Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
14ce96a2
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
14ce96a2
编写于
7月 14, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add some example
上级
eea93609
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
270 addition
and
92 deletion
+270
-92
java/examples/src/main/java/PaddleServingClientExample.java
java/examples/src/main/java/PaddleServingClientExample.java
+185
-7
java/src/main/java/io/paddle/serving/client/Client.java
java/src/main/java/io/paddle/serving/client/Client.java
+18
-85
java/src/main/java/io/paddle/serving/client/PredictFuture.java
...src/main/java/io/paddle/serving/client/PredictFuture.java
+54
-0
java/src/main/resources/log4j2.xml
java/src/main/resources/log4j2.xml
+13
-0
未找到文件。
java/examples/src/main/java/PaddleServingClientExample.java
浏览文件 @
14ce96a2
import
io.paddle.serving.client.Client
;
/**
* Hello world!
*
*/
import
io.paddle.serving.client.*
;
import
org.nd4j.linalg.api.ndarray.INDArray
;
import
org.nd4j.linalg.api.iter.NdIndexIterator
;
import
org.nd4j.linalg.factory.Nd4j
;
import
java.util.*
;
public
class
PaddleServingClientExample
{
public
static
void
main
(
String
[]
args
)
{
boolean
fit_a_line
()
{
float
[]
data
=
{
0.0137f
,
-
0.1136f
,
0.2553f
,
-
0.0692f
,
0.0582f
,
-
0.0727f
,
-
0.1583f
,
-
0.0584f
,
0.6283f
,
0.4919f
,
0.1856f
,
0.0795f
,
-
0.0332f
};
INDArray
npdata
=
Nd4j
.
createFromArray
(
data
);
HashMap
<
String
,
INDArray
>
feed_data
=
new
HashMap
<
String
,
INDArray
>()
{{
put
(
"x"
,
npdata
);
}};
List
<
String
>
fetch
=
Arrays
.
asList
(
"price"
);
Client
client
=
new
Client
();
List
<
String
>
endpoints
=
Arrays
.
asList
(
"localhost:9393"
);
boolean
succ
=
client
.
connect
(
endpoints
);
if
(
succ
!=
true
)
{
System
.
out
.
println
(
"connect failed."
);
return
false
;
}
Map
<
String
,
INDArray
>
fetch_map
=
client
.
predict
(
feed_data
,
fetch
);
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
return
true
;
}
boolean
batch_predict
()
{
float
[]
data
=
{
0.0137f
,
-
0.1136f
,
0.2553f
,
-
0.0692f
,
0.0582f
,
-
0.0727f
,
-
0.1583f
,
-
0.0584f
,
0.6283f
,
0.4919f
,
0.1856f
,
0.0795f
,
-
0.0332f
};
INDArray
npdata
=
Nd4j
.
createFromArray
(
data
);
HashMap
<
String
,
INDArray
>
feed_data
=
new
HashMap
<
String
,
INDArray
>()
{{
put
(
"x"
,
npdata
);
}};
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>()
{{
add
(
feed_data
);
add
(
feed_data
);
}};
List
<
String
>
fetch
=
Arrays
.
asList
(
"price"
);
Client
client
=
new
Client
();
List
<
String
>
endpoints
=
Arrays
.
asList
(
"localhost:9393"
);
boolean
succ
=
client
.
connect
(
endpoints
);
if
(
succ
!=
true
)
{
System
.
out
.
println
(
"connect failed."
);
return
false
;
}
Map
<
String
,
INDArray
>
fetch_map
=
client
.
predict
(
feed_batch
,
fetch
);
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
return
true
;
}
boolean
asyn_predict
()
{
float
[]
data
=
{
0.0137f
,
-
0.1136f
,
0.2553f
,
-
0.0692f
,
0.0582f
,
-
0.0727f
,
-
0.1583f
,
-
0.0584f
,
0.6283f
,
0.4919f
,
0.1856f
,
0.0795f
,
-
0.0332f
};
INDArray
npdata
=
Nd4j
.
createFromArray
(
data
);
HashMap
<
String
,
INDArray
>
feed_data
=
new
HashMap
<
String
,
INDArray
>()
{{
put
(
"x"
,
npdata
);
}};
List
<
String
>
fetch
=
Arrays
.
asList
(
"price"
);
Client
client
=
new
Client
();
List
<
String
>
endpoints
=
Arrays
.
asList
(
"localhost:9393"
);
boolean
succ
=
client
.
connect
(
endpoints
);
if
(
succ
!=
true
)
{
System
.
out
.
println
(
"connect failed."
);
return
false
;
}
PredictFuture
future
=
client
.
asyn_predict
(
feed_data
,
fetch
);
Map
<
String
,
INDArray
>
fetch_map
=
future
.
get
();
if
(
fetch_map
==
null
)
{
System
.
out
.
println
(
"Get future reslut failed"
);
return
false
;
}
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
return
true
;
}
boolean
model_ensemble
()
{
long
[]
data
=
{
8
,
233
,
52
,
601
};
INDArray
npdata
=
Nd4j
.
createFromArray
(
data
);
HashMap
<
String
,
INDArray
>
feed_data
=
new
HashMap
<
String
,
INDArray
>()
{{
put
(
"words"
,
npdata
);
}};
List
<
String
>
fetch
=
Arrays
.
asList
(
"prediction"
);
Client
client
=
new
Client
();
System
.
out
.
println
(
"Hello World!"
);
List
<
String
>
endpoints
=
Arrays
.
asList
(
"localhost:9393"
);
boolean
succ
=
client
.
connect
(
endpoints
);
if
(
succ
!=
true
)
{
System
.
out
.
println
(
"connect failed."
);
return
false
;
}
Map
<
String
,
HashMap
<
String
,
INDArray
>>
fetch_map
=
client
.
ensemble_predict
(
feed_data
,
fetch
);
for
(
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>
entry
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Model = "
+
entry
.
getKey
());
HashMap
<
String
,
INDArray
>
tt
=
entry
.
getValue
();
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
tt
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
}
return
true
;
}
boolean
bert
()
{
float
[]
input_mask
=
{
1.0f
,
1.0f
,
1.0f
,
1.0f
,
1.0f
,
1.0f
,
1.0f
,
1.0f
,
1.0f
,
1.0f
,
1.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
,
0.0f
};
long
[]
position_ids
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
long
[]
input_ids
=
{
101
,
6843
,
3241
,
749
,
8024
,
7662
,
2533
,
1391
,
2533
,
2523
,
7676
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
long
[]
segment_ids
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
HashMap
<
String
,
INDArray
>
feed_data
=
new
HashMap
<
String
,
INDArray
>()
{{
put
(
"input_mask"
,
Nd4j
.
createFromArray
(
input_mask
));
put
(
"position_ids"
,
Nd4j
.
createFromArray
(
position_ids
));
put
(
"input_ids"
,
Nd4j
.
createFromArray
(
input_ids
));
put
(
"segment_ids"
,
Nd4j
.
createFromArray
(
segment_ids
));
}};
List
<
String
>
fetch
=
Arrays
.
asList
(
"pooled_output"
);
Client
client
=
new
Client
();
List
<
String
>
endpoints
=
Arrays
.
asList
(
"localhost:9393"
);
boolean
succ
=
client
.
connect
(
endpoints
);
if
(
succ
!=
true
)
{
System
.
out
.
println
(
"connect failed."
);
return
false
;
}
Map
<
String
,
HashMap
<
String
,
INDArray
>>
fetch_map
=
client
.
ensemble_predict
(
feed_data
,
fetch
);
for
(
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>
entry
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Model = "
+
entry
.
getKey
());
HashMap
<
String
,
INDArray
>
tt
=
entry
.
getValue
();
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
tt
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
}
return
true
;
}
public
static
void
main
(
String
[]
args
)
{
// DL4J(Deep Learning for Java)Document:
// https://www.bookstack.cn/read/deeplearning4j/bcb48e8eeb38b0c6.md
PaddleServingClientExample
e
=
new
PaddleServingClientExample
();
boolean
succ
=
false
;
for
(
String
arg
:
args
)
{
System
.
out
.
format
(
"[Example] %s\n"
,
arg
);
if
(
"fit_a_line"
.
equals
(
arg
))
{
succ
=
e
.
fit_a_line
();
}
else
if
(
"bert"
.
equals
(
arg
))
{
succ
=
e
.
bert
();
}
else
if
(
"model_ensemble"
.
equals
(
arg
))
{
succ
=
e
.
model_ensemble
();
}
else
if
(
"asyn_predict"
.
equals
(
arg
))
{
succ
=
e
.
asyn_predict
();
}
else
if
(
"batch_predict"
.
equals
(
arg
))
{
succ
=
e
.
batch_predict
();
}
else
{
System
.
out
.
format
(
"%s not match: java -cp <jar> PaddleServingClientExample <exp>.\n"
,
arg
);
}
}
if
(
succ
==
true
)
{
System
.
out
.
println
(
"[Example] succ."
);
}
else
{
System
.
out
.
println
(
"[Example] fail."
);
}
}
}
java/src/main/java/io/paddle/serving/client/Client.java
浏览文件 @
14ce96a2
...
...
@@ -7,8 +7,6 @@ import io.grpc.ManagedChannel;
import
io.grpc.ManagedChannelBuilder
;
import
io.grpc.StatusRuntimeException
;
import
com.google.common.util.concurrent.FutureCallback
;
import
com.google.common.util.concurrent.Futures
;
import
com.google.common.util.concurrent.ListenableFuture
;
import
org.nd4j.linalg.api.ndarray.INDArray
;
...
...
@@ -17,6 +15,7 @@ import org.nd4j.linalg.factory.Nd4j;
import
io.paddle.serving.grpc.*
;
import
io.paddle.serving.configure.*
;
import
io.paddle.serving.client.PredictFuture
;
public
class
Client
{
private
ManagedChannel
channel_
;
...
...
@@ -84,7 +83,7 @@ public class Client {
GetClientConfigResponse
resp
;
try
{
resp
=
blockingStub_
.
getClientConfig
(
get_client_config_req
);
}
catch
(
StatusRuntime
Exception
e
)
{
}
catch
(
Exception
e
)
{
System
.
out
.
format
(
"Get Client config failed: %s\n"
,
e
.
toString
());
return
false
;
}
...
...
@@ -298,10 +297,10 @@ public class Client {
return
ensemble_predict
(
feed
,
fetch
,
false
);
}
public
PredictFuture
asyn
c
_predict
(
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
asyn
c
_predict
(
feed
,
fetch
,
false
);
return
asyn_predict
(
feed
,
fetch
,
false
);
}
public
Map
<
String
,
INDArray
>
predict
(
...
...
@@ -324,14 +323,14 @@ public class Client {
return
ensemble_predict
(
feed_batch
,
fetch
,
need_variant_tag
);
}
public
PredictFuture
asyn
c
_predict
(
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>();
feed_batch
.
add
(
feed
);
return
asyn
c
_predict
(
feed_batch
,
fetch
,
need_variant_tag
);
return
asyn_predict
(
feed_batch
,
fetch
,
need_variant_tag
);
}
public
Map
<
String
,
INDArray
>
predict
(
...
...
@@ -346,10 +345,10 @@ public class Client {
return
ensemble_predict
(
feed_batch
,
fetch
,
false
);
}
public
PredictFuture
asyn
c
_predict
(
public
PredictFuture
asyn_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
asyn
c
_predict
(
feed_batch
,
fetch
,
false
);
return
asyn_predict
(
feed_batch
,
fetch
,
false
);
}
public
Map
<
String
,
INDArray
>
predict
(
...
...
@@ -390,7 +389,7 @@ public class Client {
}
}
public
PredictFuture
asyn
c
_predict
(
public
PredictFuture
asyn_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
...
...
@@ -405,35 +404,19 @@ public class Client {
return
predict_future
;
}
public
static
void
main
(
String
[]
args
)
{
// DL4J(Deep Learning for Java)Document:
// https://www.bookstack.cn/read/deeplearning4j/bcb48e8eeb38b0c6.md
//float[] data = {0.0137f, -0.1136f, 0.2553f, -0.0692f,
// 0.0582f, -0.0727f, -0.1583f, -0.0584f,
// 0.6283f, 0.4919f, 0.1856f, 0.0795f, -0.0332f};
//INDArray npdata = Nd4j.createFromArray(data);
//HashMap<String, INDArray> feed_data
// = new HashMap<String, INDArray>() {{
// put("x", npdata);
//}};
//List<String> fetch = Arrays.asList("price");
//Map<String, INDArray> fetch_map = client.predict(feed_data, fetch);
//for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
// System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
//}
long
[]
data
=
{
8
,
233
,
52
,
601
};
float
[]
data
=
{
0.0137f
,
-
0.1136f
,
0.2553f
,
-
0.0692f
,
0.0582f
,
-
0.0727f
,
-
0.1583f
,
-
0.0584f
,
0.6283f
,
0.4919f
,
0.1856f
,
0.0795f
,
-
0.0332f
};
INDArray
npdata
=
Nd4j
.
createFromArray
(
data
);
//System.out.println(npdata);
HashMap
<
String
,
INDArray
>
feed_data
=
new
HashMap
<
String
,
INDArray
>()
{{
put
(
"
words
"
,
npdata
);
put
(
"
x
"
,
npdata
);
}};
List
<
String
>
fetch
=
Arrays
.
asList
(
"pr
ediction
"
);
List
<
String
>
fetch
=
Arrays
.
asList
(
"pr
ice
"
);
Client
client
=
new
Client
();
List
<
String
>
endpoints
=
Arrays
.
asList
(
"localhost:9393"
);
...
...
@@ -443,59 +426,9 @@ public class Client {
return
;
}
Map
<
String
,
HashMap
<
String
,
INDArray
>>
fetch_map
=
client
.
ensemble_predict
(
feed_data
,
fetch
);
for
(
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>
entry
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Model = "
+
entry
.
getKey
());
HashMap
<
String
,
INDArray
>
tt
=
entry
.
getValue
();
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
tt
.
entrySet
())
{
Map
<
String
,
INDArray
>
fetch_map
=
client
.
predict
(
feed_data
,
fetch
);
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
}
}
}
class
PredictFuture
{
private
ListenableFuture
<
InferenceResponse
>
callFuture_
;
private
Function
<
InferenceResponse
,
Map
<
String
,
HashMap
<
String
,
INDArray
>>>
callBackFunc_
;
PredictFuture
(
ListenableFuture
<
InferenceResponse
>
call_future
,
Function
<
InferenceResponse
,
Map
<
String
,
HashMap
<
String
,
INDArray
>>>
call_back_func
)
{
callFuture_
=
call_future
;
callBackFunc_
=
call_back_func
;
}
public
Map
<
String
,
INDArray
>
get
()
throws
Exception
{
InferenceResponse
resp
=
null
;
try
{
resp
=
callFuture_
.
get
();
}
catch
(
Exception
e
)
{
System
.
out
.
format
(
"grpc failed: %s\n"
,
e
.
toString
());
return
null
;
}
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_result
=
callBackFunc_
.
apply
(
resp
);
List
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>
list
=
new
ArrayList
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>(
ensemble_result
.
entrySet
());
if
(
list
.
size
()
!=
1
)
{
System
.
out
.
format
(
"grpc failed: please use get_ensemble impl.\n"
);
return
null
;
}
return
list
.
get
(
0
).
getValue
();
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_get
()
throws
Exception
{
InferenceResponse
resp
=
null
;
try
{
resp
=
callFuture_
.
get
();
}
catch
(
Exception
e
)
{
System
.
out
.
format
(
"grpc failed: %s\n"
,
e
.
toString
());
return
null
;
}
return
callBackFunc_
.
apply
(
resp
);
}
}
java/src/main/java/io/paddle/serving/client/PredictFuture.java
0 → 100644
浏览文件 @
14ce96a2
package
io.paddle.serving.client
;
import
java.util.*
;
import
java.util.function.Function
;
import
io.grpc.StatusRuntimeException
;
import
com.google.common.util.concurrent.ListenableFuture
;
import
org.nd4j.linalg.api.ndarray.INDArray
;
import
io.paddle.serving.client.Client
;
import
io.paddle.serving.grpc.*
;
public
class
PredictFuture
{
private
ListenableFuture
<
InferenceResponse
>
callFuture_
;
private
Function
<
InferenceResponse
,
Map
<
String
,
HashMap
<
String
,
INDArray
>>>
callBackFunc_
;
PredictFuture
(
ListenableFuture
<
InferenceResponse
>
call_future
,
Function
<
InferenceResponse
,
Map
<
String
,
HashMap
<
String
,
INDArray
>>>
call_back_func
)
{
callFuture_
=
call_future
;
callBackFunc_
=
call_back_func
;
}
public
Map
<
String
,
INDArray
>
get
()
{
InferenceResponse
resp
=
null
;
try
{
resp
=
callFuture_
.
get
();
}
catch
(
Exception
e
)
{
System
.
out
.
format
(
"grpc failed: %s\n"
,
e
.
toString
());
return
null
;
}
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_result
=
callBackFunc_
.
apply
(
resp
);
List
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>
list
=
new
ArrayList
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>(
ensemble_result
.
entrySet
());
if
(
list
.
size
()
!=
1
)
{
System
.
out
.
format
(
"grpc failed: please use get_ensemble impl.\n"
);
return
null
;
}
return
list
.
get
(
0
).
getValue
();
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_get
()
{
InferenceResponse
resp
=
null
;
try
{
resp
=
callFuture_
.
get
();
}
catch
(
Exception
e
)
{
System
.
out
.
format
(
"grpc failed: %s\n"
,
e
.
toString
());
return
null
;
}
return
callBackFunc_
.
apply
(
resp
);
}
}
java/src/main/resources/log4j2.xml
0 → 100644
浏览文件 @
14ce96a2
<?xml version="1.0" encoding="UTF-8"?>
<Configuration
status=
"INFO"
>
<Appenders>
<Console
name=
"Console"
target=
"SYSTEM_OUT"
>
<PatternLayout
pattern=
"%highlight{%d{yyyy-MM-dd HH:mm:ss} %C %M %n%p: %m%n}{STYLE=Logback}"
/>
</Console>
</Appenders>
<Loggers>
<Root
level=
"INFO"
>
<AppenderRef
ref=
"Console"
/>
</Root>
</Loggers>
</Configuration>
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录