
_api
;
Predictor
*
_predictor
;
...
...
@@ -90,6 +106,7 @@ class PredictorClient {
std
::
map
<
std
::
string
,
int
>
_feed_name_to_idx
;
std
::
map
<
std
::
string
,
int
>
_fetch_name_to_idx
;
std
::
map
<
std
::
string
,
std
::
string
>
_fetch_name_to_var_name
;
std
::
map
<
std
::
string
,
int
>
_fetch_name_to_type
;
std
::
vector
<
std
::
vector
<
int
>>
_shape
;
std
::
vector
<
int
>
_type
;
std
::
vector
<
int64_t
>
_last_request_ts
;
...
...
core/general-client/src/general_model.cpp
浏览文件 @
2461e870
...
...
@@ -93,6 +93,8 @@ int PredictorClient::init(const std::string &conf_file) {
<<
" alias name: "
<<
model_config
.
fetch_var
(
i
).
alias_name
();
_fetch_name_to_var_name
[
model_config
.
fetch_var
(
i
).
alias_name
()]
=
model_config
.
fetch_var
(
i
).
name
();
_fetch_name_to_type
[
model_config
.
fetch_var
(
i
).
alias_name
()]
=
model_config
.
fetch_var
(
i
).
fetch_type
();
}
}
catch
(
std
::
exception
&
e
)
{
LOG
(
ERROR
)
<<
"Failed load general model config"
<<
e
.
what
();
...
...
@@ -130,35 +132,25 @@ int PredictorClient::create_predictor() {
_api
.
thrd_initialize
();
}
std
::
vector
<
std
::
vector
<
float
>>
PredictorClient
::
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
)
{
std
::
vector
<
std
::
vector
<
float
>>
fetch_result
;
if
(
fetch_name
.
size
()
==
0
)
{
return
fetch_result
;
}
int
PredictorClient
::
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
int_feed
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res
)
{
// NOLINT
predict_res
.
_int64_map
.
clear
();
predict_res
.
_float_map
.
clear
();
Timer
timeline
;
int64_t
preprocess_start
=
timeline
.
TimeStampUS
();
// we save infer_us at fetch_result[fetch_name.size()]
fetch_result
.
resize
(
fetch_name
.
size
());
_api
.
thrd_clear
();
_predictor
=
_api
.
fetch_predictor
(
"general_model"
);
VLOG
(
2
)
<<
"fetch general model predictor done."
;
VLOG
(
2
)
<<
"float feed name size: "
<<
float_feed_name
.
size
();
VLOG
(
2
)
<<
"int feed name size: "
<<
int_feed_name
.
size
();
VLOG
(
2
)
<<
"fetch name size: "
<<
fetch_name
.
size
();
Request
req
;
for
(
auto
&
name
:
fetch_name
)
{
req
.
add_fetch_var_names
(
name
);
}
std
::
vector
<
Tensor
*>
tensor_vec
;
FeedInst
*
inst
=
req
.
add_insts
();
for
(
auto
&
name
:
float_feed_name
)
{
...
...
@@ -168,7 +160,6 @@ std::vector<std::vector<float>> PredictorClient::predict(
for
(
auto
&
name
:
int_feed_name
)
{
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
}
VLOG
(
2
)
<<
"prepare tensor vec done."
;
int
vec_idx
=
0
;
for
(
auto
&
name
:
float_feed_name
)
{
...
...
@@ -179,16 +170,14 @@ std::vector<std::vector<float>> PredictorClient::predict(
}
tensor
->
set_elem_type
(
1
);
for
(
int
j
=
0
;
j
<
float_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_data
(
const_cast
<
char
*>
(
reinterpret_cast
<
const
char
*>
(
&
(
float_feed
[
vec_idx
][
j
]))),
sizeof
(
float
));
tensor
->
add_float_data
(
float_feed
[
vec_idx
][
j
]);
}
vec_idx
++
;
}
VLOG
(
2
)
<<
"feed float feed var done."
;
vec_idx
=
0
;
for
(
auto
&
name
:
int_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
...
...
@@ -197,15 +186,12 @@ std::vector<std::vector<float>> PredictorClient::predict(
}
tensor
->
set_elem_type
(
0
);
for
(
int
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_data
(
const_cast
<
char
*>
(
reinterpret_cast
<
const
char
*>
(
&
(
int_feed
[
vec_idx
][
j
]))),
sizeof
(
int64_t
));
tensor
->
add_int64_data
(
int_feed
[
vec_idx
][
j
]);
}
vec_idx
++
;
}
int64_t
preprocess_end
=
timeline
.
TimeStampUS
();
int64_t
client_infer_start
=
timeline
.
TimeStampUS
();
Response
res
;
...
...
@@ -222,23 +208,34 @@ std::vector<std::vector<float>> PredictorClient::predict(
res
.
Clear
();
if
(
_predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req: "
<<
req
.
ShortDebugString
();
exit
(
-
1
)
;
return
-
1
;
}
else
{
VLOG
(
2
)
<<
"predict done."
;
client_infer_end
=
timeline
.
TimeStampUS
();
postprocess_start
=
client_infer_end
;
for
(
auto
&
name
:
fetch_name
)
{
int
idx
=
_fetch_name_to_idx
[
name
];
int
len
=
res
.
insts
(
0
).
tensor_array
(
idx
).
data_size
();
VLOG
(
2
)
<<
"fetch name: "
<<
name
;
VLOG
(
2
)
<<
"tensor data size: "
<<
len
;
fetch_result
[
idx
].
resize
(
len
);
if
(
_fetch_name_to_type
[
name
]
==
0
)
{
int
len
=
res
.
insts
(
0
).
tensor_array
(
idx
).
int64_data_size
();
predict_res
.
_int64_map
[
name
].
resize
(
1
);
predict_res
.
_int64_map
[
name
][
0
].
resize
(
len
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
fetch_result
[
idx
][
i
]
=
*
(
const
float
*
)
res
.
insts
(
0
).
tensor_array
(
idx
).
data
(
i
).
c_str
();
predict_res
.
_int64_map
[
name
][
0
][
i
]
=
res
.
insts
(
0
).
tensor_array
(
idx
).
int64_data
(
i
);
}
}
else
if
(
_fetch_name_to_type
[
name
]
==
1
)
{
int
len
=
res
.
insts
(
0
).
tensor_array
(
idx
).
float_data_size
();
predict_res
.
_float_map
[
name
].
resize
(
1
);
predict_res
.
_float_map
[
name
][
0
].
resize
(
len
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
predict_res
.
_float_map
[
name
][
0
][
i
]
=
res
.
insts
(
0
).
tensor_array
(
idx
).
float_data
(
i
);
}
}
postprocess_end
=
timeline
.
TimeStampUS
();
}
}
if
(
FLAGS_profile_client
)
{
std
::
ostringstream
oss
;
...
...
@@ -261,8 +258,7 @@ std::vector<std::vector<float>> PredictorClient::predict(
fprintf
(
stderr
,
"%s
\n
"
,
oss
.
str
().
c_str
());
}
return
fetch_result
;
return
0
;
}
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
PredictorClient
::
batch_predict
(
...
...
@@ -321,9 +317,12 @@ std::vector<std::vector<std::vector<float>>> PredictorClient::batch_predict(
}
tensor
->
set_elem_type
(
1
);
for
(
int
j
=
0
;
j
<
float_feed
[
vec_idx
].
size
();
++
j
)
{
/*
tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
&(float_feed[vec_idx][j]))),
sizeof(float));
*/
tensor
->
add_float_data
(
float_feed
[
vec_idx
][
j
]);
}
vec_idx
++
;
}
...
...
@@ -342,9 +341,12 @@ std::vector<std::vector<std::vector<float>>> PredictorClient::batch_predict(
VLOG
(
3
)
<<
"feed var name "
<<
name
<<
" index "
<<
vec_idx
<<
"first data "
<<
int_feed
[
vec_idx
][
0
];
for
(
int
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
/*
tensor->add_data(const_cast<char *>(reinterpret_cast<const char *>(
&(int_feed[vec_idx][j]))),
sizeof(int64_t));
*/
tensor
->
add_int64_data
(
int_feed
[
vec_idx
][
j
]);
}
vec_idx
++
;
}
...
...
@@ -387,11 +389,19 @@ std::vector<std::vector<std::vector<float>>> PredictorClient::batch_predict(
VLOG
(
2
)
<<
"fetch name "
<<
name
<<
" index "
<<
idx
<<
" first data "
<<
*
(
const
float
*
)
res
.
insts
(
bi
).
tensor_array
(
idx
).
data
(
0
).
c_str
();
/*
if (_fetch_name_to_va[name] == 0) { // int64
for (int i = 0; i < len; ++i) {
fetch_result_batch[bi][idx][i] =
*
(
const
float
*
)
res
.
insts
(
bi
).
tensor_array
(
idx
).
data
(
i
).
c_str
();
*(const int64 *)res.insts(bi).tensor_array(idx).int64_data(i).c_str();
}
} else {
for (int i = 0; i < len; ++i) {
fetch_result_batch
}
}
*/
}
}
postprocess_end
=
timeline
.
TimeStampUS
();
}
...
...
@@ -420,16 +430,6 @@ std::vector<std::vector<std::vector<float>>> PredictorClient::batch_predict(
return
fetch_result_batch
;
}
std
::
vector
<
std
::
vector
<
float
>>
PredictorClient
::
predict_with_profile
(
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
)
{
std
::
vector
<
std
::
vector
<
float
>>
res
;
return
res
;
}
}
// namespace general_model
}
// namespace paddle_serving
}
// namespace baidu
core/general-client/src/pybind_general_model.cpp
浏览文件 @
2461e870
...
...
@@ -20,8 +20,6 @@
namespace
py
=
pybind11
;
using
baidu
::
paddle_serving
::
general_model
::
FetchedMap
;
namespace
baidu
{
namespace
paddle_serving
{
namespace
general_model
{
...
...
@@ -29,6 +27,18 @@ namespace general_model {
PYBIND11_MODULE
(
serving_client
,
m
)
{
m
.
doc
()
=
R"pddoc(this is a practice
)pddoc"
;
py
::
class_
<
PredictorRes
>
(
m
,
"PredictorRes"
,
py
::
buffer_protocol
())
.
def
(
py
::
init
())
.
def
(
"get_int64_by_name"
,
[](
PredictorRes
&
self
,
std
::
string
&
name
)
{
return
self
.
get_int64_by_name
(
name
);
},
py
::
return_value_policy
::
reference
)
.
def
(
"get_float_by_name"
,
[](
PredictorRes
&
self
,
std
::
string
&
name
)
{
return
self
.
get_float_by_name
(
name
);
},
py
::
return_value_policy
::
reference
);
py
::
class_
<
PredictorClient
>
(
m
,
"PredictorClient"
,
py
::
buffer_protocol
())
.
def
(
py
::
init
())
.
def
(
"init_gflags"
,
...
...
@@ -52,6 +62,21 @@ PYBIND11_MODULE(serving_client, m) {
[](
PredictorClient
&
self
)
{
self
.
create_predictor
();
})
.
def
(
"destroy_predictor"
,
[](
PredictorClient
&
self
)
{
self
.
destroy_predictor
();
})
.
def
(
"predict"
,
[](
PredictorClient
&
self
,
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res
)
{
return
self
.
predict
(
float_feed
,
float_feed_name
,
int_feed
,
int_feed_name
,
fetch_name
,
predict_res
);
})
.
def
(
"predict"
,
[](
PredictorClient
&
self
,
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
...
...
@@ -65,7 +90,6 @@ PYBIND11_MODULE(serving_client, m) {
int_feed_name
,
fetch_name
);
})
.
def
(
"batch_predict"
,
[](
PredictorClient
&
self
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
...
...
core/general-server/op/general_copy_op.cpp
0 → 100644
浏览文件 @
2461e870
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_dist_kv_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/util/include/timer.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FeedInst
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralDistKVOp
::
inference
()
{
// reade request from client
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
());
VLOG
(
2
)
<<
"precedent name: "
<<
pre_name
();
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
VLOG
(
2
)
<<
"input size: "
<<
in
->
size
();
int
batch_size
=
input_blob
->
GetBatchSize
();
int
input_var_num
=
0
;
GeneralBlob
*
res
=
mutable_data
<
GeneralBlob
>
();
TensorVector
*
out
=
&
res
->
tensor_vector
;
VLOG
(
2
)
<<
"input batch size: "
<<
batch_size
;
res
->
SetBatchSize
(
batch_size
);
if
(
!
res
)
{
LOG
(
ERROR
)
<<
"Failed get op tls reader object output"
;
}
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
VLOG
(
2
)
<<
"Going to init lod tensor"
;
for
(
int
i
=
0
;
i
<
in
->
size
();
++
i
)
{
paddle
::
PaddleTensor
lod_tensor
;
CopyLod
(
&
in
->
at
(
i
),
&
lod_tensor
);
lod_tensor
.
dtype
=
in
->
at
(
i
).
dtype
;
lod_tensor
.
name
=
in
->
at
(
i
).
name
;
VLOG
(
2
)
<<
"lod tensor ["
<<
i
<<
"].name = "
<<
lod_tensor
.
name
;
out
->
push_back
(
lod_tensor
);
}
VLOG
(
2
)
<<
"pack done."
;
for
(
int
i
=
0
;
i
<
out
->
size
();
++
i
)
{
int64_t
*
src_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
i
).
data
.
data
());
out
->
at
(
i
).
data
.
Resize
(
out
->
at
(
i
).
lod
[
0
].
back
()
*
sizeof
(
int64_t
));
out
->
at
(
i
).
shape
=
{
out
->
at
(
i
).
lod
[
0
].
back
(),
1
};
int64_t
*
tgt_ptr
=
static_cast
<
int64_t
*>
(
out
->
at
(
i
).
data
.
data
());
for
(
int
j
=
0
;
j
<
out
->
at
(
i
).
lod
[
0
].
back
();
++
j
)
{
tgt_ptr
[
j
]
=
src_ptr
[
j
];
}
}
VLOG
(
2
)
<<
"output done."
;
timeline
.
Pause
();
int64_t
end
=
timeline
.
TimeStampUS
();
res
->
p_size
=
0
;
AddBlobInfo
(
res
,
start
);
AddBlobInfo
(
res
,
end
);
VLOG
(
2
)
<<
"read data from client success"
;
return
0
;
}
DEFINE_OP
(
GeneralDistKVOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_dist_kv_op.h
0 → 100644
浏览文件 @
2461e870
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
#include "core/predictor/framework/resource.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/general_model_service.pb.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
GeneralDistKVOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralDistKVOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_infer_helper.h
浏览文件 @
2461e870
...
...
@@ -65,6 +65,19 @@ static void CopyBlobInfo(const GeneralBlob* src, GeneralBlob* tgt) {
src
->
p_size
*
sizeof
(
int64_t
));
}
static
void
CopyLod
(
const
paddle
::
PaddleTensor
*
src
,
paddle
::
PaddleTensor
*
tgt
)
{
VLOG
(
2
)
<<
"copy lod done."
;
tgt
->
lod
.
resize
(
src
->
lod
.
size
());
VLOG
(
2
)
<<
"src lod size: "
<<
src
->
lod
.
size
();
for
(
int
i
=
0
;
i
<
src
->
lod
.
size
();
++
i
)
{
tgt
->
lod
[
i
].
resize
(
src
->
lod
[
i
].
size
());
for
(
int
j
=
0
;
j
<
src
->
lod
[
i
].
size
();
++
j
)
{
tgt
->
lod
[
i
][
j
]
=
src
->
lod
[
i
][
j
];
}
}
}
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_reader_op.cpp
浏览文件 @
2461e870
...
...
@@ -104,17 +104,21 @@ int GeneralReaderOp::inference() {
VLOG
(
2
)
<<
"print general model config done."
;
// TODO(guru4elephant): how to do conditional check?
/*
int ret = conf_check(req, model_config);
if (ret != 0) {
LOG
(
INFO
)
<<
"model conf of server:"
;
LOG(
ERROR
) << "model conf of server:";
resource.print_general_model_config(model_config);
return 0;
}
*/
// package tensor
elem_type
.
resize
(
var_num
);
elem_size
.
resize
(
var_num
);
capacity
.
resize
(
var_num
);
// prepare basic information for input
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
paddle
::
PaddleTensor
lod_tensor
;
elem_type
[
i
]
=
req
->
insts
(
0
).
tensor_array
(
i
).
elem_type
();
...
...
@@ -146,14 +150,22 @@ int GeneralReaderOp::inference() {
out
->
push_back
(
lod_tensor
);
}
// specify the memory needed for output tensor_vector
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
out
->
at
(
i
).
lod
.
size
()
==
1
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
const
Tensor
&
tensor
=
req
->
insts
(
j
).
tensor_array
(
i
);
int
data_len
=
tensor
.
data_size
();
VLOG
(
2
)
<<
"tensor size for var["
<<
i
<<
"]: "
<<
tensor
.
data_size
();
int
data_len
=
0
;
if
(
tensor
.
int64_data_size
()
>
0
)
{
data_len
=
tensor
.
int64_data_size
();
}
else
{
data_len
=
tensor
.
float_data_size
();
}
VLOG
(
2
)
<<
"tensor size for var["
<<
i
<<
"]: "
<<
data_len
;
int
cur_len
=
out
->
at
(
i
).
lod
[
0
].
back
();
VLOG
(
2
)
<<
"current len: "
<<
cur_len
;
out
->
at
(
i
).
lod
[
0
].
push_back
(
cur_len
+
data_len
);
VLOG
(
2
)
<<
"new len: "
<<
cur_len
+
data_len
;
}
...
...
@@ -168,14 +180,16 @@ int GeneralReaderOp::inference() {
}
}
// fill the data into output general_blob
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
elem_type
[
i
]
==
0
)
{
int64_t
*
dst_ptr
=
static_cast
<
int64_t
*>
(
out
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
0
;
k
<
req
->
insts
(
j
).
tensor_array
(
i
).
data_size
();
++
k
)
{
int
elem_num
=
req
->
insts
(
j
).
tensor_array
(
i
).
int64_data_size
();
for
(
int
k
=
0
;
k
<
elem_num
;
++
k
)
{
dst_ptr
[
offset
+
k
]
=
*
(
const
int64_t
*
)
req
->
insts
(
j
).
tensor_array
(
i
).
data
(
k
).
c_str
(
);
req
->
insts
(
j
).
tensor_array
(
i
).
int64_data
(
k
);
}
if
(
out
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
out
->
at
(
i
).
lod
[
0
][
j
+
1
];
...
...
@@ -187,9 +201,10 @@ int GeneralReaderOp::inference() {
float
*
dst_ptr
=
static_cast
<
float
*>
(
out
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
0
;
k
<
req
->
insts
(
j
).
tensor_array
(
i
).
data_size
();
++
k
)
{
int
elem_num
=
req
->
insts
(
j
).
tensor_array
(
i
).
float_data_size
();
for
(
int
k
=
0
;
k
<
elem_num
;
++
k
)
{
dst_ptr
[
offset
+
k
]
=
*
(
const
float
*
)
req
->
insts
(
j
).
tensor_array
(
i
).
data
(
k
).
c_str
(
);
req
->
insts
(
j
).
tensor_array
(
i
).
float_data
(
k
);
}
if
(
out
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
out
->
at
(
i
).
lod
[
0
][
j
+
1
];
...
...
@@ -200,6 +215,8 @@ int GeneralReaderOp::inference() {
}
}
VLOG
(
2
)
<<
"output size: "
<<
out
->
size
();
timeline
.
Pause
();
int64_t
end
=
timeline
.
TimeStampUS
();
res
->
p_size
=
0
;
...
...
core/general-server/op/general_response_op.cpp
浏览文件 @
2461e870
...
...
@@ -95,17 +95,47 @@ int GeneralResponseOp::inference() {
int
var_idx
=
0
;
for
(
auto
&
idx
:
fetch_index
)
{
float
*
data_ptr
=
static_cast
<
float
*>
(
in
->
at
(
idx
).
data
.
data
());
int
cap
=
1
;
for
(
int
j
=
1
;
j
<
in
->
at
(
idx
).
shape
.
size
();
++
j
)
{
cap
*=
in
->
at
(
idx
).
shape
[
j
];
}
if
(
in
->
at
(
idx
).
dtype
==
paddle
::
PaddleDType
::
INT64
)
{
int64_t
*
data_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
idx
).
data
.
data
());
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
in
->
at
(
idx
).
lod
[
0
][
j
];
k
<
in
->
at
(
idx
).
lod
[
0
][
j
+
1
];
k
++
)
{
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
k
]);
}
}
}
else
{
int
var_size
=
in
->
at
(
idx
).
shape
[
0
];
if
(
var_size
==
batch_size
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
j
*
cap
;
k
<
(
j
+
1
)
*
cap
;
++
k
)
{
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
k
]);
}
}
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_int64_data
(
data_ptr
[
0
]);
}
}
}
var_idx
++
;
}
else
if
(
in
->
at
(
idx
).
dtype
==
paddle
::
PaddleDType
::
FLOAT32
)
{
float
*
data_ptr
=
static_cast
<
float
*>
(
in
->
at
(
idx
).
data
.
data
());
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
in
->
at
(
idx
).
lod
[
0
][
j
];
k
<
in
->
at
(
idx
).
lod
[
0
][
j
+
1
];
k
++
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_data
(
reinterpret_cast
<
char
*>
(
&
(
data_ptr
[
k
])),
sizeof
(
float
)
);
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
k
]
);
}
}
}
else
{
...
...
@@ -113,19 +143,22 @@ int GeneralResponseOp::inference() {
if
(
var_size
==
batch_size
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
j
*
cap
;
k
<
(
j
+
1
)
*
cap
;
++
k
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_data
(
reinterpret_cast
<
char
*>
(
&
(
data_ptr
[
k
])),
sizeof
(
float
));
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
k
]);
}
}
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_data
(
reinterpret_cast
<
char
*>
(
&
(
data_ptr
[
0
])),
sizeof
(
float
));
FetchInst
*
fetch_p
=
res
->
mutable_insts
(
j
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
0
]);
}
}
}
var_idx
++
;
}
}
if
(
req
->
profile_server
())
{
int64_t
end
=
timeline
.
TimeStampUS
();
...
...
core/general-server/proto/general_model_service.proto
浏览文件 @
2461e870
...
...
@@ -22,9 +22,10 @@ option cc_generic_services = true;
message
Tensor
{
repeated
bytes
data
=
1
;
repeated
int32
int_data
=
2
;
repeated
float
float_data
=
3
;
optional
int32
elem_type
=
4
;
repeated
int32
shape
=
5
;
repeated
int64
int64_data
=
3
;
repeated
float
float_data
=
4
;
optional
int32
elem_type
=
5
;
repeated
int32
shape
=
6
;
};
message
FeedInst
{
...
...
core/sdk-cpp/proto/general_model_service.proto
浏览文件 @
2461e870
...
...
@@ -20,11 +20,12 @@ package baidu.paddle_serving.predictor.general_model;
option
cc_generic_services
=
true
;
message
Tensor
{
repeated
bytes
data
=
1
;
// most general format
repeated
int32
int_data
=
2
;
// for simple debug only
repeated
float
float_data
=
3
;
// for simple debug only
optional
int32
elem_type
=
4
;
// support int64, float32
repeated
int32
shape
=
5
;
repeated
bytes
data
=
1
;
repeated
int32
int_data
=
2
;
repeated
int64
int64_data
=
3
;
repeated
float
float_data
=
4
;
optional
int32
elem_type
=
5
;
repeated
int32
shape
=
6
;
};
message
FeedInst
{
...
...
python/examples/criteo_ctr/network_conf.py
浏览文件 @
2461e870
...
...
@@ -16,7 +16,7 @@ def ctr_dnn_model_dataset(dense_input, sparse_inputs, label,
return
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
sparse_embed_seq
=
list
(
map
(
embedding_layer
,
sparse_inputs
))
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
+
[
dense_input
]
,
axis
=
1
)
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
,
axis
=
1
)
fc1
=
fluid
.
layers
.
fc
(
input
=
concated
,
size
=
400
,
act
=
'relu'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
concated
.
shape
[
1
]))))
...
...
python/examples/criteo_ctr/test_client.py
浏览文件 @
2461e870
...
...
@@ -21,12 +21,8 @@ label_list = []
prob_list
=
[]
for
data
in
reader
():
feed_dict
=
{}
feed_dict
[
"dense_0"
]
=
data
[
0
][
0
]
for
i
in
range
(
1
,
27
):
feed_dict
[
"sparse_{}"
.
format
(
i
-
1
)]
=
data
[
0
][
i
]
feed_dict
[
"label"
]
=
data
[
0
][
-
1
]
fetch_map
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
[
"prob"
])
prob_list
.
append
(
fetch_map
[
"prob"
][
0
])
label_list
.
append
(
data
[
0
][
-
1
][
0
])
print
(
fetch_map
)
print
(
auc
(
prob_list
,
label_list
))
python/examples/criteo_ctr/test_server.py
浏览文件 @
2461e870
...
...
@@ -6,11 +6,15 @@ from paddle_serving_server import Server
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
dist_op
=
op_maker
.
create
(
'general_dist_kv'
)
general_infer_op
=
op_maker
.
create
(
'general_infer'
)
response_op
=
op_maker
.
create
(
'general_response'
)
op_seq_maker
=
OpSeqMaker
()
op_seq_maker
.
add_op
(
read_op
)
op_seq_maker
.
add_op
(
dist_op
)
op_seq_maker
.
add_op
(
general_infer_op
)
op_seq_maker
.
add_op
(
response_op
)
server
=
Server
()
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
...
...
python/examples/imdb/test_client.py
浏览文件 @
2461e870
...
...
@@ -3,7 +3,7 @@ import sys
client
=
Client
()
client
.
load_client_config
(
sys
.
argv
[
1
])
client
.
connect
([
"127.0.0.1:9
292
"
])
client
.
connect
([
"127.0.0.1:9
393
"
])
for
line
in
sys
.
stdin
:
group
=
line
.
strip
().
split
()
...
...
python/paddle_serving_client/__init__.py
浏览文件 @
2461e870
...
...
@@ -73,6 +73,7 @@ class Client(object):
self
.
feed_names_
=
[]
self
.
fetch_names_
=
[]
self
.
client_handle_
=
None
self
.
result_handle_
=
None
self
.
feed_shapes_
=
[]
self
.
feed_types_
=
{}
self
.
feed_names_to_idx_
=
{}
...
...
@@ -87,6 +88,7 @@ class Client(object):
def
load_client_config
(
self
,
path
):
from
.serving_client
import
PredictorClient
from
.serving_client
import
PredictorRes
model_conf
=
m_config
.
GeneralModelConfig
()
f
=
open
(
path
,
'r'
)
model_conf
=
google
.
protobuf
.
text_format
.
Merge
(
...
...
@@ -96,6 +98,7 @@ class Client(object):
# get feed vars, fetch vars
# get feed shapes, feed types
# map feed names to index
self
.
result_handle_
=
PredictorRes
()
self
.
client_handle_
=
PredictorClient
()
self
.
client_handle_
.
init
(
path
)
read_env_flags
=
[
"profile_client"
,
"profile_server"
]
...
...
@@ -121,6 +124,7 @@ class Client(object):
self
.
client_handle_
.
create_predictor_by_desc
(
sdk_desc
.
SerializeToString
(
))
def
get_feed_names
(
self
):
return
self
.
feed_names_
...
...
@@ -147,15 +151,19 @@ class Client(object):
if
key
in
self
.
fetch_names_
:
fetch_names
.
append
(
key
)
'''
result = self.client_handle_.predict(
float_slot, float_feed_names, int_slot, int_feed_names, fetch_names)
'''
ret
=
self
.
client_handle_
.
predict
(
float_slot
,
float_feed_names
,
int_slot
,
int_feed_names
,
fetch_names
,
self
.
result_handle_
)
# TODO(guru4elephant): the order of fetch var name should be consistent with
# general_model_config, this is not friendly
# In the future, we need make the number of fetched variable changable
result_map
=
{}
for
i
,
name
in
enumerate
(
fetch_names
):
result_map
[
name
]
=
result
[
i
]
result_map
[
name
]
=
self
.
result_handle_
.
get_float_by_name
(
name
)
return
result_map
...
...
python/paddle_serving_client/io/__init__.py
浏览文件 @
2461e870
...
...
@@ -62,6 +62,13 @@ def save_model(server_model_folder,
fetch_var
.
alias_name
=
key
fetch_var
.
name
=
fetch_var_dict
[
key
].
name
fetch_var
.
is_lod_tensor
=
fetch_var_dict
[
key
].
lod_level
>=
1
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT32
or
\
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
fetch_var
.
fetch_type
=
0
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
fetch_var
.
fetch_type
=
1
if
fetch_var
.
is_lod_tensor
:
fetch_var
.
shape
.
extend
([
-
1
])
else
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录