Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
1c760699
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1c760699
编写于
3月 25, 2020
作者:
J
Jiawei Wang
提交者:
GitHub
3月 25, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update and rename BERT_10_MINS.md to BERT_10_MINS_CN.md
上级
30a0e07a
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
2 addition
and
0 deletion
+2
-0
doc/BERT_10_MINS_CN.md
doc/BERT_10_MINS_CN.md
+2
-0
未找到文件。
doc/BERT_10_MINS.md
→
doc/BERT_10_MINS
_CN
.md
浏览文件 @
1c760699
## 十分钟构建Bert-As-Service
(简体中文|
[
English
](
./BERT_10_MINS.md
)
)
Bert-As-Service的目标是给定一个句子,服务可以将句子表示成一个语义向量返回给用户。
[
Bert模型
](
https://arxiv.org/abs/1810.04805
)
是目前NLP领域的热门模型,在多种公开的NLP任务上都取得了很好的效果,使用Bert模型计算出的语义向量来做其他NLP模型的输入对提升模型的表现也有很大的帮助。Bert-As-Service可以让用户很方便地获取文本的语义向量表示并应用到自己的任务中。为了实现这个目标,我们通过四个步骤说明使用Paddle Serving在十分钟内就可以搭建一个这样的服务。示例中所有的代码和文件均可以在Paddle Serving的
[
示例
](
https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/bert
)
中找到。
#### Step1:保存可服务模型
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录