From 1200ffce09185542a0f8e527a831c2fc6e852713 Mon Sep 17 00:00:00 2001 From: Dong Daxiang <35550832+guru4elephant@users.noreply.github.com> Date: Sun, 22 Mar 2020 14:01:21 +0800 Subject: [PATCH] Update DESIGN_DOC.md --- doc/DESIGN_DOC.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/DESIGN_DOC.md b/doc/DESIGN_DOC.md index f6da3770..312379cd 100644 --- a/doc/DESIGN_DOC.md +++ b/doc/DESIGN_DOC.md @@ -118,7 +118,7 @@ server.run_server() ``` #### 2.1.3 客户端访问API -Paddle Serving支持远程服务访问的协议一种是基于RPC,另一种是HTTP。用户通过RPC访问,可以使用Paddle Serving提供的Python Client API,通过定制输入数据的格式来实现服务访问。下面的例子解释Paddle Serving Client如何定义输入数据。保存可部署模型时需要指定每个输入的别名,例如`sparse`和`dense`,对应的数据可以是离散的ID序列`[1, 1001, 100001]`,也可以是稠密的向量`[0.2, 0.5, 0.1, 0.4, 0.11, 0.22]`。当前Client的设计,对于离散的ID序列,支持Paddle中的`lod_level=0`和`lod_level=1`的情况,即张量以及一维变长张量。对于稠密的向量,支持`N-D Tensor`。用户不想要显式指定输入数据的形状,Paddle Serving的Client API会通过保存配置时记录的输入形状进行对应的检查。 +Paddle Serving支持远程服务访问的协议一种是基于RPC,另一种是HTTP。用户通过RPC访问,可以使用Paddle Serving提供的Python Client API,通过定制输入数据的格式来实现服务访问。下面的例子解释Paddle Serving Client如何定义输入数据。保存可部署模型时需要指定每个输入的别名,例如`sparse`和`dense`,对应的数据可以是离散的ID序列`[1, 1001, 100001]`,也可以是稠密的向量`[0.2, 0.5, 0.1, 0.4, 0.11, 0.22]`。当前Client的设计,对于离散的ID序列,支持Paddle中的`lod_level=0`和`lod_level=1`的情况,即张量以及一维变长张量。对于稠密的向量,支持`N-D Tensor`。用户不需要显式指定输入数据的形状,Paddle Serving的Client API会通过保存配置时记录的输入形状进行对应的检查。 ``` python feed_dict["sparse"] = [1, 1001, 100001] feed_dict["dense"] = [0.2, 0.5, 0.1, 0.4, 0.11, 0.22] @@ -133,7 +133,7 @@ client.connect(["127.0.0.1:9292"]) ### 2.2 底层通信机制 -Paddle Serving采用[baidu-rpc](https://github.com/apache/incubator-brpc)进行底层的通信。baidu-rpc是百度开源的一款PRC通信库,具有高并发、低延时等特点,已经支持了包括百度在内上百万在线预估实例、上千个在线预估服务,稳定可靠。Paddle Serving底层采用baidu-rpc的另一个原因是深度学习模型的远程调用服务通常对延时比较敏感,需要采用一款延时较低的rpc。 +Paddle Serving采用[baidu-rpc](https://github.com/apache/incubator-brpc)进行底层的通信。baidu-rpc是百度开源的一款PRC通信库,具有高并发、低延时等特点,已经支持了包括百度在内上百万在线预估实例、上千个在线预估服务,稳定可靠。 ### 2.3 核心执行引擎 Paddle Serving的核心执行引擎是一个有向无环图,图中的每个节点代表预估服务的一个环节,例如计算模型预测打分就是其中一个环节。有向无环图有利于可并发节点充分利用部署实例内的计算资源,缩短延时。一个例子,当同一份输入需要送入两个不同的模型进行预估,并将两个模型预估的打分进行加权求和时,两个模型的打分过程即可以通过有向无环图的拓扑关系并发。 -- GitLab