Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
09c26365
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
09c26365
编写于
12月 01, 2020
作者:
J
Jiawei Wang
提交者:
GitHub
12月 01, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into 2.0-rc
上级
cbf9b9a5
23b132e4
变更
36
隐藏空白更改
内联
并排
Showing
36 changed file
with
1682 addition
and
879 deletion
+1682
-879
doc/FAQ.md
doc/FAQ.md
+4
-0
doc/GRPC_IMPL_CN.md
doc/GRPC_IMPL_CN.md
+112
-27
python/examples/bert/bert_client.py
python/examples/bert/bert_client.py
+2
-2
python/examples/bert/bert_web_service.py
python/examples/bert/bert_web_service.py
+3
-2
python/examples/imdb/benchmark.py
python/examples/imdb/benchmark.py
+1
-1
python/examples/imdb/test_client.py
python/examples/imdb/test_client.py
+1
-1
python/examples/imdb/text_classify_service.py
python/examples/imdb/text_classify_service.py
+1
-1
python/examples/pipeline/imdb_model_ensemble/config.yml
python/examples/pipeline/imdb_model_ensemble/config.yml
+94
-16
python/examples/pipeline/imdb_model_ensemble/test_pipeline_client.py
...ples/pipeline/imdb_model_ensemble/test_pipeline_client.py
+5
-4
python/examples/pipeline/imdb_model_ensemble/test_pipeline_server.py
...ples/pipeline/imdb_model_ensemble/test_pipeline_server.py
+35
-41
python/examples/pipeline/ocr/README.md
python/examples/pipeline/ocr/README.md
+0
-22
python/examples/pipeline/ocr/README_CN.md
python/examples/pipeline/ocr/README_CN.md
+0
-20
python/examples/pipeline/ocr/config.yml
python/examples/pipeline/ocr/config.yml
+48
-7
python/examples/pipeline/ocr/hybrid_service_pipeline_server.py
...n/examples/pipeline/ocr/hybrid_service_pipeline_server.py
+0
-135
python/examples/pipeline/ocr/local_service_pipeline_server.py
...on/examples/pipeline/ocr/local_service_pipeline_server.py
+0
-136
python/examples/pipeline/ocr/pipeline_rpc_client.py
python/examples/pipeline/ocr/pipeline_rpc_client.py
+2
-2
python/examples/pipeline/ocr/remote_service_pipeline_server.py
...n/examples/pipeline/ocr/remote_service_pipeline_server.py
+0
-129
python/examples/pipeline/ocr/web_service.py
python/examples/pipeline/ocr/web_service.py
+10
-10
python/examples/pipeline/simple_web_service/README.md
python/examples/pipeline/simple_web_service/README.md
+1
-1
python/examples/pipeline/simple_web_service/README_CN.md
python/examples/pipeline/simple_web_service/README_CN.md
+1
-1
python/examples/pipeline/simple_web_service/config.yml
python/examples/pipeline/simple_web_service/config.yml
+24
-5
python/examples/pipeline/simple_web_service/web_service.py
python/examples/pipeline/simple_web_service/web_service.py
+11
-6
python/paddle_serving_app/local_predict.py
python/paddle_serving_app/local_predict.py
+67
-9
python/paddle_serving_app/reader/__init__.py
python/paddle_serving_app/reader/__init__.py
+1
-1
python/paddle_serving_app/reader/pddet/image_tool.py
python/paddle_serving_app/reader/pddet/image_tool.py
+5
-6
python/paddle_serving_server/web_service.py
python/paddle_serving_server/web_service.py
+6
-4
python/paddle_serving_server_gpu/web_service.py
python/paddle_serving_server_gpu/web_service.py
+6
-4
python/pipeline/channel.py
python/pipeline/channel.py
+100
-68
python/pipeline/dag.py
python/pipeline/dag.py
+293
-33
python/pipeline/gateway/proto/gateway.proto
python/pipeline/gateway/proto/gateway.proto
+9
-6
python/pipeline/gateway/proxy_server.go
python/pipeline/gateway/proxy_server.go
+2
-1
python/pipeline/local_service_handler.py
python/pipeline/local_service_handler.py
+136
-41
python/pipeline/operator.py
python/pipeline/operator.py
+577
-105
python/pipeline/pipeline_client.py
python/pipeline/pipeline_client.py
+25
-24
python/pipeline/pipeline_server.py
python/pipeline/pipeline_server.py
+93
-4
python/pipeline/proto/pipeline_service.proto
python/pipeline/proto/pipeline_service.proto
+7
-4
未找到文件。
doc/FAQ.md
浏览文件 @
09c26365
...
...
@@ -41,6 +41,10 @@
**A:**
通过pip命令安装自己编译出的whl包,并设置SERVING_BIN环境变量为编译出的serving二进制文件路径。
#### Q: 使用Java客户端,mvn compile过程出现"No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK?"错误
**A:**
没有安装JDK,或者JAVA_HOME路径配置错误(正确配置是JDK路径,常见错误配置成JRE路径,例如正确路径参考JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.262.b10-0.el7_8.x86_64/")。Java JDK安装参考https://segmentfault.com/a/1190000015389941
## 部署问题
...
...
doc/GRPC_IMPL_CN.md
浏览文件 @
09c26365
# gRPC接口
# gRPC接口使用介绍
-
[
1.与bRPC接口对比
](
#1与brpc接口对比
)
-
[
1.1 服务端对比
](
#11-服务端对比
)
-
[
1.2 客服端对比
](
#12-客服端对比
)
-
[
1.3 其他
](
#13-其他
)
-
[
2.示例:线性回归预测服务
](
#2示例线性回归预测服务
)
-
[
获取数据
](
#获取数据
)
-
[
开启 gRPC 服务端
](
#开启-grpc-服务端
)
-
[
客户端预测
](
#客户端预测
)
-
[
同步预测
](
#同步预测
)
-
[
异步预测
](
#异步预测
)
-
[
Batch 预测
](
#batch-预测
)
-
[
通用 pb 预测
](
#通用-pb-预测
)
-
[
预测超时
](
#预测超时
)
-
[
List 输入
](
#list-输入
)
-
[
3.更多示例
](
#3更多示例
)
使用gRPC接口,Client端可以在Win/Linux/MacOS平台上调用不同语言。gRPC 接口实现结构如下:
![](
https://github.com/PaddlePaddle/Serving/blob/develop/doc/grpc_impl.png
)
## 1.与bRPC接口对比
#### 1.1 服务端对比
*
gRPC Server 端
`load_model_config`
函数添加
`client_config_path`
参数:
gRPC 接口实现形式类似 Web Service:
![](
grpc_impl.png
)
## 与bRPC接口对比
1.
gRPC Server 端
`load_model_config`
函数添加
`client_config_path`
参数:
```
python
```
def load_model_config(self, server_config_paths, client_config_path=None)
```
在一些例子中 bRPC Server 端与 bRPC Client 端的配置文件可能不同(如 在cube local 中,Client 端的数据先交给 cube,经过 cube 处理后再交给预测库),此时 gRPC Server 端需要手动设置 gRPC Client 端的配置
`client_config_path`
。
**`client_config_path` 默认为 `<server_config_path>/serving_server_conf.prototxt`。**
在一些例子中 bRPC Server 端与 bRPC Client 端的配置文件可能是不同的(如 cube local 例子中,Client 端的数据先交给 cube,经过 cube 处理后再交给预测库),所以 gRPC Server 端需要获取 gRPC Client 端的配置;同时为了取消 gRPC Client 端手动加载配置文件的过程,所以设计 gRPC Server 端同时加载两个配置文件。
`client_config_path`
默认为
`<server_config_path>/serving_server_conf.prototxt`
。
#### 1.2 客服端对比
2.
gRPC Client 端取消
`load_client_config`
步骤:
*
gRPC Client 端取消
`load_client_config`
步骤:
在
`connect`
步骤通过 RPC 获取相应的 prototxt(从任意一个 endpoint 获取即可)。
3.
gRPC Client 需要通过 RPC 方式设置 timeout 时间(调用形式与 bRPC Client保持一致)
*
gRPC Client 需要通过 RPC 方式设置 timeout 时间(调用形式与 bRPC Client保持一致)
因为 bRPC Client 在
`connect`
后无法更改 timeout 时间,所以当 gRPC Server 收到变更 timeout 的调用请求时会重新创建 bRPC Client 实例以变更 bRPC Client timeout时间,同时 gRPC Client 会设置 gRPC 的 deadline 时间。
**注意,设置 timeout 接口和 Inference 接口不能同时调用(非线程安全),出于性能考虑暂时不加锁。**
4.
gRPC Client 端
`predict`
函数添加
`asyn`
和
`is_python`
参数:
*
gRPC Client 端
`predict`
函数添加
`asyn`
和
`is_python`
参数:
```
python
```
def predict(self, feed, fetch, need_variant_tag=False, asyn=False, is_python=True)
```
其中,
`asyn`
为异步调用选项。当
`asyn=True`
时为异步调用,返回
`MultiLangPredictFuture`
对象,通过
`MultiLangPredictFuture.result()`
阻塞获取预测值;当
`asyn=Fasle`
为同步调用。
1.
`asyn`
为异步调用选项。当
`asyn=True`
时为异步调用,返回
`MultiLangPredictFuture`
对象,通过
`MultiLangPredictFuture.result()`
阻塞获取预测值;当
`asyn=Fasle`
为同步调用。
2.
`is_python`
为 proto 格式选项。当
`is_python=True`
时,基于 numpy bytes 格式进行数据传输,目前只适用于 Python;当
`is_python=False`
时,以普通数据格式传输,更加通用。使用 numpy bytes 格式传输耗时比普通数据格式小很多(详见
[
#654
](
https://github.com/PaddlePaddle/Serving/pull/654
)
)。
#### 1.3 其他
*
异常处理:当 gRPC Server 端的 bRPC Client 预测失败(返回
`None`
)时,gRPC Client 端同样返回None。其他 gRPC 异常会在 Client 内部捕获,并在返回的 fetch_map 中添加一个 "status_code" 字段来区分是否预测正常(参考 timeout 样例)。
*
由于 gRPC 只支持 pick_first 和 round_robin 负载均衡策略,ABTEST 特性还未打齐。
*
系统兼容性:
*
[x] CentOS
*
[x] macOS
*
[x] Windows
*
已经支持的客户端语言:
-
Python
-
Java
-
Go
## 2.示例:线性回归预测服务
以下是采用gRPC实现的关于线性回归预测的一个示例,具体代码详见此
[
链接
](
https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/grpc_impl_example/fit_a_line
)
#### 获取数据
```
shell
sh get_data.sh
```
#### 开启 gRPC 服务端
```
shell
python test_server.py uci_housing_model/
```
也可以通过下面的一行代码开启默认 gRPC 服务:
```
shell
python
-m
paddle_serving_server.serve
--model
uci_housing_model
--thread
10
--port
9393
--use_multilang
```
注:--use_multilang参数用来启用多语言客户端
### 客户端预测
#### 同步预测
```
shell
python test_sync_client.py
```
#### 异步预测
```
shell
python test_asyn_client.py
```
#### Batch 预测
```
shell
python test_batch_client.py
```
`is_python`
为 proto 格式选项。当
`is_python=True`
时,基于 numpy bytes 格式进行数据传输,目前只适用于 Python;当
`is_python=False`
时,以普通数据格式传输,更加通用。使用 numpy bytes 格式传输耗时比普通数据格式小很多(详见
[
#654
](
https://github.com/PaddlePaddle/Serving/pull/654
)
)。
#### 通用 pb 预测
5.
异常处理:当 gRPC Server 端的 bRPC Client 预测失败(返回
`None`
)时,gRPC Client 端同样返回None。其他 gRPC 异常会在 Client 内部捕获,并在返回的 fetch_map 中添加一个 "status_code" 字段来区分是否预测正常(参考 timeout 样例)。
```
shell
python test_general_pb_client.py
```
6.
由于 gRPC 只支持 pick_first 和 round_robin 负载均衡策略,ABTEST 特性还未打齐。
#### 预测超时
7.
经测试,gRPC 版本可以在 Windows、macOS 平台使用。
```
shell
python test_timeout_client.py
```
8.
计划支持的客户端语言:
#### List 输入
-
[x] Python
-
[ ] Java
-
[ ] Go
-
[ ] JavaScript
```
shell
python test_list_input_client.py
```
##
Python 端的一些例子
##
3.更多示例
详见
`python/examples/grpc_impl_example`
下的示例文件。
详见
[
`python/examples/grpc_impl_example`
](
https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/grpc_impl_example
)
下的示例文件。
python/examples/bert/bert_client.py
浏览文件 @
09c26365
...
...
@@ -23,7 +23,7 @@ args = benchmark_args()
reader
=
ChineseBertReader
({
"max_seq_len"
:
128
})
fetch
=
[
"pooled_output"
]
endpoint_list
=
[
'127.0.0.1:
8861
'
]
endpoint_list
=
[
'127.0.0.1:
9292
'
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
(
endpoint_list
)
...
...
@@ -33,5 +33,5 @@ for line in sys.stdin:
for
key
in
feed_dict
.
keys
():
feed_dict
[
key
]
=
np
.
array
(
feed_dict
[
key
]).
reshape
((
128
,
1
))
#print(feed_dict)
result
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch
)
result
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch
,
batch
=
True
)
print
(
result
)
python/examples/bert/bert_web_service.py
浏览文件 @
09c26365
...
...
@@ -29,13 +29,14 @@ class BertService(WebService):
def
preprocess
(
self
,
feed
=
[],
fetch
=
[]):
feed_res
=
[]
is_batch
=
True
for
ins
in
feed
:
feed_dict
=
self
.
reader
.
process
(
ins
[
"words"
].
encode
(
"utf-8"
))
for
key
in
feed_dict
.
keys
():
feed_dict
[
key
]
=
np
.
array
(
feed_dict
[
key
]).
reshape
(
(
1
,
len
(
feed_dict
[
key
]),
1
))
(
len
(
feed_dict
[
key
]),
1
))
feed_res
.
append
(
feed_dict
)
return
feed_res
,
fetch
return
feed_res
,
fetch
,
is_batch
bert_service
=
BertService
(
name
=
"bert"
)
...
...
python/examples/imdb/benchmark.py
浏览文件 @
09c26365
...
...
@@ -18,7 +18,7 @@ import sys
import
time
import
requests
import
numpy
as
np
from
paddle_serving_app.reader
import
IMDBDataset
from
paddle_serving_app.reader
.imdb_reader
import
IMDBDataset
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
MultiThreadRunner
,
benchmark_args
,
show_latency
...
...
python/examples/imdb/test_client.py
浏览文件 @
09c26365
...
...
@@ -13,7 +13,7 @@
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
IMDBDataset
from
paddle_serving_app.reader
.imdb_reader
import
IMDBDataset
import
sys
import
numpy
as
np
...
...
python/examples/imdb/text_classify_service.py
浏览文件 @
09c26365
...
...
@@ -14,7 +14,7 @@
# pylint: disable=doc-string-missing
from
paddle_serving_server.web_service
import
WebService
from
paddle_serving_app.reader
import
IMDBDataset
from
paddle_serving_app.reader
.imdb_reader
import
IMDBDataset
import
sys
import
numpy
as
np
...
...
python/examples/pipeline/imdb_model_ensemble/config.yml
浏览文件 @
09c26365
rpc_port
:
18080
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port
:
18070
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port
:
18071
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
#当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num
:
4
build_dag_each_worker
:
false
#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG
build_dag_each_worker
:
False
dag
:
is_thread_op
:
true
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op
:
True
#重试次数
retry
:
1
use_profile
:
false
#使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
use_profile
:
False
#channel的最大长度,默认为0
channel_size
:
0
#tracer, 跟踪框架吞吐,每个OP和channel的工作情况。无tracer时不生成数据
tracer
:
#每次trace的时间间隔,单位秒/s
interval_s
:
10
op
:
bow
:
concurrency
:
2
remote_service_conf
:
client_type
:
brpc
model_config
:
imdb_bow_model
devices
:
"
"
rpc_port
:
9393
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
1
#client连接类型,brpc
client_type
:
brpc
#Serving交互重试次数,默认不重试
retry
:
1
#Serving交互超时时间, 单位ms
timeout
:
3000
#Serving IPs
server_endpoints
:
[
"
127.0.0.1:9393"
]
#bow模型client端配置
client_config
:
"
imdb_bow_client_conf/serving_client_conf.prototxt"
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list
:
[
"
prediction"
]
#批量查询Serving的数量, 默认1。batch_size>1要设置auto_batching_timeout,否则不足batch_size时会阻塞
batch_size
:
1
#批量查询超时,与batch_size配合使用
auto_batching_timeout
:
2000
cnn
:
concurrency
:
2
remote_service_conf
:
client_type
:
brpc
model_config
:
imdb_cnn_model
devices
:
"
"
rpc_port
:
9292
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
1
#client连接类型,brpc
client_type
:
brpc
#Serving交互重试次数,默认不重试
retry
:
1
#超时时间, 单位ms
timeout
:
3000
#Serving IPs
server_endpoints
:
[
"
127.0.0.1:9292"
]
#cnn模型client端配置
client_config
:
"
imdb_cnn_client_conf/serving_client_conf.prototxt"
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list
:
[
"
prediction"
]
#批量查询Serving的数量, 默认1。batch_size>1要设置auto_batching_timeout,否则不足batch_size时会阻塞
batch_size
:
1
#批量查询超时,与batch_size配合使用
auto_batching_timeout
:
2000
combine
:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
1
#Serving交互重试次数,默认不重试
retry
:
1
#超时时间, 单位ms
timeout
:
3000
#批量查询Serving的数量, 默认1。batch_size>1要设置auto_batching_timeout,否则不足batch_size时会阻塞
batch_size
:
1
#批量查询超时,与batch_size配合使用
auto_batching_timeout
:
2000
python/examples/pipeline/imdb_model_ensemble/test_pipeline_client.py
浏览文件 @
09c26365
...
...
@@ -15,21 +15,22 @@ from paddle_serving_server.pipeline import PipelineClient
import
numpy
as
np
client
=
PipelineClient
()
client
.
connect
([
'127.0.0.1:180
8
0'
])
client
.
connect
([
'127.0.0.1:180
7
0'
])
words
=
'i am very sad | 0'
futures
=
[]
for
i
in
range
(
4
):
for
i
in
range
(
100
):
futures
.
append
(
client
.
predict
(
feed_dict
=
{
"words"
:
words
},
feed_dict
=
{
"words"
:
words
,
"logid"
:
10000
+
i
},
fetch
=
[
"prediction"
],
asyn
=
True
,
profile
=
False
))
for
f
in
futures
:
res
=
f
.
result
()
if
res
[
"ecode"
]
!=
0
:
if
res
.
err_no
!=
0
:
print
(
"predict failed: {}"
.
format
(
res
))
print
(
res
)
python/examples/pipeline/imdb_model_ensemble/test_pipeline_server.py
浏览文件 @
09c26365
...
...
@@ -15,10 +15,14 @@
from
paddle_serving_server.pipeline
import
Op
,
RequestOp
,
ResponseOp
from
paddle_serving_server.pipeline
import
PipelineServer
from
paddle_serving_server.pipeline.proto
import
pipeline_service_pb2
from
paddle_serving_server.pipeline.channel
import
ChannelDataEcode
from
paddle_serving_server.pipeline.channel
import
ChannelDataE
rr
code
import
numpy
as
np
from
paddle_serving_app.reader
import
IMDBDataset
from
paddle_serving_app.reader
.imdb_reader
import
IMDBDataset
import
logging
try
:
from
paddle_serving_server.web_service
import
WebService
except
ImportError
:
from
paddle_serving_server_gpu.web_service
import
WebService
_LOGGER
=
logging
.
getLogger
()
user_handler
=
logging
.
StreamHandler
()
...
...
@@ -43,76 +47,66 @@ class ImdbRequestOp(RequestOp):
word_ids
,
_
=
self
.
imdb_dataset
.
get_words_and_label
(
words
)
word_len
=
len
(
word_ids
)
dictdata
[
key
]
=
np
.
array
(
word_ids
).
reshape
(
word_len
,
1
)
dictdata
[
"{}.lod"
.
format
(
key
)]
=
[
0
,
word_len
]
return
dictdata
dictdata
[
"{}.lod"
.
format
(
key
)]
=
np
.
array
([
0
,
word_len
])
log_id
=
None
if
request
.
logid
is
not
None
:
log_id
=
request
.
logid
return
dictdata
,
log_id
,
None
,
""
class
CombineOp
(
Op
):
def
preprocess
(
self
,
input_data
):
def
preprocess
(
self
,
input_data
,
data_id
,
log_id
):
#_LOGGER.info("Enter CombineOp::preprocess")
combined_prediction
=
0
for
op_name
,
data
in
input_data
.
items
():
_LOGGER
.
info
(
"{}: {}"
.
format
(
op_name
,
data
[
"prediction"
]))
combined_prediction
+=
data
[
"prediction"
]
data
=
{
"prediction"
:
combined_prediction
/
2
}
return
data
return
data
,
False
,
None
,
""
class
ImdbResponseOp
(
ResponseOp
):
# Here ImdbResponseOp is consistent with the default ResponseOp implementation
def
pack_response_package
(
self
,
channeldata
):
resp
=
pipeline_service_pb2
.
Response
()
resp
.
e
code
=
channeldata
.
e
code
if
resp
.
e
code
==
ChannelDataE
code
.
OK
.
value
:
resp
.
e
rr_no
=
channeldata
.
error_
code
if
resp
.
e
rr_no
==
ChannelDataErr
code
.
OK
.
value
:
feed
=
channeldata
.
parse
()
# ndarray to string
for
name
,
var
in
feed
.
items
():
resp
.
value
.
append
(
var
.
__repr__
())
resp
.
key
.
append
(
name
)
else
:
resp
.
err
or_info
=
channeldata
.
error_info
resp
.
err
_msg
=
channeldata
.
error_info
return
resp
read_op
=
ImdbRequestOp
()
bow_op
=
Op
(
name
=
"bow"
,
input_ops
=
[
read_op
],
server_endpoints
=
[
"127.0.0.1:9393"
],
fetch_list
=
[
"prediction"
],
client_config
=
"imdb_bow_client_conf/serving_client_conf.prototxt"
,
client_type
=
'brpc'
,
concurrency
=
1
,
timeout
=-
1
,
retry
=
1
,
batch_size
=
1
,
auto_batching_timeout
=
None
)
cnn_op
=
Op
(
name
=
"cnn"
,
input_ops
=
[
read_op
],
server_endpoints
=
[
"127.0.0.1:9292"
],
fetch_list
=
[
"prediction"
],
client_config
=
"imdb_cnn_client_conf/serving_client_conf.prototxt"
,
client_type
=
'brpc'
,
concurrency
=
1
,
timeout
=-
1
,
retry
=
1
,
batch_size
=
1
,
auto_batching_timeout
=
None
)
combine_op
=
CombineOp
(
name
=
"combine"
,
input_ops
=
[
bow_op
,
cnn_op
],
concurrency
=
1
,
timeout
=-
1
,
retry
=
1
,
batch_size
=
2
,
auto_batching_timeout
=
None
)
class
BowOp
(
Op
):
def
init_op
(
self
):
pass
class
CnnOp
(
Op
):
def
init_op
(
self
):
pass
bow_op
=
BowOp
(
"bow"
,
input_ops
=
[
read_op
])
cnn_op
=
CnnOp
(
"cnn"
,
input_ops
=
[
read_op
])
combine_op
=
CombineOp
(
"combine"
,
input_ops
=
[
bow_op
,
cnn_op
])
# fetch output of bow_op
#
response_op = ImdbResponseOp(input_ops=[bow_op])
#response_op = ImdbResponseOp(input_ops=[bow_op])
# fetch output of combine_op
response_op
=
ImdbResponseOp
(
input_ops
=
[
combine_op
])
# use default ResponseOp implementation
#
response_op = ResponseOp(input_ops=[combine_op])
#response_op = ResponseOp(input_ops=[combine_op])
server
=
PipelineServer
()
server
.
set_response_op
(
response_op
)
...
...
python/examples/pipeline/ocr/README.md
浏览文件 @
09c26365
...
...
@@ -28,31 +28,9 @@ python web_service.py &>log.txt &
python pipeline_http_client.py
```
<!--
## More (PipelineServing)
You can choose one of the following versions to start Service.
### Remote Service Version
```
python -m paddle_serving_server_gpu.serve --model ocr_det_model --port 12000 --gpu_id 0 &> det.log &
python -m paddle_serving_server_gpu.serve --model ocr_rec_model --port 12001 --gpu_id 0 &> rec.log &
python remote_service_pipeline_server.py &>pipeline.log &
```
### Local Service Version
```
python local_service_pipeline_server.py &>pipeline.log &
```
### Hybrid Service Version
```
python -m paddle_serving_server_gpu.serve --model ocr_rec_model --port 12001 --gpu_id 0 &> rec.log &
python hybrid_service_pipeline_server.py &>pipeline.log &
```
## Client Prediction
### RPC
...
...
python/examples/pipeline/ocr/README_CN.md
浏览文件 @
09c26365
...
...
@@ -31,26 +31,6 @@ python pipeline_http_client.py
<!--
## 其他 (PipelineServing)
你可以选择下面任意一种版本启动服务。
### 远程服务版本
```
python -m paddle_serving_server.serve --model ocr_det_model --port 12000 --gpu_id 0 &> det.log &
python -m paddle_serving_server.serve --model ocr_rec_model --port 12001 --gpu_id 0 &> rec.log &
python remote_service_pipeline_server.py &>pipeline.log &
```
### 本地服务版本
```
python local_service_pipeline_server.py &>pipeline.log &
```
### 混合服务版本
```
python -m paddle_serving_server_gpu.serve --model ocr_rec_model --port 12001 --gpu_id 0 &> rec.log &
python hybrid_service_pipeline_server.py &>pipeline.log &
```
## 启动客户端
### RPC
...
...
python/examples/pipeline/ocr/config.yml
浏览文件 @
09c26365
rpc_port
:
18080
worker_num
:
4
build_dag_each_worker
:
false
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port
:
18090
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port
:
9999
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num
:
1
#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG
build_dag_each_worker
:
false
dag
:
is_thread_op
:
false
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op
:
False
#重试次数
retry
:
1
#使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
use_profile
:
false
op
:
det
:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
2
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf
:
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type
:
local_predictor
#det模型路径
model_config
:
ocr_det_model
devices
:
"
"
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list
:
[
"
concat_1.tmp_0"
]
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices
:
"
0"
rec
:
concurrency
:
1
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
2
#超时时间, 单位ms
timeout
:
-1
#Serving交互重试次数,默认不重试
retry
:
1
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf
:
#client类型,包括brpc, grpc和local_predictor。local_predictor不启动Serving服务,进程内预测
client_type
:
local_predictor
#rec模型路径
model_config
:
ocr_rec_model
devices
:
"
"
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list
:
[
"
ctc_greedy_decoder_0.tmp_0"
,
"
softmax_0.tmp_0"
]
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices
:
"
0"
python/examples/pipeline/ocr/hybrid_service_pipeline_server.py
已删除
100644 → 0
浏览文件 @
cbf9b9a5
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_server_gpu.pipeline
import
Op
,
RequestOp
,
ResponseOp
from
paddle_serving_server_gpu.pipeline
import
PipelineServer
from
paddle_serving_server_gpu.pipeline.proto
import
pipeline_service_pb2
from
paddle_serving_server_gpu.pipeline.channel
import
ChannelDataEcode
from
paddle_serving_server_gpu.pipeline
import
LocalRpcServiceHandler
import
numpy
as
np
import
cv2
import
time
import
base64
import
json
from
paddle_serving_app.reader
import
OCRReader
from
paddle_serving_app.reader
import
Sequential
,
ResizeByFactor
from
paddle_serving_app.reader
import
Div
,
Normalize
,
Transpose
from
paddle_serving_app.reader
import
DBPostProcess
,
FilterBoxes
,
GetRotateCropImage
,
SortedBoxes
import
time
import
re
import
base64
import
logging
_LOGGER
=
logging
.
getLogger
()
class
DetOp
(
Op
):
def
init_op
(
self
):
self
.
det_preprocess
=
Sequential
([
ResizeByFactor
(
32
,
960
),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
]),
Transpose
(
(
2
,
0
,
1
))
])
self
.
filter_func
=
FilterBoxes
(
10
,
10
)
self
.
post_func
=
DBPostProcess
({
"thresh"
:
0.3
,
"box_thresh"
:
0.5
,
"max_candidates"
:
1000
,
"unclip_ratio"
:
1.5
,
"min_size"
:
3
})
def
preprocess
(
self
,
input_dicts
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
data
=
base64
.
b64decode
(
input_dict
[
"image"
].
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
# Note: class variables(self.var) can only be used in process op mode
self
.
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
self
.
ori_h
,
self
.
ori_w
,
_
=
self
.
im
.
shape
det_img
=
self
.
det_preprocess
(
self
.
im
)
_
,
self
.
new_h
,
self
.
new_w
=
det_img
.
shape
return
{
"image"
:
det_img
}
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
det_out
=
fetch_dict
[
"concat_1.tmp_0"
]
ratio_list
=
[
float
(
self
.
new_h
)
/
self
.
ori_h
,
float
(
self
.
new_w
)
/
self
.
ori_w
]
dt_boxes_list
=
self
.
post_func
(
det_out
,
[
ratio_list
])
dt_boxes
=
self
.
filter_func
(
dt_boxes_list
[
0
],
[
self
.
ori_h
,
self
.
ori_w
])
out_dict
=
{
"dt_boxes"
:
dt_boxes
,
"image"
:
self
.
im
}
return
out_dict
class
RecOp
(
Op
):
def
init_op
(
self
):
self
.
ocr_reader
=
OCRReader
()
self
.
get_rotate_crop_image
=
GetRotateCropImage
()
self
.
sorted_boxes
=
SortedBoxes
()
def
preprocess
(
self
,
input_dicts
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
im
=
input_dict
[
"image"
]
dt_boxes
=
input_dict
[
"dt_boxes"
]
dt_boxes
=
self
.
sorted_boxes
(
dt_boxes
)
feed_list
=
[]
img_list
=
[]
max_wh_ratio
=
0
for
i
,
dtbox
in
enumerate
(
dt_boxes
):
boximg
=
self
.
get_rotate_crop_image
(
im
,
dt_boxes
[
i
])
img_list
.
append
(
boximg
)
h
,
w
=
boximg
.
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
for
img
in
img_list
:
norm_img
=
self
.
ocr_reader
.
resize_norm_img
(
img
,
max_wh_ratio
)
feed
=
{
"image"
:
norm_img
}
feed_list
.
append
(
feed
)
return
feed_list
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
rec_res
=
self
.
ocr_reader
.
postprocess
(
fetch_dict
,
with_score
=
True
)
res_lst
=
[]
for
res
in
rec_res
:
res_lst
.
append
(
res
[
0
])
res
=
{
"res"
:
str
(
res_lst
)}
return
res
read_op
=
RequestOp
()
det_op
=
DetOp
(
name
=
"det"
,
input_ops
=
[
read_op
],
local_rpc_service_handler
=
LocalRpcServiceHandler
(
model_config
=
"ocr_det_model"
,
workdir
=
"det_workdir"
,
# defalut: "workdir"
thread_num
=
2
,
# defalut: 2
devices
=
"0"
,
# gpu0. defalut: "" (cpu)
mem_optim
=
True
,
# defalut: True
ir_optim
=
False
,
# defalut: False
available_port_generator
=
None
),
# defalut: None
concurrency
=
1
)
rec_op
=
RecOp
(
name
=
"rec"
,
input_ops
=
[
det_op
],
server_endpoints
=
[
"127.0.0.1:12001"
],
fetch_list
=
[
"ctc_greedy_decoder_0.tmp_0"
,
"softmax_0.tmp_0"
],
client_config
=
"ocr_rec_client/serving_client_conf.prototxt"
,
concurrency
=
1
)
response_op
=
ResponseOp
(
input_ops
=
[
rec_op
])
server
=
PipelineServer
(
"ocr"
)
server
.
set_response_op
(
response_op
)
server
.
prepare_server
(
'config.yml'
)
server
.
run_server
()
python/examples/pipeline/ocr/local_service_pipeline_server.py
已删除
100644 → 0
浏览文件 @
cbf9b9a5
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_server.pipeline
import
Op
,
RequestOp
,
ResponseOp
from
paddle_serving_server.pipeline
import
PipelineServer
from
paddle_serving_server.pipeline.proto
import
pipeline_service_pb2
from
paddle_serving_server.pipeline.channel
import
ChannelDataEcode
from
paddle_serving_server.pipeline
import
LocalServiceHandler
import
numpy
as
np
import
cv2
import
time
import
base64
import
json
from
paddle_serving_app.reader
import
OCRReader
from
paddle_serving_app.reader
import
Sequential
,
ResizeByFactor
from
paddle_serving_app.reader
import
Div
,
Normalize
,
Transpose
from
paddle_serving_app.reader
import
DBPostProcess
,
FilterBoxes
,
GetRotateCropImage
,
SortedBoxes
import
time
import
re
import
base64
import
logging
_LOGGER
=
logging
.
getLogger
()
class
DetOp
(
Op
):
def
init_op
(
self
):
self
.
det_preprocess
=
Sequential
([
ResizeByFactor
(
32
,
960
),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
]),
Transpose
(
(
2
,
0
,
1
))
])
self
.
filter_func
=
FilterBoxes
(
10
,
10
)
self
.
post_func
=
DBPostProcess
({
"thresh"
:
0.3
,
"box_thresh"
:
0.5
,
"max_candidates"
:
1000
,
"unclip_ratio"
:
1.5
,
"min_size"
:
3
})
def
preprocess
(
self
,
input_dicts
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
data
=
base64
.
b64decode
(
input_dict
[
"image"
].
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
# Note: class variables(self.var) can only be used in process op mode
self
.
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
print
(
self
.
im
)
self
.
ori_h
,
self
.
ori_w
,
_
=
self
.
im
.
shape
det_img
=
self
.
det_preprocess
(
self
.
im
)
_
,
self
.
new_h
,
self
.
new_w
=
det_img
.
shape
print
(
"image"
,
det_img
)
return
{
"image"
:
det_img
}
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
det_out
=
fetch_dict
[
"concat_1.tmp_0"
]
ratio_list
=
[
float
(
self
.
new_h
)
/
self
.
ori_h
,
float
(
self
.
new_w
)
/
self
.
ori_w
]
dt_boxes_list
=
self
.
post_func
(
det_out
,
[
ratio_list
])
dt_boxes
=
self
.
filter_func
(
dt_boxes_list
[
0
],
[
self
.
ori_h
,
self
.
ori_w
])
out_dict
=
{
"dt_boxes"
:
dt_boxes
,
"image"
:
self
.
im
}
return
out_dict
class
RecOp
(
Op
):
def
init_op
(
self
):
self
.
ocr_reader
=
OCRReader
()
self
.
get_rotate_crop_image
=
GetRotateCropImage
()
self
.
sorted_boxes
=
SortedBoxes
()
def
preprocess
(
self
,
input_dicts
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
im
=
input_dict
[
"image"
]
dt_boxes
=
input_dict
[
"dt_boxes"
]
dt_boxes
=
self
.
sorted_boxes
(
dt_boxes
)
feed_list
=
[]
img_list
=
[]
max_wh_ratio
=
0
for
i
,
dtbox
in
enumerate
(
dt_boxes
):
boximg
=
self
.
get_rotate_crop_image
(
im
,
dt_boxes
[
i
])
img_list
.
append
(
boximg
)
h
,
w
=
boximg
.
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
for
img
in
img_list
:
norm_img
=
self
.
ocr_reader
.
resize_norm_img
(
img
,
max_wh_ratio
)
feed
=
{
"image"
:
norm_img
}
feed_list
.
append
(
feed
)
return
feed_list
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
rec_res
=
self
.
ocr_reader
.
postprocess
(
fetch_dict
,
with_score
=
True
)
res_lst
=
[]
for
res
in
rec_res
:
res_lst
.
append
(
res
[
0
])
res
=
{
"res"
:
str
(
res_lst
)}
return
res
read_op
=
RequestOp
()
det_op
=
DetOp
(
name
=
"det"
,
input_ops
=
[
read_op
],
client_type
=
"local_predictor"
,
local_service_handler
=
LocalServiceHandler
(
model_config
=
"ocr_det_model"
,
workdir
=
"det_workdir"
,
# defalut: "workdir"
thread_num
=
2
,
# defalut: 2
mem_optim
=
True
,
# defalut: True
ir_optim
=
False
,
# defalut: False
available_port_generator
=
None
),
# defalut: None
concurrency
=
1
)
rec_op
=
RecOp
(
name
=
"rec"
,
input_ops
=
[
det_op
],
client_type
=
"local_predictor"
,
local_service_handler
=
LocalServiceHandler
(
model_config
=
"ocr_rec_model"
),
concurrency
=
1
)
response_op
=
ResponseOp
(
input_ops
=
[
rec_op
])
server
=
PipelineServer
(
"ocr"
)
server
.
set_response_op
(
response_op
)
server
.
prepare_server
(
'config.yml'
)
server
.
run_server
()
python/examples/pipeline/ocr/pipeline_rpc_client.py
浏览文件 @
09c26365
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_server.pipeline
import
PipelineClient
from
paddle_serving_server
_gpu
.pipeline
import
PipelineClient
import
numpy
as
np
import
requests
import
json
...
...
@@ -20,7 +20,7 @@ import base64
import
os
client
=
PipelineClient
()
client
.
connect
([
'127.0.0.1:180
8
0'
])
client
.
connect
([
'127.0.0.1:180
9
0'
])
def
cv2_to_base64
(
image
):
...
...
python/examples/pipeline/ocr/remote_service_pipeline_server.py
已删除
100644 → 0
浏览文件 @
cbf9b9a5
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
paddle_serving_server_gpu.pipeline
import
Op
,
RequestOp
,
ResponseOp
from
paddle_serving_server_gpu.pipeline
import
PipelineServer
from
paddle_serving_server_gpu.pipeline.proto
import
pipeline_service_pb2
from
paddle_serving_server_gpu.pipeline.channel
import
ChannelDataEcode
import
numpy
as
np
import
cv2
import
time
import
base64
import
json
from
paddle_serving_app.reader
import
OCRReader
from
paddle_serving_app.reader
import
Sequential
,
ResizeByFactor
from
paddle_serving_app.reader
import
Div
,
Normalize
,
Transpose
from
paddle_serving_app.reader
import
DBPostProcess
,
FilterBoxes
,
GetRotateCropImage
,
SortedBoxes
import
time
import
re
import
base64
import
logging
_LOGGER
=
logging
.
getLogger
()
class
DetOp
(
Op
):
def
init_op
(
self
):
self
.
det_preprocess
=
Sequential
([
ResizeByFactor
(
32
,
960
),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
]),
Transpose
(
(
2
,
0
,
1
))
])
self
.
filter_func
=
FilterBoxes
(
10
,
10
)
self
.
post_func
=
DBPostProcess
({
"thresh"
:
0.3
,
"box_thresh"
:
0.5
,
"max_candidates"
:
1000
,
"unclip_ratio"
:
1.5
,
"min_size"
:
3
})
def
preprocess
(
self
,
input_dicts
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
data
=
base64
.
b64decode
(
input_dict
[
"image"
].
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
# Note: class variables(self.var) can only be used in process op mode
self
.
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
self
.
ori_h
,
self
.
ori_w
,
_
=
self
.
im
.
shape
det_img
=
self
.
det_preprocess
(
self
.
im
)
_
,
self
.
new_h
,
self
.
new_w
=
det_img
.
shape
return
{
"image"
:
det_img
}
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
det_out
=
fetch_dict
[
"concat_1.tmp_0"
]
ratio_list
=
[
float
(
self
.
new_h
)
/
self
.
ori_h
,
float
(
self
.
new_w
)
/
self
.
ori_w
]
dt_boxes_list
=
self
.
post_func
(
det_out
,
[
ratio_list
])
dt_boxes
=
self
.
filter_func
(
dt_boxes_list
[
0
],
[
self
.
ori_h
,
self
.
ori_w
])
out_dict
=
{
"dt_boxes"
:
dt_boxes
,
"image"
:
self
.
im
}
return
out_dict
class
RecOp
(
Op
):
def
init_op
(
self
):
self
.
ocr_reader
=
OCRReader
()
self
.
get_rotate_crop_image
=
GetRotateCropImage
()
self
.
sorted_boxes
=
SortedBoxes
()
def
preprocess
(
self
,
input_dicts
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
im
=
input_dict
[
"image"
]
dt_boxes
=
input_dict
[
"dt_boxes"
]
dt_boxes
=
self
.
sorted_boxes
(
dt_boxes
)
feed_list
=
[]
img_list
=
[]
max_wh_ratio
=
0
for
i
,
dtbox
in
enumerate
(
dt_boxes
):
boximg
=
self
.
get_rotate_crop_image
(
im
,
dt_boxes
[
i
])
img_list
.
append
(
boximg
)
h
,
w
=
boximg
.
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
for
img
in
img_list
:
norm_img
=
self
.
ocr_reader
.
resize_norm_img
(
img
,
max_wh_ratio
)
feed
=
{
"image"
:
norm_img
}
feed_list
.
append
(
feed
)
return
feed_list
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
rec_res
=
self
.
ocr_reader
.
postprocess
(
fetch_dict
,
with_score
=
True
)
res_lst
=
[]
for
res
in
rec_res
:
res_lst
.
append
(
res
[
0
])
res
=
{
"res"
:
str
(
res_lst
)}
return
res
read_op
=
RequestOp
()
det_op
=
DetOp
(
name
=
"det"
,
input_ops
=
[
read_op
],
server_endpoints
=
[
"127.0.0.1:12000"
],
fetch_list
=
[
"concat_1.tmp_0"
],
client_config
=
"ocr_det_client/serving_client_conf.prototxt"
,
concurrency
=
1
)
rec_op
=
RecOp
(
name
=
"rec"
,
input_ops
=
[
det_op
],
server_endpoints
=
[
"127.0.0.1:12001"
],
fetch_list
=
[
"ctc_greedy_decoder_0.tmp_0"
,
"softmax_0.tmp_0"
],
client_config
=
"ocr_rec_client/serving_client_conf.prototxt"
,
concurrency
=
1
)
response_op
=
ResponseOp
(
input_ops
=
[
rec_op
])
server
=
PipelineServer
(
"ocr"
)
server
.
set_response_op
(
response_op
)
server
.
prepare_server
(
'config.yml'
)
server
.
run_server
()
python/examples/pipeline/ocr/web_service.py
浏览文件 @
09c26365
...
...
@@ -14,7 +14,7 @@
try
:
from
paddle_serving_server.web_service
import
WebService
,
Op
except
ImportError
:
from
paddle_serving_server.web_service
import
WebService
,
Op
from
paddle_serving_server
_gpu
.web_service
import
WebService
,
Op
import
logging
import
numpy
as
np
import
cv2
...
...
@@ -43,7 +43,7 @@ class DetOp(Op):
"min_size"
:
3
})
def
preprocess
(
self
,
input_dicts
):
def
preprocess
(
self
,
input_dicts
,
data_id
,
log_id
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
data
=
base64
.
b64decode
(
input_dict
[
"image"
].
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
...
...
@@ -52,9 +52,9 @@ class DetOp(Op):
self
.
ori_h
,
self
.
ori_w
,
_
=
self
.
im
.
shape
det_img
=
self
.
det_preprocess
(
self
.
im
)
_
,
self
.
new_h
,
self
.
new_w
=
det_img
.
shape
return
{
"image"
:
det_img
[
np
.
newaxis
,
:]
}
return
{
"image"
:
det_img
[
np
.
newaxis
,
:]
.
copy
()},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
det_out
=
fetch_dict
[
"concat_1.tmp_0"
]
ratio_list
=
[
float
(
self
.
new_h
)
/
self
.
ori_h
,
float
(
self
.
new_w
)
/
self
.
ori_w
...
...
@@ -63,7 +63,7 @@ class DetOp(Op):
dt_boxes
=
self
.
filter_func
(
dt_boxes_list
[
0
],
[
self
.
ori_h
,
self
.
ori_w
])
out_dict
=
{
"dt_boxes"
:
dt_boxes
,
"image"
:
self
.
im
}
print
(
"out dict"
,
out_dict
)
return
out_dict
return
out_dict
,
None
,
""
class
RecOp
(
Op
):
...
...
@@ -72,7 +72,7 @@ class RecOp(Op):
self
.
get_rotate_crop_image
=
GetRotateCropImage
()
self
.
sorted_boxes
=
SortedBoxes
()
def
preprocess
(
self
,
input_dicts
):
def
preprocess
(
self
,
input_dicts
,
data_id
,
log_id
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
im
=
input_dict
[
"image"
]
dt_boxes
=
input_dict
[
"dt_boxes"
]
...
...
@@ -93,15 +93,15 @@ class RecOp(Op):
norm_img
=
self
.
ocr_reader
.
resize_norm_img
(
img
,
max_wh_ratio
)
imgs
[
id
]
=
norm_img
feed
=
{
"image"
:
imgs
.
copy
()}
return
feed
return
feed
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
rec_res
=
self
.
ocr_reader
.
postprocess
(
fetch_dict
,
with_score
=
True
)
res_lst
=
[]
for
res
in
rec_res
:
res_lst
.
append
(
res
[
0
])
res
=
{
"res"
:
str
(
res_lst
)}
return
res
return
res
,
None
,
""
class
OcrService
(
WebService
):
...
...
@@ -112,5 +112,5 @@ class OcrService(WebService):
uci_service
=
OcrService
(
name
=
"ocr"
)
uci_service
.
prepare_pipeline_config
(
"
brpc_
config.yml"
)
uci_service
.
prepare_pipeline_config
(
"config.yml"
)
uci_service
.
run_service
()
python/examples/pipeline/simple_web_service/README.md
浏览文件 @
09c26365
...
...
@@ -15,5 +15,5 @@ python web_service.py &>log.txt &
## Http test
```
curl -X POST -k http://localhost:1808
0
/uci/prediction -d '{"key": ["x"], "value": ["0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332"]}'
curl -X POST -k http://localhost:1808
2
/uci/prediction -d '{"key": ["x"], "value": ["0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332"]}'
```
python/examples/pipeline/simple_web_service/README_CN.md
浏览文件 @
09c26365
...
...
@@ -15,5 +15,5 @@ python web_service.py &>log.txt &
## 测试
```
curl -X POST -k http://localhost:1808
0
/uci/prediction -d '{"key": ["x"], "value": ["0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332"]}'
curl -X POST -k http://localhost:1808
2
/uci/prediction -d '{"key": ["x"], "value": ["0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332"]}'
```
python/examples/pipeline/simple_web_service/config.yml
浏览文件 @
09c26365
worker_num
:
4
http_port
:
18080
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num
:
1
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port
:
18082
dag
:
is_thread_op
:
false
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op
:
False
op
:
uci
:
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf
:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
2
#uci模型路径
model_config
:
uci_housing_model
devices
:
"
"
# "0,1"
client_type
:
brpc
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices
:
"
0"
# "0,1"
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type
:
local_predictor
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list
:
[
"
price"
]
python/examples/pipeline/simple_web_service/web_service.py
浏览文件 @
09c26365
...
...
@@ -25,20 +25,25 @@ class UciOp(Op):
def
init_op
(
self
):
self
.
separator
=
","
def
preprocess
(
self
,
input_dicts
):
def
preprocess
(
self
,
input_dicts
,
data_id
,
log_id
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
_LOGGER
.
info
(
input_dict
)
_LOGGER
.
error
(
"UciOp::preprocess >>> log_id:{}, input:{}"
.
format
(
log_id
,
input_dict
))
x_value
=
input_dict
[
"x"
]
proc_dict
=
{}
if
isinstance
(
x_value
,
(
str
,
unicode
)):
input_dict
[
"x"
]
=
np
.
array
(
[
float
(
x
.
strip
())
for
x
in
x_value
.
split
(
self
.
separator
)]).
reshape
(
1
,
13
)
return
input_dict
_LOGGER
.
error
(
"input_dict:{}"
.
format
(
input_dict
))
def
postprocess
(
self
,
input_dicts
,
fetch_dict
):
# _LOGGER.info(fetch_dict)
return
input_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
_LOGGER
.
info
(
"UciOp::postprocess >>> log_id:{}, fetch_dict:{}"
.
format
(
log_id
,
fetch_dict
))
fetch_dict
[
"price"
]
=
str
(
fetch_dict
[
"price"
][
0
][
0
])
return
fetch_dict
return
fetch_dict
,
None
,
""
class
UciService
(
WebService
):
...
...
python/paddle_serving_app/local_predict.py
浏览文件 @
09c26365
...
...
@@ -32,6 +32,12 @@ logger.setLevel(logging.INFO)
class
LocalPredictor
(
object
):
"""
Prediction in the current process of the local environment, in process
call, Compared with RPC/HTTP, LocalPredictor has better performance,
because of no network and packaging load.
"""
def
__init__
(
self
):
self
.
feed_names_
=
[]
self
.
fetch_names_
=
[]
...
...
@@ -42,13 +48,41 @@ class LocalPredictor(object):
self
.
fetch_names_to_idx_
=
{}
self
.
fetch_names_to_type_
=
{}
def
load_model_config
(
self
,
model_path
,
gpu
=
False
,
profile
=
True
,
cpu_num
=
1
):
def
load_model_config
(
self
,
model_path
,
use_gpu
=
False
,
gpu_id
=
0
,
use_profile
=
False
,
thread_num
=
1
,
mem_optim
=
True
,
ir_optim
=
False
,
use_trt
=
False
,
use_feed_fetch_ops
=
False
):
"""
Load model config and set the engine config for the paddle predictor
Args:
model_path: model config path.
use_gpu: calculating with gpu, False default.
gpu_id: gpu id, 0 default.
use_profile: use predictor profiles, False default.
thread_num: thread nums, default 1.
mem_optim: memory optimization, True default.
ir_optim: open calculation chart optimization, False default.
use_trt: use nvidia TensorRT optimization, False default
use_feed_fetch_ops: use feed/fetch ops, False default.
"""
client_config
=
"{}/serving_server_conf.prototxt"
.
format
(
model_path
)
model_conf
=
m_config
.
GeneralModelConfig
()
f
=
open
(
client_config
,
'r'
)
model_conf
=
google
.
protobuf
.
text_format
.
Merge
(
str
(
f
.
read
()),
model_conf
)
config
=
AnalysisConfig
(
model_path
)
logger
.
info
(
"load_model_config params: model_path:{}, use_gpu:{},
\
gpu_id:{}, use_profile:{}, thread_num:{}, mem_optim:{}, ir_optim:{},
\
use_trt:{}, use_feed_fetch_ops:{}"
.
format
(
model_path
,
use_gpu
,
gpu_id
,
use_profile
,
thread_num
,
mem_optim
,
ir_optim
,
use_trt
,
use_feed_fetch_ops
))
self
.
feed_names_
=
[
var
.
alias_name
for
var
in
model_conf
.
feed_var
]
self
.
fetch_names_
=
[
var
.
alias_name
for
var
in
model_conf
.
fetch_var
]
...
...
@@ -64,19 +98,43 @@ class LocalPredictor(object):
self
.
fetch_names_to_idx_
[
var
.
alias_name
]
=
i
self
.
fetch_names_to_type_
[
var
.
alias_name
]
=
var
.
fetch_type
if
not
gpu
:
config
.
disable_gpu
()
else
:
config
.
enable_use_gpu
(
100
,
0
)
if
profile
:
if
use_profile
:
config
.
enable_profile
()
if
mem_optim
:
config
.
enable_memory_optim
()
config
.
switch_ir_optim
(
ir_optim
)
config
.
set_cpu_math_library_num_threads
(
thread_num
)
config
.
switch_use_feed_fetch_ops
(
use_feed_fetch_ops
)
config
.
delete_pass
(
"conv_transpose_eltwiseadd_bn_fuse_pass"
)
config
.
set_cpu_math_library_num_threads
(
cpu_num
)
config
.
switch_ir_optim
(
False
)
config
.
switch_use_feed_fetch_ops
(
False
)
if
not
use_gpu
:
config
.
disable_gpu
()
else
:
config
.
enable_use_gpu
(
100
,
gpu_id
)
if
use_trt
:
config
.
enable_tensorrt_engine
(
workspace_size
=
1
<<
20
,
max_batch_size
=
32
,
min_subgraph_size
=
3
,
use_static
=
False
,
use_calib_mode
=
False
)
self
.
predictor
=
create_paddle_predictor
(
config
)
def
predict
(
self
,
feed
=
None
,
fetch
=
None
,
batch
=
False
,
log_id
=
0
):
"""
Predict locally
Args:
feed: feed var
fetch: fetch var
batch: batch data or not, False default.If batch is False, a new
dimension is added to header of the shape[np.newaxis].
log_id: for logging
Returns:
fetch_map: dict
"""
if
feed
is
None
or
fetch
is
None
:
raise
ValueError
(
"You should specify feed and fetch for prediction"
)
fetch_list
=
[]
...
...
python/paddle_serving_app/reader/__init__.py
浏览文件 @
09c26365
...
...
@@ -18,5 +18,5 @@ from .image_reader import RCNNPostprocess, SegPostprocess, PadStride, BlazeFaceP
from
.image_reader
import
DBPostProcess
,
FilterBoxes
,
GetRotateCropImage
,
SortedBoxes
from
.lac_reader
import
LACReader
from
.senta_reader
import
SentaReader
from
.imdb_reader
import
IMDBDataset
#
from .imdb_reader import IMDBDataset
from
.ocr_reader
import
OCRReader
python/paddle_serving_app/reader/pddet/image_tool.py
浏览文件 @
09c26365
...
...
@@ -22,18 +22,17 @@ import yaml
import
copy
import
argparse
import
logging
import
paddle.fluid
as
fluid
import
json
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
precision_map
=
{
'trt_int8'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Int8
,
'trt_fp32'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Float32
,
'trt_fp16'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Half
}
#
precision_map = {
#
'trt_int8': fluid.core.AnalysisConfig.Precision.Int8,
#
'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32,
#
'trt_fp16': fluid.core.AnalysisConfig.Precision.Half
#
}
class
Resize
(
object
):
...
...
python/paddle_serving_server/web_service.py
浏览文件 @
09c26365
...
...
@@ -112,13 +112,14 @@ class WebService(object):
if
"fetch"
not
in
request
.
json
:
abort
(
400
)
try
:
feed
,
fetch
=
self
.
preprocess
(
request
.
json
[
"feed"
],
request
.
json
[
"fetch"
])
feed
,
fetch
,
is_batch
=
self
.
preprocess
(
request
.
json
[
"feed"
],
request
.
json
[
"fetch"
])
if
isinstance
(
feed
,
dict
)
and
"fetch"
in
feed
:
del
feed
[
"fetch"
]
if
len
(
feed
)
==
0
:
raise
ValueError
(
"empty input"
)
fetch_map
=
self
.
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
,
batch
=
True
)
fetch_map
=
self
.
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
,
batch
=
is_batch
)
result
=
self
.
postprocess
(
feed
=
request
.
json
[
"feed"
],
fetch
=
fetch
,
fetch_map
=
fetch_map
)
result
=
{
"result"
:
result
}
...
...
@@ -188,7 +189,8 @@ class WebService(object):
def
preprocess
(
self
,
feed
=
[],
fetch
=
[]):
print
(
"This API will be deprecated later. Please do not use it"
)
return
feed
,
fetch
is_batch
=
True
return
feed
,
fetch
,
is_batch
def
postprocess
(
self
,
feed
=
[],
fetch
=
[],
fetch_map
=
None
):
print
(
"This API will be deprecated later. Please do not use it"
)
...
...
python/paddle_serving_server_gpu/web_service.py
浏览文件 @
09c26365
...
...
@@ -167,13 +167,14 @@ class WebService(object):
if
"fetch"
not
in
request
.
json
:
abort
(
400
)
try
:
feed
,
fetch
=
self
.
preprocess
(
request
.
json
[
"feed"
],
request
.
json
[
"fetch"
])
feed
,
fetch
,
is_batch
=
self
.
preprocess
(
request
.
json
[
"feed"
],
request
.
json
[
"fetch"
])
if
isinstance
(
feed
,
dict
)
and
"fetch"
in
feed
:
del
feed
[
"fetch"
]
if
len
(
feed
)
==
0
:
raise
ValueError
(
"empty input"
)
fetch_map
=
self
.
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
fetch_map
=
self
.
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
,
batch
=
is_batch
)
result
=
self
.
postprocess
(
feed
=
request
.
json
[
"feed"
],
fetch
=
fetch
,
fetch_map
=
fetch_map
)
result
=
{
"result"
:
result
}
...
...
@@ -249,7 +250,8 @@ class WebService(object):
def
preprocess
(
self
,
feed
=
[],
fetch
=
[]):
print
(
"This API will be deprecated later. Please do not use it"
)
return
feed
,
fetch
is_batch
=
True
return
feed
,
fetch
,
is_batch
def
postprocess
(
self
,
feed
=
[],
fetch
=
[],
fetch_map
=
None
):
print
(
"This API will be deprecated later. Please do not use it"
)
...
...
python/pipeline/channel.py
浏览文件 @
09c26365
...
...
@@ -32,7 +32,10 @@ import copy
_LOGGER
=
logging
.
getLogger
(
__name__
)
class
ChannelDataEcode
(
enum
.
Enum
):
class
ChannelDataErrcode
(
enum
.
Enum
):
"""
ChannelData error code
"""
OK
=
0
TIMEOUT
=
1
NOT_IMPLEMENTED
=
2
...
...
@@ -42,9 +45,21 @@ class ChannelDataEcode(enum.Enum):
CLOSED_ERROR
=
6
NO_SERVICE
=
7
UNKNOW
=
8
PRODUCT_ERROR
=
9
class
ProductErrCode
(
enum
.
Enum
):
"""
ProductErrCode is a base class for recording business error code.
product developers inherit this class and extend more error codes.
"""
pass
class
ChannelDataType
(
enum
.
Enum
):
"""
Channel data type
"""
DICT
=
0
CHANNEL_NPDATA
=
1
ERROR
=
2
...
...
@@ -56,20 +71,23 @@ class ChannelData(object):
npdata
=
None
,
dictdata
=
None
,
data_id
=
None
,
ecode
=
None
,
log_id
=
None
,
error_code
=
None
,
error_info
=
None
,
prod_error_code
=
None
,
prod_error_info
=
None
,
client_need_profile
=
False
):
'''
There are several ways to use it:
1. ChannelData(ChannelDataType.CHANNEL_NPDATA.value, npdata, data_id)
2. ChannelData(ChannelDataType.DICT.value, dictdata, data_id)
3. ChannelData(e
code, error_info, data
_id)
1. ChannelData(ChannelDataType.CHANNEL_NPDATA.value, npdata, data_id
, log_id
)
2. ChannelData(ChannelDataType.DICT.value, dictdata, data_id
, log_id
)
3. ChannelData(e
rror_code, error_info, prod_error_code, prod_error_info, data_id, log
_id)
Protobufs are not pickle-able:
https://stackoverflow.com/questions/55344376/how-to-import-protobuf-module
'''
if
ecode
is
not
None
:
if
e
rror_code
is
not
None
or
prod_error_
code
is
not
None
:
if
data_id
is
None
or
error_info
is
None
:
_LOGGER
.
critical
(
"Failed to generate ChannelData: data_id"
" and error_info cannot be None"
)
...
...
@@ -77,25 +95,30 @@ class ChannelData(object):
datatype
=
ChannelDataType
.
ERROR
.
value
else
:
if
datatype
==
ChannelDataType
.
CHANNEL_NPDATA
.
value
:
ecode
,
error_info
=
ChannelData
.
check_npdata
(
npdata
)
if
e
code
!=
ChannelDataE
code
.
OK
.
value
:
e
rror_
code
,
error_info
=
ChannelData
.
check_npdata
(
npdata
)
if
e
rror_code
!=
ChannelDataErr
code
.
OK
.
value
:
datatype
=
ChannelDataType
.
ERROR
.
value
_LOGGER
.
error
(
"(logid={}) {}"
.
format
(
data_id
,
error_info
))
_LOGGER
.
error
(
"(data_id={} log_id={}) {}"
.
format
(
data_id
,
log_id
,
error_info
))
elif
datatype
==
ChannelDataType
.
DICT
.
value
:
ecode
,
error_info
=
ChannelData
.
check_dictdata
(
dictdata
)
if
e
code
!=
ChannelDataE
code
.
OK
.
value
:
e
rror_
code
,
error_info
=
ChannelData
.
check_dictdata
(
dictdata
)
if
e
rror_code
!=
ChannelDataErr
code
.
OK
.
value
:
datatype
=
ChannelDataType
.
ERROR
.
value
_LOGGER
.
error
(
"(logid={}) {}"
.
format
(
data_id
,
error_info
))
_LOGGER
.
error
(
"(data_id={} log_id={}) {}"
.
format
(
data_id
,
log_id
,
error_info
))
else
:
_LOGGER
.
critical
(
"(
logid={}) datatype not match"
.
format
(
data
_id
))
_LOGGER
.
critical
(
"(
data_id={} log_id={}) datatype not match"
.
format
(
data_id
,
log
_id
))
os
.
_exit
(
-
1
)
self
.
datatype
=
datatype
self
.
npdata
=
npdata
self
.
dictdata
=
dictdata
self
.
id
=
data_id
self
.
ecode
=
ecode
self
.
log_id
=
log_id
self
.
error_code
=
error_code
self
.
error_info
=
error_info
self
.
prod_error_code
=
prod_error_code
self
.
prod_error_info
=
prod_error_info
self
.
client_need_profile
=
client_need_profile
self
.
profile_data_set
=
set
()
...
...
@@ -106,67 +129,67 @@ class ChannelData(object):
@
staticmethod
def
check_dictdata
(
dictdata
):
e
code
=
ChannelDataE
code
.
OK
.
value
e
rror_code
=
ChannelDataErr
code
.
OK
.
value
error_info
=
None
if
isinstance
(
dictdata
,
list
):
# batch data
for
sample
in
dictdata
:
if
not
isinstance
(
sample
,
dict
):
e
code
=
ChannelDataE
code
.
TYPE_ERROR
.
value
e
rror_code
=
ChannelDataErr
code
.
TYPE_ERROR
.
value
error_info
=
"Failed to check data: the type of "
\
"data must be dict, but get {}."
.
format
(
type
(
sample
))
break
elif
not
isinstance
(
dictdata
,
dict
):
# batch size = 1
e
code
=
ChannelDataE
code
.
TYPE_ERROR
.
value
e
rror_code
=
ChannelDataErr
code
.
TYPE_ERROR
.
value
error_info
=
"Failed to check data: the type of data must "
\
"be dict, but get {}."
.
format
(
type
(
dictdata
))
return
ecode
,
error_info
return
e
rror_
code
,
error_info
@
staticmethod
def
check_batch_npdata
(
batch
):
e
code
=
ChannelDataE
code
.
OK
.
value
e
rror_code
=
ChannelDataErr
code
.
OK
.
value
error_info
=
None
for
npdata
in
batch
:
ecode
,
error_info
=
ChannelData
.
check_npdata
(
npdata
)
if
e
code
!=
ChannelDataE
code
.
OK
.
value
:
e
rror_
code
,
error_info
=
ChannelData
.
check_npdata
(
npdata
)
if
e
rror_code
!=
ChannelDataErr
code
.
OK
.
value
:
break
return
ecode
,
error_info
return
e
rror_
code
,
error_info
@
staticmethod
def
check_npdata
(
npdata
):
e
code
=
ChannelDataE
code
.
OK
.
value
e
rror_code
=
ChannelDataErr
code
.
OK
.
value
error_info
=
None
if
isinstance
(
npdata
,
list
):
# batch data
for
sample
in
npdata
:
if
not
isinstance
(
sample
,
dict
):
e
code
=
ChannelDataE
code
.
TYPE_ERROR
.
value
e
rror_code
=
ChannelDataErr
code
.
TYPE_ERROR
.
value
error_info
=
"Failed to check data: the "
\
"value of data must be dict, but get {}."
.
format
(
type
(
sample
))
break
for
_
,
value
in
sample
.
items
():
if
not
isinstance
(
value
,
np
.
ndarray
):
e
code
=
ChannelDataE
code
.
TYPE_ERROR
.
value
e
rror_code
=
ChannelDataErr
code
.
TYPE_ERROR
.
value
error_info
=
"Failed to check data: the"
\
" value of data must be np.ndarray, but get {}."
.
format
(
type
(
value
))
return
ecode
,
error_info
return
e
rror_
code
,
error_info
elif
isinstance
(
npdata
,
dict
):
# batch_size = 1
for
_
,
value
in
npdata
.
items
():
if
not
isinstance
(
value
,
np
.
ndarray
):
e
code
=
ChannelDataE
code
.
TYPE_ERROR
.
value
e
rror_code
=
ChannelDataErr
code
.
TYPE_ERROR
.
value
error_info
=
"Failed to check data: the value "
\
"of data must be np.ndarray, but get {}."
.
format
(
type
(
value
))
break
else
:
e
code
=
ChannelDataE
code
.
TYPE_ERROR
.
value
e
rror_code
=
ChannelDataErr
code
.
TYPE_ERROR
.
value
error_info
=
"Failed to check data: the value of data "
\
"must be dict, but get {}."
.
format
(
type
(
npdata
))
return
ecode
,
error_info
return
e
rror_
code
,
error_info
def
parse
(
self
):
feed
=
None
...
...
@@ -191,8 +214,9 @@ class ChannelData(object):
return
1
def
__str__
(
self
):
return
"type[{}], ecode[{}], id[{}]"
.
format
(
ChannelDataType
(
self
.
datatype
).
name
,
self
.
ecode
,
self
.
id
)
return
"type[{}], error_code[{}], data_id[{}], log_id[{}], dict_data[{}]"
.
format
(
ChannelDataType
(
self
.
datatype
).
name
,
self
.
error_code
,
self
.
id
,
self
.
log_id
,
str
(
self
.
dictdata
))
class
ProcessChannel
(
object
):
...
...
@@ -289,14 +313,14 @@ class ProcessChannel(object):
def
push
(
self
,
channeldata
,
op_name
=
None
):
_LOGGER
.
debug
(
self
.
_log
(
"(
logid={}) Op({}) Pushing data"
.
format
(
channeldata
.
id
,
op_name
)))
self
.
_log
(
"(
data_id={} log_id={}) Op({}) Enter channel::push"
.
format
(
channeldata
.
id
,
channeldata
.
log_id
,
op_name
)))
if
len
(
self
.
_producers
)
==
0
:
_LOGGER
.
critical
(
self
.
_log
(
"(
log
id={}) Op({}) Failed to push data: expected number"
"(
data_id={} log_
id={}) Op({}) Failed to push data: expected number"
" of producers to be greater than 0, but the it is 0."
.
format
(
channeldata
.
id
,
op_name
)))
format
(
channeldata
.
id
,
channeldata
.
log_id
,
op_name
)))
os
.
_exit
(
-
1
)
elif
len
(
self
.
_producers
)
==
1
:
with
self
.
_cv
:
...
...
@@ -310,19 +334,21 @@ class ProcessChannel(object):
raise
ChannelStopError
()
self
.
_cv
.
notify_all
()
_LOGGER
.
debug
(
self
.
_log
(
"(logid={}) Op({}) Pushed data into internal queue."
.
format
(
channeldata
.
id
,
op_name
)))
self
.
_log
(
"(data_id={} log_id={}) Op({}) Pushed data into internal queue."
.
format
(
channeldata
.
id
,
channeldata
.
log_id
,
op_name
)))
return
True
elif
op_name
is
None
:
_LOGGER
.
critical
(
self
.
_log
(
"(
log
id={}) Op({}) Failed to push data: there are multiple "
"(
data_id={} log_
id={}) Op({}) Failed to push data: there are multiple "
"producers, so op_name cannot be None."
.
format
(
channeldata
.
id
,
op_name
)))
channeldata
.
id
,
channeldata
.
log_id
,
op_name
)))
os
.
_exit
(
-
1
)
producer_num
=
len
(
self
.
_producers
)
data_id
=
channeldata
.
id
log_id
=
channeldata
.
log_id
put_data
=
None
with
self
.
_cv
:
if
data_id
not
in
self
.
_input_buf
:
...
...
@@ -347,8 +373,8 @@ class ProcessChannel(object):
if
put_data
is
None
:
_LOGGER
.
debug
(
self
.
_log
(
"(
log
id={}) Op({}) Pushed data into input_buffer."
.
format
(
data_id
,
op_name
)))
"(
data_id={} log_
id={}) Op({}) Pushed data into input_buffer."
.
format
(
data_id
,
log_id
,
op_name
)))
else
:
while
self
.
_stop
.
value
==
0
:
try
:
...
...
@@ -361,8 +387,8 @@ class ProcessChannel(object):
_LOGGER
.
debug
(
self
.
_log
(
"(
log
id={}) Op({}) Pushed data into internal_queue."
.
format
(
data_id
,
op_name
)))
"(
data_id={} log_
id={}) Op({}) Pushed data into internal_queue."
.
format
(
data_id
,
log_id
,
op_name
)))
self
.
_cv
.
notify_all
()
return
True
...
...
@@ -404,8 +430,8 @@ class ProcessChannel(object):
if
self
.
_stop
.
value
==
1
:
raise
ChannelStopError
()
_LOGGER
.
debug
(
self
.
_log
(
"(
logid={}) Op({}) Got data"
.
format
(
resp
.
values
()[
0
]
.
id
,
op_name
)))
self
.
_log
(
"(
data_id={} log_id={}) Op({}) Got data"
.
format
(
resp
.
values
()[
0
].
id
,
resp
.
values
()[
0
].
log_
id
,
op_name
)))
return
resp
elif
op_name
is
None
:
_LOGGER
.
critical
(
...
...
@@ -434,8 +460,9 @@ class ProcessChannel(object):
self
.
_output_buf
.
append
(
channeldata
)
_LOGGER
.
debug
(
self
.
_log
(
"(logid={}) Op({}) Pop ready item into output_buffer"
.
format
(
channeldata
.
values
()[
0
].
id
,
op_name
)))
"(data_id={} log_id={}) Op({}) Pop ready item into output_buffer"
.
format
(
channeldata
.
values
()[
0
].
id
,
channeldata
.
values
()[
0
].
log_id
,
op_name
)))
break
except
Queue
.
Empty
:
if
timeout
is
not
None
:
...
...
@@ -487,8 +514,9 @@ class ProcessChannel(object):
self
.
_cv
.
notify_all
()
_LOGGER
.
debug
(
self
.
_log
(
"(logid={}) Op({}) Got data from output_buffer"
.
format
(
resp
.
values
()[
0
].
id
,
op_name
)))
self
.
_log
(
"(data_id={} log_id={}) Op({}) Got data from output_buffer"
.
format
(
resp
.
values
()[
0
].
id
,
resp
.
values
()[
0
].
log_id
,
op_name
)))
return
resp
def
stop
(
self
):
...
...
@@ -586,14 +614,14 @@ class ThreadChannel(Queue.PriorityQueue):
def
push
(
self
,
channeldata
,
op_name
=
None
):
_LOGGER
.
debug
(
self
.
_log
(
"(
logid={}) Op({}) Pushing data"
.
format
(
channeldata
.
id
,
op_name
)))
self
.
_log
(
"(
data_id={} log_id={}) Op({}) Pushing data"
.
format
(
channeldata
.
id
,
channeldata
.
log_id
,
op_name
)))
if
len
(
self
.
_producers
)
==
0
:
_LOGGER
.
critical
(
self
.
_log
(
"(
log
id={}) Op({}) Failed to push data: expected number of "
"(
data_id={} log_
id={}) Op({}) Failed to push data: expected number of "
"producers to be greater than 0, but the it is 0."
.
format
(
channeldata
.
id
,
op_name
)))
channeldata
.
id
,
channeldata
.
log_id
,
op_name
)))
os
.
_exit
(
-
1
)
elif
len
(
self
.
_producers
)
==
1
:
with
self
.
_cv
:
...
...
@@ -607,19 +635,21 @@ class ThreadChannel(Queue.PriorityQueue):
raise
ChannelStopError
()
self
.
_cv
.
notify_all
()
_LOGGER
.
debug
(
self
.
_log
(
"(logid={}) Op({}) Pushed data into internal_queue."
.
format
(
channeldata
.
id
,
op_name
)))
self
.
_log
(
"(data_id={} log_id={}) Op({}) Pushed data into internal_queue."
.
format
(
channeldata
.
id
,
channeldata
.
log_id
,
op_name
)))
return
True
elif
op_name
is
None
:
_LOGGER
.
critical
(
self
.
_log
(
"(
log
id={}) Op({}) Failed to push data: there are multiple"
"(
data_id={} log_
id={}) Op({}) Failed to push data: there are multiple"
" producers, so op_name cannot be None."
.
format
(
channeldata
.
id
,
op_name
)))
channeldata
.
id
,
channeldata
.
log_id
,
op_name
)))
os
.
_exit
(
-
1
)
producer_num
=
len
(
self
.
_producers
)
data_id
=
channeldata
.
id
log_id
=
channeldata
.
log_id
put_data
=
None
with
self
.
_cv
:
if
data_id
not
in
self
.
_input_buf
:
...
...
@@ -639,8 +669,8 @@ class ThreadChannel(Queue.PriorityQueue):
if
put_data
is
None
:
_LOGGER
.
debug
(
self
.
_log
(
"(
log
id={}) Op({}) Pushed data into input_buffer."
.
format
(
data_id
,
op_name
)))
"(
data_id={} log_
id={}) Op({}) Pushed data into input_buffer."
.
format
(
data_id
,
log_id
,
op_name
)))
else
:
while
self
.
_stop
is
False
:
try
:
...
...
@@ -653,8 +683,8 @@ class ThreadChannel(Queue.PriorityQueue):
_LOGGER
.
debug
(
self
.
_log
(
"(
log
id={}) Op({}) Pushed data into internal_queue."
.
format
(
data_id
,
op_name
)))
"(
data_id={} log_
id={}) Op({}) Pushed data into internal_queue."
.
format
(
data_id
,
log_id
,
op_name
)))
self
.
_cv
.
notify_all
()
return
True
...
...
@@ -697,8 +727,8 @@ class ThreadChannel(Queue.PriorityQueue):
if
self
.
_stop
:
raise
ChannelStopError
()
_LOGGER
.
debug
(
self
.
_log
(
"(
logid={}) Op({}) Got data"
.
format
(
resp
.
values
()[
0
]
.
id
,
op_name
)))
self
.
_log
(
"(
data_id={} log_id={}) Op({}) Got data"
.
format
(
resp
.
values
()[
0
].
id
,
resp
.
values
()[
0
].
log_
id
,
op_name
)))
return
resp
elif
op_name
is
None
:
_LOGGER
.
critical
(
...
...
@@ -727,8 +757,9 @@ class ThreadChannel(Queue.PriorityQueue):
self
.
_output_buf
.
append
(
channeldata
)
_LOGGER
.
debug
(
self
.
_log
(
"(logid={}) Op({}) Pop ready item into output_buffer"
.
format
(
channeldata
.
values
()[
0
].
id
,
op_name
)))
"(data_id={} log_id={}) Op({}) Pop ready item into output_buffer"
.
format
(
channeldata
.
values
()[
0
].
id
,
channeldata
.
values
()[
0
].
log_id
,
op_name
)))
break
except
Queue
.
Empty
:
if
timeout
is
not
None
:
...
...
@@ -780,8 +811,9 @@ class ThreadChannel(Queue.PriorityQueue):
self
.
_cv
.
notify_all
()
_LOGGER
.
debug
(
self
.
_log
(
"(logid={}) Op({}) Got data from output_buffer"
.
format
(
resp
.
values
()[
0
].
id
,
op_name
)))
self
.
_log
(
"(data_id={} log_id={}) Op({}) Got data from output_buffer"
.
format
(
resp
.
values
()[
0
].
id
,
resp
.
values
()[
0
].
log_id
,
op_name
)))
return
resp
def
stop
(
self
):
...
...
python/pipeline/dag.py
浏览文件 @
09c26365
...
...
@@ -25,10 +25,12 @@ else:
import
os
import
logging
import
collections
import
json
from
.operator
import
Op
,
RequestOp
,
ResponseOp
,
VirtualOp
from
.channel
import
(
ThreadChannel
,
ProcessChannel
,
ChannelData
,
ChannelDataEcode
,
ChannelDataType
,
ChannelStopError
)
ChannelDataErrcode
,
ChannelDataType
,
ChannelStopError
,
ProductErrCode
)
from
.profiler
import
TimeProfiler
,
PerformanceTracer
from
.util
import
NameGenerator
,
ThreadIdGenerator
,
PipelineProcSyncManager
from
.proto
import
pipeline_service_pb2
...
...
@@ -37,7 +39,23 @@ _LOGGER = logging.getLogger(__name__)
class
DAGExecutor
(
object
):
"""
DAG Executor, the service entrance of DAG.
"""
def
__init__
(
self
,
response_op
,
server_conf
,
worker_idx
):
"""
Initialize DAGExecutor.
Args:
response_op: Response OP
server_conf: server conf. config.yaml
worker_idx: DAGExecutor index, PipelineServer creates many
DAGExecutors when _build_dag_each_worker is true.
Returns:
None.
"""
build_dag_each_worker
=
server_conf
[
"build_dag_each_worker"
]
server_worker_num
=
server_conf
[
"worker_num"
]
dag_conf
=
server_conf
[
"dag"
]
...
...
@@ -74,7 +92,9 @@ class DAGExecutor(object):
if
self
.
_tracer
is
not
None
:
self
.
_tracer
.
start
()
# generate id: data_id == request_id == log_id
# generate id
# data_id: Server Unique ID, automatically generated by the framework
# log_id: Trace one product request, can be empty, not unique.
base_counter
=
0
gen_id_step
=
1
if
build_dag_each_worker
:
...
...
@@ -94,6 +114,15 @@ class DAGExecutor(object):
self
.
_client_profile_value
=
"1"
def
start
(
self
):
"""
Starting one thread for receiving data from the last channel background.
Args:
None
Returns:
None
"""
self
.
_recive_func
=
threading
.
Thread
(
target
=
DAGExecutor
.
_recive_out_channel_func
,
args
=
(
self
,
))
self
.
_recive_func
.
daemon
=
True
...
...
@@ -101,11 +130,30 @@ class DAGExecutor(object):
_LOGGER
.
debug
(
"[DAG Executor] Start recive thread"
)
def
stop
(
self
):
"""
Stopping DAG
Args:
None
Returns:
None
"""
self
.
_dag
.
stop
()
self
.
_dag
.
join
()
_LOGGER
.
info
(
"[DAG Executor] Stop"
)
def
_get_next_data_id
(
self
):
"""
Generate data_id incrementally and Uniquely
Args:
None
Returns:
data_id: uniq id
cond_v: condition variable
"""
data_id
=
self
.
_id_generator
.
next
()
cond_v
=
threading
.
Condition
()
with
self
.
_cv_for_cv_pool
:
...
...
@@ -114,6 +162,15 @@ class DAGExecutor(object):
return
data_id
,
cond_v
def
_set_in_channel
(
self
,
in_channel
):
"""
Set in_channel of DAG
Args:
in_channel: input channel of DAG
Returns:
None
"""
if
not
isinstance
(
in_channel
,
(
ThreadChannel
,
ProcessChannel
)):
_LOGGER
.
critical
(
"[DAG Executor] Failed to set in_channel: "
"in_channel must be Channel type, but get {}"
.
...
...
@@ -121,8 +178,18 @@ class DAGExecutor(object):
os
.
_exit
(
-
1
)
in_channel
.
add_producer
(
self
.
name
)
self
.
_in_channel
=
in_channel
_LOGGER
.
info
(
"[DAG] set in channel succ, name [{}]"
.
format
(
self
.
name
))
def
_set_out_channel
(
self
,
out_channel
):
"""
Set out_channel of DAG
Args:
out_channel: output channel of DAG
Returns:
None
"""
if
not
isinstance
(
out_channel
,
(
ThreadChannel
,
ProcessChannel
)):
_LOGGER
.
critical
(
"[DAG Executor] Failed to set out_channel: "
"must be Channel type, but get {}"
.
format
(
...
...
@@ -132,6 +199,17 @@ class DAGExecutor(object):
self
.
_out_channel
=
out_channel
def
_recive_out_channel_func
(
self
):
"""
Receiving data from the output channel, and pushing data into
_fetch_buffer. Function _get_channeldata_from_fetch_buffer gets
data by retry time.
Args:
None
Returns:
None
"""
cv
=
None
while
True
:
try
:
...
...
@@ -141,14 +219,13 @@ class DAGExecutor(object):
with
self
.
_cv_for_cv_pool
:
for
data_id
,
cv
in
self
.
_cv_pool
.
items
():
closed_errror_data
=
ChannelData
(
e
code
=
ChannelDataE
code
.
CLOSED_ERROR
.
value
,
e
rror_code
=
ChannelDataErr
code
.
CLOSED_ERROR
.
value
,
error_info
=
"dag closed."
,
data_id
=
data_id
)
with
cv
:
self
.
_fetch_buffer
[
data_id
]
=
closed_errror_data
cv
.
notify_all
()
break
if
len
(
channeldata_dict
)
!=
1
:
_LOGGER
.
critical
(
"[DAG Executor] Failed to fetch result: out_channel "
...
...
@@ -172,6 +249,16 @@ class DAGExecutor(object):
cond_v
.
notify_all
()
def
_get_channeldata_from_fetch_buffer
(
self
,
data_id
,
cond_v
):
"""
Getting the channel data from _fetch_buffer.
Args:
data_id: search key
cond_v: conditional variable
Returns:
ready_data: one channel data processed
"""
ready_data
=
None
with
cond_v
:
...
...
@@ -188,45 +275,82 @@ class DAGExecutor(object):
ready_data
=
self
.
_fetch_buffer
[
data_id
]
self
.
_cv_pool
.
pop
(
data_id
)
self
.
_fetch_buffer
.
pop
(
data_id
)
_LOGGER
.
debug
(
"(
log
id={}) [resp thread] Got data"
.
format
(
data_id
))
_LOGGER
.
debug
(
"(
data_
id={}) [resp thread] Got data"
.
format
(
data_id
))
return
ready_data
def
_pack_channeldata
(
self
,
rpc_request
,
data_id
):
"""
Unpacking data from RPC request. and creating one channelData.
Args:
rpc_request: one RPC request
data_id: data id, unique
Returns:
ChannelData: one channel data to be processed
"""
dictdata
=
None
log_id
=
None
try
:
dictdata
=
self
.
_unpack_rpc_func
(
rpc_request
)
dictdata
,
log_id
,
prod_errcode
,
prod_errinfo
=
self
.
_unpack_rpc_func
(
rpc_request
)
except
Exception
as
e
:
_LOGGER
.
error
(
"(logid={}) Failed to parse RPC request package: {}"
.
format
(
data_id
,
e
),
exc_info
=
True
)
return
ChannelData
(
e
code
=
ChannelDataE
code
.
RPC_PACKAGE_ERROR
.
value
,
e
rror_code
=
ChannelDataErr
code
.
RPC_PACKAGE_ERROR
.
value
,
error_info
=
"rpc package error: {}"
.
format
(
e
),
data_id
=
data_id
)
data_id
=
data_id
,
log_id
=
log_id
)
else
:
# because unpack_rpc_func is rewritten by user, we need
# to look for client_profile_key field in rpc_request
# because unpack_rpc_func is rewritten by user, we need to look
# for product_errcode in returns, and client_profile_key field
# in rpc_request
if
prod_errcode
is
not
None
:
# product errors occured
_LOGGER
.
error
(
"unpack_rpc_func prod_errcode:{}"
.
format
(
prod_errcode
))
return
ChannelData
(
error_code
=
ChannelDataErrcode
.
PRODUCT_ERROR
.
value
,
error_info
=
""
,
prod_error_code
=
prod_errcode
,
prod_error_info
=
prod_errinfo
,
data_id
=
data_id
,
log_id
=
log_id
)
profile_value
=
None
for
idx
,
key
in
enumerate
(
rpc_request
.
key
):
if
key
==
self
.
_client_profile_key
:
profile_value
=
rpc_request
.
value
[
idx
]
break
profile_value
=
dictdata
.
get
(
self
.
_client_profile_key
)
client_need_profile
=
(
profile_value
==
self
.
_client_profile_value
)
_LOGGER
.
debug
(
"(logid={}) Need profile in client: {}"
.
format
(
data_id
,
client_need_profile
))
return
ChannelData
(
datatype
=
ChannelDataType
.
DICT
.
value
,
dictdata
=
dictdata
,
data_id
=
data_id
,
log_id
=
log_id
,
client_need_profile
=
client_need_profile
)
def
call
(
self
,
rpc_request
):
"""
DAGExcutor enterance function. There are 5 steps:
1._get_next_data_id: Generate an incremental ID
2._pack_channeldata: pack the channel data from request.
3.retry loop:
a. push channel_data into _in_channel
b. get_channeldata_from_fetch_buffer: get results.
4._pack_for_rpc_resp: pack RPC responses
5.profile: generte profile string and pack into response.
Args:
rpc_request: one RPC request
Returns:
rpc_resp: one RPC response
"""
if
self
.
_tracer
is
not
None
:
trace_buffer
=
self
.
_tracer
.
data_buffer
()
data_id
,
cond_v
=
self
.
_get_next_data_id
()
_LOGGER
.
info
(
"(logid={}) Succ generate id"
.
format
(
data_id
))
start_call
,
end_call
=
None
,
None
if
not
self
.
_is_thread_op
:
...
...
@@ -235,45 +359,64 @@ class DAGExecutor(object):
else
:
start_call
=
self
.
_profiler
.
record
(
"call_{}#DAG_0"
.
format
(
data_id
))
_LOGGER
.
debug
(
"(logid={}) Parsing RPC request package"
.
format
(
data_id
))
self
.
_profiler
.
record
(
"prepack_{}#{}_0"
.
format
(
data_id
,
self
.
name
))
req_channeldata
=
self
.
_pack_channeldata
(
rpc_request
,
data_id
)
self
.
_profiler
.
record
(
"prepack_{}#{}_1"
.
format
(
data_id
,
self
.
name
))
log_id
=
req_channeldata
.
log_id
_LOGGER
.
info
(
"(data_id={} log_id={}) Succ Generate ID "
.
format
(
data_id
,
log_id
))
resp_channeldata
=
None
for
i
in
range
(
self
.
_retry
):
_LOGGER
.
debug
(
"(
log
id={}) Pushing data into Graph engine"
.
format
(
_LOGGER
.
debug
(
"(
data_
id={}) Pushing data into Graph engine"
.
format
(
data_id
))
try
:
if
req_channeldata
is
None
:
_LOGGER
.
critical
(
"(data_id={} log_id={}) req_channeldata is None"
.
format
(
data_id
,
log_id
))
if
not
isinstance
(
self
.
_in_channel
,
(
ThreadChannel
,
ProcessChannel
)):
_LOGGER
.
critical
(
"(data_id={} log_id={})[DAG Executor] Failed to "
"set in_channel: in_channel must be Channel type, but get {}"
.
format
(
data_id
,
log_id
,
type
(
self
.
_in_channel
)))
self
.
_in_channel
.
push
(
req_channeldata
,
self
.
name
)
except
ChannelStopError
:
_LOGGER
.
debug
(
"[DAG Executor] Stop"
)
_LOGGER
.
error
(
"(data_id:{} log_id={})[DAG Executor] Stop"
.
format
(
data_id
,
log_id
))
with
self
.
_cv_for_cv_pool
:
self
.
_cv_pool
.
pop
(
data_id
)
return
self
.
_pack_for_rpc_resp
(
ChannelData
(
e
code
=
ChannelDataE
code
.
CLOSED_ERROR
.
value
,
e
rror_code
=
ChannelDataErr
code
.
CLOSED_ERROR
.
value
,
error_info
=
"dag closed."
,
data_id
=
data_id
))
_LOGGER
.
debug
(
"(logid={}) Wait for Graph engine..."
.
format
(
data_id
))
_LOGGER
.
debug
(
"(data_id={} log_id={}) Wait for Graph engine..."
.
format
(
data_id
,
log_id
))
resp_channeldata
=
self
.
_get_channeldata_from_fetch_buffer
(
data_id
,
cond_v
)
if
resp_channeldata
.
ecode
==
ChannelDataEcode
.
OK
.
value
:
_LOGGER
.
info
(
"(logid={}) Succ predict"
.
format
(
data_id
))
if
resp_channeldata
.
error_code
==
ChannelDataErrcode
.
OK
.
value
:
_LOGGER
.
info
(
"(data_id={} log_id={}) Succ predict"
.
format
(
data_id
,
log_id
))
break
else
:
_LOGGER
.
error
(
"(logid={}) Failed to predict: {}"
.
format
(
data_id
,
resp_channeldata
.
error_info
))
if
resp_channeldata
.
ecode
!=
ChannelDataEcode
.
TIMEOUT
.
value
:
_LOGGER
.
error
(
"(data_id={} log_id={}) Failed to predict: {}"
.
format
(
data_id
,
log_id
,
resp_channeldata
.
error_info
))
if
resp_channeldata
.
error_code
!=
ChannelDataErrcode
.
TIMEOUT
.
value
:
break
if
i
+
1
<
self
.
_retry
:
_LOGGER
.
warning
(
"(logid={}) DAGExecutor retry({}/{})"
.
format
(
data_id
,
i
+
1
,
self
.
_retry
))
_LOGGER
.
warning
(
"(data_id={} log_id={}) DAGExecutor retry({}/{})"
.
format
(
data_id
,
log_id
,
i
+
1
,
self
.
_retry
))
_LOGGER
.
debug
(
"(logid={}) Packing RPC response package"
.
format
(
data_id
))
_LOGGER
.
debug
(
"(data_id={} log_id={}) Packing RPC response package"
.
format
(
data_id
,
log_id
))
self
.
_profiler
.
record
(
"postpack_{}#{}_0"
.
format
(
data_id
,
self
.
name
))
rpc_resp
=
self
.
_pack_for_rpc_resp
(
resp_channeldata
)
self
.
_profiler
.
record
(
"postpack_{}#{}_1"
.
format
(
data_id
,
self
.
name
))
...
...
@@ -287,7 +430,8 @@ class DAGExecutor(object):
trace_buffer
.
put
({
"name"
:
"DAG"
,
"id"
:
data_id
,
"succ"
:
resp_channeldata
.
ecode
==
ChannelDataEcode
.
OK
.
value
,
"succ"
:
resp_channeldata
.
error_code
==
ChannelDataErrcode
.
OK
.
value
,
"actions"
:
{
"call_{}"
.
format
(
data_id
):
end_call
-
start_call
,
},
...
...
@@ -308,6 +452,15 @@ class DAGExecutor(object):
return
rpc_resp
def
_pack_for_rpc_resp
(
self
,
channeldata
):
"""
Packing one RPC response
Args:
channeldata: one channel data to be packed
Returns:
resp: one RPC response
"""
try
:
return
self
.
_pack_rpc_func
(
channeldata
)
except
Exception
as
e
:
...
...
@@ -316,12 +469,16 @@ class DAGExecutor(object):
.
format
(
channeldata
.
id
,
e
),
exc_info
=
True
)
resp
=
pipeline_service_pb2
.
Response
()
resp
.
e
code
=
ChannelDataE
code
.
RPC_PACKAGE_ERROR
.
value
resp
.
err
or_info
=
"rpc package error: {}"
.
format
(
e
)
resp
.
e
rr_no
=
ChannelDataErr
code
.
RPC_PACKAGE_ERROR
.
value
resp
.
err
_msg
=
"rpc package error: {}"
.
format
(
e
)
return
resp
class
DAG
(
object
):
"""
Directed Acyclic Graph(DAG) engine, builds one DAG topology.
"""
def
__init__
(
self
,
request_name
,
response_op
,
use_profile
,
is_thread_op
,
channel_size
,
build_dag_each_worker
,
tracer
):
self
.
_request_name
=
request_name
...
...
@@ -337,6 +494,18 @@ class DAG(object):
@
staticmethod
def
get_use_ops
(
response_op
):
"""
Starting from ResponseOp, recursively traverse the front OPs. Getting
all used ops and the post op list of each op (excluding ResponseOp)
Args:
response_op: ResponseOp
Returns:
used_ops: used ops, set
succ_ops_of_use_op: op and the next op list, dict.
"""
unique_names
=
set
()
used_ops
=
set
()
succ_ops_of_use_op
=
{}
# {op_name: succ_ops}
...
...
@@ -362,6 +531,15 @@ class DAG(object):
return
used_ops
,
succ_ops_of_use_op
def
_gen_channel
(
self
,
name_gen
):
"""
Generate one ThreadChannel or ProcessChannel.
Args:
name_gen: channel name
Returns:
channel: one channel generated
"""
channel
=
None
if
self
.
_is_thread_op
:
channel
=
ThreadChannel
(
...
...
@@ -373,11 +551,37 @@ class DAG(object):
return
channel
def
_gen_virtual_op
(
self
,
name_gen
):
"""
Generate one virtual Op
Args:
name_gen: Op name
Returns:
vir_op: one virtual Op object.
"""
vir_op
=
VirtualOp
(
name
=
name_gen
.
next
())
_LOGGER
.
debug
(
"[DAG] Generate virtual_op: {}"
.
format
(
vir_op
.
name
))
return
vir_op
def
_topo_sort
(
self
,
used_ops
,
response_op
,
out_degree_ops
):
"""
Topological sort of DAG, creates inverted multi-layers views.
Args:
used_ops: op used in DAG
response_op: response op
out_degree_ops: Next op list for each op, dict. the output of
get_use_ops()
Returns:
dag_views: the inverted hierarchical topology list. examples:
DAG :[A -> B -> C -> E]
\-> D /
dag_views: [[E], [C, D], [B], [A]]
last_op:the last op front of ResponseOp
"""
out_degree_num
=
{
name
:
len
(
ops
)
for
name
,
ops
in
out_degree_ops
.
items
()
...
...
@@ -421,6 +625,23 @@ class DAG(object):
return
dag_views
,
last_op
def
_build_dag
(
self
,
response_op
):
"""
Building DAG, the most important function in class DAG. Core steps:
1.get_use_ops: Getting used ops, and out degree op list for each op.
2._topo_sort: Topological sort creates inverted multi-layers views.
3.create channels and virtual ops.
Args:
response_op: ResponseOp
Returns:
actual_ops: all OPs used in DAG, including virtual OPs
channels: all channels used in DAG
input_channel: the channel of first OP
output_channel: the channel of last OP
pack_func: pack_response_package function of response_op
unpack_func: unpack_request_package function of request_op
"""
if
response_op
is
None
:
_LOGGER
.
critical
(
"Failed to build DAG: ResponseOp"
" has not been set."
)
...
...
@@ -546,6 +767,18 @@ class DAG(object):
return
self
.
_channels
def
build
(
self
):
"""
Interface for building one DAG outside.
Args:
None
Returns:
_input_channel: the channel of first OP
_output_channel: the channel of last OP
_pack_func: pack_response_package function of response_op
_unpack_func: unpack_request_package function of request_op
"""
(
actual_ops
,
channels
,
input_channel
,
output_channel
,
pack_func
,
unpack_func
)
=
self
.
_build_dag
(
self
.
_response_op
)
_LOGGER
.
info
(
"[DAG] Succ build DAG"
)
...
...
@@ -563,6 +796,15 @@ class DAG(object):
return
self
.
_input_channel
,
self
.
_output_channel
,
self
.
_pack_func
,
self
.
_unpack_func
def
start
(
self
):
"""
Each OP starts a thread or process by _is_thread_op
Args:
None
Returns:
_threads_or_proces: threads or process list.
"""
self
.
_threads_or_proces
=
[]
for
op
in
self
.
_actual_ops
:
op
.
use_profiler
(
self
.
_use_profile
)
...
...
@@ -577,11 +819,29 @@ class DAG(object):
return
self
.
_threads_or_proces
def
join
(
self
):
"""
All threads or processes join.
Args:
None
Returns:
None
"""
for
x
in
self
.
_threads_or_proces
:
if
x
is
not
None
:
x
.
join
()
def
stop
(
self
):
"""
Stopping and cleanning all channels.
Args:
None
Returns:
None
"""
for
chl
in
self
.
_channels
:
chl
.
stop
()
for
op
in
self
.
_actual_ops
:
...
...
python/pipeline/gateway/proto/gateway.proto
浏览文件 @
09c26365
...
...
@@ -19,22 +19,25 @@ option go_package = ".;pipeline_serving";
import
"google/api/annotations.proto"
;
message
Response
{
repeated
string
key
=
1
;
repeated
string
value
=
2
;
int32
ecode
=
3
;
string
error_info
=
4
;
int32
err_no
=
1
;
string
err_msg
=
2
;
repeated
string
key
=
3
;
repeated
string
value
=
4
;
};
message
Request
{
repeated
string
key
=
1
;
repeated
string
value
=
2
;
string
name
=
3
;
}
string
method
=
4
;
int64
logid
=
5
;
string
clientip
=
6
;
};
service
PipelineService
{
rpc
inference
(
Request
)
returns
(
Response
)
{
option
(
google.api.http
)
=
{
post
:
"/{name=*}/
prediction
"
post
:
"/{name=*}/
{method=*}
"
body
:
"*"
};
}
...
...
python/pipeline/gateway/proxy_server.go
浏览文件 @
09c26365
...
...
@@ -38,7 +38,8 @@ func run_proxy_server(grpc_port int, http_port int) error {
ctx
,
cancel
:=
context
.
WithCancel
(
ctx
)
defer
cancel
()
mux
:=
runtime
.
NewServeMux
()
//EmitDefaults=true, does not filter out the default inputs
mux
:=
runtime
.
NewServeMux
(
runtime
.
WithMarshalerOption
(
runtime
.
MIMEWildcard
,
&
runtime
.
JSONPb
{
OrigName
:
true
,
EmitDefaults
:
true
}))
opts
:=
[]
grpc
.
DialOption
{
grpc
.
WithInsecure
()}
err
:=
gw
.
RegisterPipelineServiceHandlerFromEndpoint
(
ctx
,
mux
,
*
pipelineEndpoint
,
opts
)
if
err
!=
nil
{
...
...
python/pipeline/local_service_handler.py
浏览文件 @
09c26365
...
...
@@ -15,111 +15,203 @@
import
os
import
logging
import
multiprocessing
try
:
from
paddle_serving_server_gpu
import
OpMaker
,
OpSeqMaker
,
Server
PACKAGE_VERSION
=
"GPU"
except
ImportError
:
from
paddle_serving_server
import
OpMaker
,
OpSeqMaker
,
Server
PACKAGE_VERSION
=
"CPU"
#from paddle_serving_server_gpu import OpMaker, OpSeqMaker
#from paddle_serving_server_gpu import Server as GpuServer
#from paddle_serving_server import Server as CpuServer
from
.
import
util
from
paddle_serving_app.local_predict
import
LocalPredictor
#
from paddle_serving_app.local_predict import LocalPredictor
_LOGGER
=
logging
.
getLogger
(
__name__
)
_workdir_name_gen
=
util
.
NameGenerator
(
"workdir_"
)
class
LocalServiceHandler
(
object
):
"""
LocalServiceHandler is the processor of the local service, contains
three client types, brpc, grpc and local_predictor.If you use the
brpc or grpc, serveing startup ability is provided.If you use
local_predictor, local predict ability is provided by paddle_serving_app.
"""
def
__init__
(
self
,
model_config
,
client_type
=
'local_predictor'
,
workdir
=
""
,
thread_num
=
2
,
devices
=
""
,
fetch_names
=
None
,
mem_optim
=
True
,
ir_optim
=
False
,
available_port_generator
=
None
):
available_port_generator
=
None
,
use_trt
=
False
,
use_profile
=
False
):
"""
Initialization of localservicehandler
Args:
model_config: model config path
client_type: brpc, grpc and local_predictor[default]
workdir: work directory
thread_num: number of threads, concurrent quantity.
devices: gpu id list[gpu], "" default[cpu]
fetch_names: get fetch names out of LocalServiceHandler in
local_predictor mode. fetch_names_ is compatible for Client().
mem_optim: use memory/graphics memory optimization, True default.
ir_optim: use calculation chart optimization, False default.
available_port_generator: generate available ports
use_trt: use nvidia tensorRt engine, False default.
use_profile: use profiling, False default.
Returns:
None
"""
if
available_port_generator
is
None
:
available_port_generator
=
util
.
GetAvailablePortGenerator
()
self
.
_model_config
=
model_config
self
.
_port_list
=
[]
self
.
_device_type
=
"cpu"
if
devices
==
""
:
# cpu
devices
=
[
-
1
]
self
.
_device_type
=
"cpu"
self
.
_port_list
.
append
(
available_port_generator
.
next
())
_LOGGER
.
info
(
"Model({}) will be launch in cpu device. Port({})"
.
format
(
model_config
,
self
.
_port_list
))
else
:
# gpu
if
PACKAGE_VERSION
==
"CPU"
:
raise
ValueError
(
"You are using the CPU version package("
"paddle-serving-server), unable to set devices"
)
self
.
_device_type
=
"gpu"
devices
=
[
int
(
x
)
for
x
in
devices
.
split
(
","
)]
for
_
in
devices
:
self
.
_port_list
.
append
(
available_port_generator
.
next
())
_LOGGER
.
info
(
"Model({}) will be launch in gpu device: {}. Port({})"
.
format
(
model_config
,
devices
,
self
.
_port_list
))
self
.
client_type
=
client_type
self
.
_
client_type
=
client_type
self
.
_workdir
=
workdir
self
.
_devices
=
devices
self
.
_thread_num
=
thread_num
self
.
_mem_optim
=
mem_optim
self
.
_ir_optim
=
ir_optim
self
.
local_predictor_client
=
None
self
.
_
local_predictor_client
=
None
self
.
_rpc_service_list
=
[]
self
.
_server_pros
=
[]
self
.
_fetch_vars
=
None
self
.
_use_trt
=
use_trt
self
.
_use_profile
=
use_profile
self
.
fetch_names_
=
fetch_names
def
get_fetch_list
(
self
):
return
self
.
_fetch_vars
return
self
.
fetch_names_
def
get_port_list
(
self
):
return
self
.
_port_list
def
get_client
(
self
):
# for local_predictor_only
if
self
.
local_predictor_client
is
None
:
self
.
local_predictor_client
=
LocalPredictor
()
self
.
local_predictor_client
.
load_model_config
(
"{}"
.
format
(
self
.
_model_config
),
gpu
=
False
,
profile
=
False
)
return
self
.
local_predictor_client
def
get_client
(
self
):
"""
Function get_client is only used for local predictor case, creates one
LocalPredictor object, and initializes the paddle predictor by function
load_model_config.
Args:
None
Returns:
_local_predictor_client
"""
from
paddle_serving_app.local_predict
import
LocalPredictor
if
self
.
_local_predictor_client
is
None
:
self
.
_local_predictor_client
=
LocalPredictor
()
use_gpu
=
False
if
self
.
_device_type
==
"gpu"
:
use_gpu
=
True
self
.
_local_predictor_client
.
load_model_config
(
model_path
=
self
.
_model_config
,
use_gpu
=
use_gpu
,
gpu_id
=
self
.
_devices
[
0
],
use_profile
=
self
.
_use_profile
,
thread_num
=
self
.
_thread_num
,
mem_optim
=
self
.
_mem_optim
,
ir_optim
=
self
.
_ir_optim
,
use_trt
=
self
.
_use_trt
)
return
self
.
_local_predictor_client
def
get_client_config
(
self
):
return
os
.
path
.
join
(
self
.
_model_config
,
"serving_server_conf.prototxt"
)
def
_prepare_one_server
(
self
,
workdir
,
port
,
gpuid
,
thread_num
,
mem_optim
,
ir_optim
):
device
=
"gpu"
if
gpuid
==
-
1
:
device
=
"cpu"
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
general_infer_op
=
op_maker
.
create
(
'general_infer'
)
general_response_op
=
op_maker
.
create
(
'general_response'
)
op_seq_maker
=
OpSeqMaker
()
op_seq_maker
.
add_op
(
read_op
)
op_seq_maker
.
add_op
(
general_infer_op
)
op_seq_maker
.
add_op
(
general_response_op
)
server
=
Server
()
"""
According to _device_type, generating one CpuServer or GpuServer, and
setting the model config amd startup params.
Args:
workdir: work directory
port: network port
gpuid: gpu id
thread_num: thread num
mem_optim: use memory/graphics memory optimization
ir_optim: use calculation chart optimization
Returns:
server: CpuServer/GpuServer
"""
if
self
.
_device_type
==
"cpu"
:
from
paddle_serving_server
import
OpMaker
,
OpSeqMaker
,
Server
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
general_infer_op
=
op_maker
.
create
(
'general_infer'
)
general_response_op
=
op_maker
.
create
(
'general_response'
)
op_seq_maker
=
OpSeqMaker
()
op_seq_maker
.
add_op
(
read_op
)
op_seq_maker
.
add_op
(
general_infer_op
)
op_seq_maker
.
add_op
(
general_response_op
)
server
=
Server
()
else
:
#gpu
from
paddle_serving_server_gpu
import
OpMaker
,
OpSeqMaker
,
Server
op_maker
=
OpMaker
()
read_op
=
op_maker
.
create
(
'general_reader'
)
general_infer_op
=
op_maker
.
create
(
'general_infer'
)
general_response_op
=
op_maker
.
create
(
'general_response'
)
op_seq_maker
=
OpSeqMaker
()
op_seq_maker
.
add_op
(
read_op
)
op_seq_maker
.
add_op
(
general_infer_op
)
op_seq_maker
.
add_op
(
general_response_op
)
server
=
Server
()
if
gpuid
>=
0
:
server
.
set_gpuid
(
gpuid
)
server
.
set_op_sequence
(
op_seq_maker
.
get_op_sequence
())
server
.
set_num_threads
(
thread_num
)
server
.
set_memory_optimize
(
mem_optim
)
server
.
set_ir_optimize
(
ir_optim
)
server
.
load_model_config
(
self
.
_model_config
)
if
gpuid
>=
0
:
server
.
set_gpuid
(
gpuid
)
server
.
prepare_server
(
workdir
=
workdir
,
port
=
port
,
device
=
device
)
if
self
.
_fetch_vars
is
None
:
self
.
_fetch_vars
=
server
.
get_fetch_list
()
server
.
prepare_server
(
workdir
=
workdir
,
port
=
port
,
device
=
self
.
_device_type
)
if
self
.
fetch_names_
is
None
:
self
.
fetch_names_
=
server
.
get_fetch_list
()
return
server
def
_start_one_server
(
self
,
service_idx
):
"""
Start one server
Args:
service_idx: server index
Returns:
None
"""
self
.
_rpc_service_list
[
service_idx
].
run_server
()
def
prepare_server
(
self
):
"""
Prepare all servers to be started, and append them into list.
"""
for
i
,
device_id
in
enumerate
(
self
.
_devices
):
if
self
.
_workdir
!=
""
:
workdir
=
"{}_{}"
.
format
(
self
.
_workdir
,
i
)
...
...
@@ -135,6 +227,9 @@ class LocalServiceHandler(object):
ir_optim
=
self
.
_ir_optim
))
def
start_server
(
self
):
"""
Start multiple processes and start one server in each process
"""
for
i
,
service
in
enumerate
(
self
.
_rpc_service_list
):
p
=
multiprocessing
.
Process
(
target
=
self
.
_start_one_server
,
args
=
(
i
,
))
...
...
python/pipeline/operator.py
浏览文件 @
09c26365
...
...
@@ -24,6 +24,7 @@ import os
import
sys
import
collections
import
numpy
as
np
import
json
from
numpy
import
*
if
sys
.
version_info
.
major
==
2
:
import
Queue
...
...
@@ -33,9 +34,9 @@ else:
raise
Exception
(
"Error Python version"
)
from
.proto
import
pipeline_service_pb2
from
.channel
import
(
ThreadChannel
,
ProcessChannel
,
ChannelDataEcode
,
from
.channel
import
(
ThreadChannel
,
ProcessChannel
,
ChannelDataE
rr
code
,
ChannelData
,
ChannelDataType
,
ChannelStopError
,
ChannelTimeoutError
)
ChannelTimeoutError
,
ProductErrCode
)
from
.util
import
NameGenerator
from
.profiler
import
UnsafeTimeProfiler
as
TimeProfiler
from
.
import
local_service_handler
...
...
@@ -88,6 +89,18 @@ class Op(object):
self
.
_succ_close_op
=
False
def
init_from_dict
(
self
,
conf
):
"""
Initializing one Op from config.yaml. If server_endpoints exist,
which is remote RPC mode, otherwise it is local RPC mode. There
are three types of predictios in local RPC mode, brpc, grpc and
local_predictor.
Args:
conf: config.yaml
Returns:
None
"""
# init op
if
self
.
concurrency
is
None
:
self
.
concurrency
=
conf
[
"concurrency"
]
...
...
@@ -118,34 +131,46 @@ class Op(object):
else
:
self
.
_auto_batching_timeout
=
self
.
_auto_batching_timeout
/
1000.0
self
.
model_config
=
None
self
.
workdir
=
None
self
.
thread_num
=
self
.
concurrency
self
.
devices
=
""
self
.
mem_optim
=
False
self
.
ir_optim
=
False
if
self
.
_server_endpoints
is
None
:
server_endpoints
=
conf
.
get
(
"server_endpoints"
,
[])
if
len
(
server_endpoints
)
!=
0
:
# remote service
self
.
with_serving
=
True
self
.
_server_endpoints
=
server_endpoints
self
.
client_type
=
conf
[
"client_type"
]
else
:
if
self
.
_local_service_handler
is
None
:
local_service_conf
=
conf
.
get
(
"local_service_conf"
)
_LOGGER
.
info
(
"local_service_conf: {}"
.
format
(
local_service_conf
))
model_config
=
local_service_conf
.
get
(
"model_config"
)
self
.
model_config
=
local_service_conf
.
get
(
"model_config"
)
self
.
client_type
=
local_service_conf
.
get
(
"client_type"
)
_LOGGER
.
info
(
"model_config: {}"
.
format
(
model_config
))
if
model_config
is
None
:
self
.
workdir
=
local_service_conf
.
get
(
"workdir"
)
self
.
thread_num
=
local_service_conf
.
get
(
"thread_num"
)
self
.
devices
=
local_service_conf
.
get
(
"devices"
)
self
.
mem_optim
=
local_service_conf
.
get
(
"mem_optim"
)
self
.
ir_optim
=
local_service_conf
.
get
(
"ir_optim"
)
self
.
_fetch_names
=
local_service_conf
.
get
(
"fetch_list"
)
if
self
.
model_config
is
None
:
self
.
with_serving
=
False
else
:
# local rpc service
self
.
with_serving
=
True
if
self
.
client_type
==
"brpc"
or
self
.
client_type
==
"grpc"
:
service_handler
=
local_service_handler
.
LocalServiceHandler
(
model_config
=
model_config
,
model_config
=
self
.
model_config
,
client_type
=
self
.
client_type
,
workdir
=
local_service_conf
[
"workdir"
]
,
thread_num
=
local_service_conf
[
"thread_num"
]
,
devices
=
local_service_conf
[
"devices"
]
,
mem_optim
=
local_service_conf
[
"mem_optim"
]
,
ir_optim
=
local_service_conf
[
"ir_optim"
]
)
workdir
=
self
.
workdir
,
thread_num
=
self
.
thread_num
,
devices
=
self
.
devices
,
mem_optim
=
self
.
mem_optim
,
ir_optim
=
self
.
ir_optim
)
service_handler
.
prepare_server
()
# get fetch_list
serivce_ports
=
service_handler
.
get_port_list
()
self
.
_server_endpoints
=
[
...
...
@@ -159,19 +184,15 @@ class Op(object):
)
elif
self
.
client_type
==
"local_predictor"
:
service_handler
=
local_service_handler
.
LocalServiceHandler
(
model_config
=
model_config
,
model_config
=
self
.
model_config
,
client_type
=
self
.
client_type
,
workdir
=
local_service_conf
[
"workdir"
],
thread_num
=
local_service_conf
[
"thread_num"
],
devices
=
local_service_conf
[
"devices"
])
#service_handler.prepare_server() # get fetch_list
self
.
local_predictor
=
service_handler
.
get_client
()
workdir
=
self
.
workdir
,
thread_num
=
self
.
thread_num
,
devices
=
self
.
devices
,
fetch_names
=
self
.
_fetch_names
)
if
self
.
_client_config
is
None
:
self
.
_client_config
=
service_handler
.
get_client_config
(
)
if
self
.
_fetch_names
is
None
:
self
.
_fetch_names
=
service_handler
.
get_fetch_list
(
)
self
.
_local_service_handler
=
service_handler
else
:
self
.
with_serving
=
True
...
...
@@ -208,6 +229,15 @@ class Op(object):
self
.
_batch_size
,
self
.
_auto_batching_timeout
)))
def
launch_local_rpc_service
(
self
):
"""
Launching multiple local rpc servers.
Args:
None
Returns:
None
"""
if
self
.
_local_service_handler
is
None
:
_LOGGER
.
warning
(
self
.
_log
(
"Failed to launch local rpc"
...
...
@@ -222,6 +252,15 @@ class Op(object):
.
format
(
self
.
name
,
port
))
def
use_default_auto_batching_config
(
self
):
"""
Set the auto batching config default.
Args:
None
Returns:
None
"""
if
self
.
_batch_size
!=
1
:
_LOGGER
.
warning
(
"Op({}) reset batch_size=1 (original: {})"
.
format
(
self
.
name
,
self
.
_batch_size
))
...
...
@@ -239,6 +278,18 @@ class Op(object):
self
.
_tracer
=
tracer
def
init_client
(
self
,
client_config
,
server_endpoints
):
"""
Initialize the client object. There are three types of clients, brpc,
grpc and local_predictor. In grpc or brpc mode, the client connects
endpoints.
Args:
client_config: client config info
server_endpoints: server IP/Port list.
Returns:
client: client object.
"""
if
self
.
with_serving
==
False
:
_LOGGER
.
info
(
"Op({}) has no client (and it also do not "
"run the process function)"
.
format
(
self
.
name
))
...
...
@@ -266,6 +317,16 @@ class Op(object):
return
self
.
_input_ops
def
set_input_ops
(
self
,
ops
):
"""
Set input ops.Each op have many input ops, but only one input
channel.
Args:
ops: op list
Returns:
None.
"""
if
not
isinstance
(
ops
,
list
):
ops
=
[]
if
ops
is
None
else
[
ops
]
self
.
_input_ops
=
[]
...
...
@@ -278,6 +339,10 @@ class Op(object):
self
.
_input_ops
.
append
(
op
)
def
add_input_channel
(
self
,
channel
):
"""
Adding one input channel to the Op. Each op have many front op,
but, only one input channel.
"""
if
not
isinstance
(
channel
,
(
ThreadChannel
,
ProcessChannel
)):
_LOGGER
.
critical
(
self
.
_log
(
"Failed to set input_channel: input "
...
...
@@ -294,6 +359,16 @@ class Op(object):
return
self
.
_input
def
add_output_channel
(
self
,
channel
):
"""
Adding one output channel to the Op. Each op have many output channels,
But only one front channel.
Args:
channel: an output channel object.
Returns:
None
"""
if
not
isinstance
(
channel
,
(
ThreadChannel
,
ProcessChannel
)):
_LOGGER
.
critical
(
self
.
_log
(
"Failed to add output_channel: output channel "
...
...
@@ -308,7 +383,23 @@ class Op(object):
def
_get_output_channels
(
self
):
return
self
.
_outputs
def
preprocess
(
self
,
input_dicts
):
def
preprocess
(
self
,
input_dicts
,
data_id
=
0
,
log_id
=
0
):
"""
In preprocess stage, assembling data for process stage. users can
override this function for model feed features.
Args:
input_dicts: input data to be preprocessed
data_id: inner unique id, 0 default
log_id: global unique id for RTT, 0 default
Return:
input_dict: data for process stage
is_skip_process: skip process stage or not, False default
prod_errcode: None default, otherwise, product errores occured.
It is handled in the same way as exception.
prod_errinfo: "" default
"""
# multiple previous Op
if
len
(
input_dicts
)
!=
1
:
_LOGGER
.
critical
(
...
...
@@ -318,9 +409,20 @@ class Op(object):
os
.
_exit
(
-
1
)
(
_
,
input_dict
),
=
input_dicts
.
items
()
return
input_dict
def
process
(
self
,
feed_batch
,
typical_logid
):
return
input_dict
,
False
,
None
,
""
def
process
(
self
,
feed_batch
,
typical_logid
=
0
):
"""
In process stage, send requests to the inference server or predict locally.
users do not need to inherit this function
Args:
feed_batch: data to be fed to inference server
typical_logid: mark batch predicts, usually the first logid in batch,
0 default.
Returns:
call_result: predict result
"""
err
,
err_info
=
ChannelData
.
check_batch_npdata
(
feed_batch
)
if
err
!=
0
:
_LOGGER
.
critical
(
...
...
@@ -345,27 +447,54 @@ class Op(object):
call_result
.
pop
(
"serving_status_code"
)
return
call_result
def
postprocess
(
self
,
input_dict
,
fetch_dict
):
return
fetch_dict
def
postprocess
(
self
,
input_dict
,
fetch_dict
,
log_id
=
0
):
"""
In postprocess stage, assemble data for next op or output.
Args:
input_dict: data returned in preprocess stage.
fetch_dict: data returned in process stage.
log_id: logid, 0 default
Returns:
fetch_dict: return fetch_dict default
prod_errcode: None default, otherwise, product errores occured.
It is handled in the same way as exception.
prod_errinfo: "" default
"""
return
fetch_dict
,
None
,
""
def
_parse_channeldata
(
self
,
channeldata_dict
):
"""
Parse one channeldata
Args:
channeldata_dict : channel data to be parsed, dict type
Return:
data_id: created by dag._id_generator, unique
error_channeldata: error channeldata
parsed_data: get np/dict data from channeldata
client_need_profile: need profile info
profile_set: profile info
log_id: logid for tracing a request
"""
data_id
,
error_channeldata
=
None
,
None
client_need_profile
,
profile_set
=
False
,
set
()
parsed_data
=
{}
key
=
list
(
channeldata_dict
.
keys
())[
0
]
data_id
=
channeldata_dict
[
key
].
id
log_id
=
channeldata_dict
[
key
].
log_id
client_need_profile
=
channeldata_dict
[
key
].
client_need_profile
for
name
,
data
in
channeldata_dict
.
items
():
if
data
.
e
code
!=
ChannelDataE
code
.
OK
.
value
:
if
data
.
e
rror_code
!=
ChannelDataErr
code
.
OK
.
value
:
error_channeldata
=
data
break
parsed_data
[
name
]
=
data
.
parse
()
if
client_need_profile
:
profile_set
|=
data
.
profile_data_set
return
(
data_id
,
error_channeldata
,
parsed_data
,
client_need_profile
,
profile_set
)
profile_set
,
log_id
)
def
_push_to_output_channels
(
self
,
data
,
...
...
@@ -374,6 +503,20 @@ class Op(object):
profile_str
=
None
,
client_need_profile
=
False
,
profile_set
=
None
):
"""
Push data to output channels, Do not run the later stage(preprocess,
process, postprocess)
Args:
data: channeldata, to be pushed
channels: output channels
name: op name
profile_str: one profile message
client_need_profile: False default
profile_set: profile message collections
Returns:
None
"""
if
name
is
None
:
name
=
self
.
name
...
...
@@ -387,6 +530,16 @@ class Op(object):
channel
.
push
(
data
,
name
)
def
start_with_process
(
self
):
"""
Each OP creates a process to run the main loop, initializes the CUDA
environment in each individual process.
Args:
None
Returns:
process array
"""
trace_buffer
=
None
if
self
.
_tracer
is
not
None
:
trace_buffer
=
self
.
_tracer
.
data_buffer
()
...
...
@@ -395,22 +548,42 @@ class Op(object):
p
=
multiprocessing
.
Process
(
target
=
self
.
_run
,
args
=
(
concurrency_idx
,
self
.
_get_input_channel
(),
self
.
_get_output_channels
(),
False
,
trace_buffer
))
self
.
_get_output_channels
(),
False
,
trace_buffer
,
self
.
model_config
,
self
.
workdir
,
self
.
thread_num
,
self
.
devices
,
self
.
mem_optim
,
self
.
ir_optim
))
p
.
daemon
=
True
p
.
start
()
process
.
append
(
p
)
return
process
def
start_with_thread
(
self
):
"""
Each OP creates a thread to run the main loop, initializes the CUDA
environment in the main thread.
Args:
None
Returns:
thread array
"""
trace_buffer
=
None
if
self
.
_tracer
is
not
None
:
trace_buffer
=
self
.
_tracer
.
data_buffer
()
#Init cuda env in main thread
if
self
.
client_type
==
"local_predictor"
:
_LOGGER
.
info
(
"Init cuda env in main thread"
)
self
.
local_predictor
=
self
.
_local_service_handler
.
get_client
()
threads
=
[]
for
concurrency_idx
in
range
(
self
.
concurrency
):
t
=
threading
.
Thread
(
target
=
self
.
_run
,
args
=
(
concurrency_idx
,
self
.
_get_input_channel
(),
self
.
_get_output_channels
(),
True
,
trace_buffer
))
self
.
_get_output_channels
(),
True
,
trace_buffer
,
self
.
model_config
,
self
.
workdir
,
self
.
thread_num
,
self
.
devices
,
self
.
mem_optim
,
self
.
ir_optim
))
# When a process exits, it attempts to terminate
# all of its daemonic child processes.
t
.
daemon
=
True
...
...
@@ -421,52 +594,109 @@ class Op(object):
def
init_op
(
self
):
pass
def
_run_preprocess
(
self
,
parsed_data_dict
,
op_info_prefix
):
def
_run_preprocess
(
self
,
parsed_data_dict
,
op_info_prefix
,
logid_dict
):
"""
Run preprocess stage
Args:
parsed_data_dict: data to be pre-processed
op_info_prefix: input op info
logid_dict: logid dict
Returns:
preped_data_dict: data preprocessed, to be processed
err_channeldata_dict: when exceptions occurred, putting errors in it.
skip_process_dict: skip process stage or not
"""
_LOGGER
.
debug
(
"{} Running preprocess"
.
format
(
op_info_prefix
))
preped_data_dict
=
collections
.
OrderedDict
()
err_channeldata_dict
=
collections
.
OrderedDict
()
skip_process_dict
=
{}
for
data_id
,
parsed_data
in
parsed_data_dict
.
items
():
preped_data
,
error_channeldata
=
None
,
None
is_skip_process
=
False
prod_errcode
,
prod_errinfo
=
None
,
None
log_id
=
logid_dict
.
get
(
data_id
)
try
:
preped_data
=
self
.
preprocess
(
parsed_data
)
preped_data
,
is_skip_process
,
prod_errcode
,
prod_errinfo
=
self
.
preprocess
(
parsed_data
,
data_id
,
logid_dict
.
get
(
data_id
))
# Set skip_process_dict
if
is_skip_process
is
True
:
skip_process_dict
[
data_id
]
=
True
except
TypeError
as
e
:
# Error type in channeldata.datatype
error_info
=
"(
log
id={}) {} Failed to preprocess: {}"
.
format
(
data_id
,
op_info_prefix
,
e
)
error_info
=
"(
data_id={} log_
id={}) {} Failed to preprocess: {}"
.
format
(
data_id
,
log_id
,
op_info_prefix
,
e
)
_LOGGER
.
error
(
error_info
,
exc_info
=
True
)
error_channeldata
=
ChannelData
(
e
code
=
ChannelDataE
code
.
TYPE_ERROR
.
value
,
e
rror_code
=
ChannelDataErr
code
.
TYPE_ERROR
.
value
,
error_info
=
error_info
,
data_id
=
data_id
)
data_id
=
data_id
,
log_id
=
log_id
)
except
Exception
as
e
:
error_info
=
"(
log
id={}) {} Failed to preprocess: {}"
.
format
(
data_id
,
op_info_prefix
,
e
)
error_info
=
"(
data_id={} log_
id={}) {} Failed to preprocess: {}"
.
format
(
data_id
,
log_id
,
op_info_prefix
,
e
)
_LOGGER
.
error
(
error_info
,
exc_info
=
True
)
error_channeldata
=
ChannelData
(
e
code
=
ChannelDataE
code
.
UNKNOW
.
value
,
e
rror_code
=
ChannelDataErr
code
.
UNKNOW
.
value
,
error_info
=
error_info
,
data_id
=
data_id
)
data_id
=
data_id
,
log_id
=
log_id
)
if
prod_errcode
is
not
None
:
# product errors occured
error_channeldata
=
ChannelData
(
error_code
=
ChannelDataErrcode
.
PRODUCT_ERROR
.
value
,
error_info
=
""
,
prod_error_code
=
prod_errcode
,
prod_error_info
=
prod_errinfo
,
data_id
=
data_id
,
log_id
=
log_id
)
if
error_channeldata
is
not
None
:
err_channeldata_dict
[
data_id
]
=
error_channeldata
else
:
preped_data_dict
[
data_id
]
=
preped_data
_LOGGER
.
debug
(
"{} Succ preprocess"
.
format
(
op_info_prefix
))
return
preped_data_dict
,
err_channeldata_dict
def
_run_process
(
self
,
preped_data_dict
,
op_info_prefix
):
return
preped_data_dict
,
err_channeldata_dict
,
skip_process_dict
def
_run_process
(
self
,
preped_data_dict
,
op_info_prefix
,
skip_process_dict
,
logid_dict
):
"""
Run process stage
Args:
preped_data_dict: feed the data to be predicted by the model.
op_info_prefix: prefix op info
skip_process_dict: skip process stage or not
logid_dict: logid dict
Returns:
midped_data_dict: data midprocessed, to be post-processed
err_channeldata_dict: when exceptions occurred, putting errors in it
"""
_LOGGER
.
debug
(
"{} Running process"
.
format
(
op_info_prefix
))
midped_data_dict
=
collections
.
OrderedDict
()
err_channeldata_dict
=
collections
.
OrderedDict
()
if
self
.
with_serving
:
data_ids
=
preped_data_dict
.
keys
()
### if (batch_num == 1 && skip == True) ,then skip the process stage.
is_skip_process
=
False
data_ids
=
preped_data_dict
.
keys
()
if
len
(
data_ids
)
==
1
and
skip_process_dict
.
get
(
data_ids
[
0
])
==
True
:
is_skip_process
=
True
_LOGGER
.
info
(
"(data_id={} log_id={}) skip process stage"
.
format
(
data_ids
[
0
],
logid_dict
.
get
(
data_ids
[
0
])))
if
self
.
with_serving
is
True
and
is_skip_process
is
False
:
# use typical_logid to mark batch data
typical_logid
=
data_ids
[
0
]
if
len
(
data_ids
)
!=
1
:
for
data_id
in
data_ids
:
_LOGGER
.
info
(
"(logid={}) {} During access to PaddleServingService,"
"(
data_id={}
logid={}) {} During access to PaddleServingService,"
" we selected logid={} (from batch: {}) as a "
"representative for logging."
.
format
(
data_id
,
op_info_prefix
,
typical_logid
,
data_ids
))
data_id
,
logid_dict
.
get
(
data_id
),
op_info_prefix
,
typical_logid
,
data_ids
))
# combine samples to batch
one_input
=
preped_data_dict
[
data_ids
[
0
]]
...
...
@@ -486,64 +716,70 @@ class Op(object):
input_offset
.
append
(
offset
)
else
:
_LOGGER
.
critical
(
"{} Failed to process: expect input type is dict(sample"
" input) or list(batch input), but get {}"
.
format
(
op_info_prefix
,
type
(
one_input
)))
"
(data_id={} log_id={})
{} Failed to process: expect input type is dict(sample"
" input) or list(batch input), but get {}"
.
format
(
data_ids
[
0
],
typical_logid
,
op_info_prefix
,
type
(
one_input
)))
os
.
_exit
(
-
1
)
midped_batch
=
None
e
code
=
ChannelDataE
code
.
OK
.
value
e
rror_code
=
ChannelDataErr
code
.
OK
.
value
if
self
.
_timeout
<=
0
:
try
:
midped_batch
=
self
.
process
(
feed_batch
,
typical_logid
)
except
Exception
as
e
:
e
code
=
ChannelDataE
code
.
UNKNOW
.
value
error_info
=
"(
log
id={}) {} Failed to process(batch: {}): {}"
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
,
e
)
e
rror_code
=
ChannelDataErr
code
.
UNKNOW
.
value
error_info
=
"(
data_id={} log_
id={}) {} Failed to process(batch: {}): {}"
.
format
(
data_ids
[
0
],
typical_logid
,
op_info_prefix
,
data_ids
,
e
)
_LOGGER
.
error
(
error_info
,
exc_info
=
True
)
else
:
# retry N times configed in yaml files.
for
i
in
range
(
self
.
_retry
):
try
:
# time out for each process
midped_batch
=
func_timeout
.
func_timeout
(
self
.
_timeout
,
self
.
process
,
args
=
(
feed_batch
,
typical_logid
))
except
func_timeout
.
FunctionTimedOut
as
e
:
if
i
+
1
>=
self
.
_retry
:
e
code
=
ChannelDataE
code
.
TIMEOUT
.
value
error_info
=
"(logid={}) {} Failed to process(batch: {}): "
\
e
rror_code
=
ChannelDataErr
code
.
TIMEOUT
.
value
error_info
=
"(log
_
id={}) {} Failed to process(batch: {}): "
\
"exceeded retry count."
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
)
_LOGGER
.
error
(
error_info
)
else
:
_LOGGER
.
warning
(
"(logid={}) {} Failed to process(batch: {}): timeout,"
"(log
_
id={}) {} Failed to process(batch: {}): timeout,"
" and retrying({}/{})..."
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
,
i
+
1
,
self
.
_retry
))
except
Exception
as
e
:
e
code
=
ChannelDataE
code
.
UNKNOW
.
value
error_info
=
"(logid={}) {} Failed to process(batch: {}): {}"
.
format
(
e
rror_code
=
ChannelDataErr
code
.
UNKNOW
.
value
error_info
=
"(log
_
id={}) {} Failed to process(batch: {}): {}"
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
,
e
)
_LOGGER
.
error
(
error_info
,
exc_info
=
True
)
break
else
:
break
if
e
code
!=
ChannelDataE
code
.
OK
.
value
:
if
e
rror_code
!=
ChannelDataErr
code
.
OK
.
value
:
for
data_id
in
data_ids
:
err_channeldata_dict
[
data_id
]
=
ChannelData
(
ecode
=
ecode
,
error_info
=
error_info
,
data_id
=
data_id
)
error_code
=
error_code
,
error_info
=
error_info
,
data_id
=
data_id
,
log_id
=
logid_dict
.
get
(
data_id
))
elif
midped_batch
is
None
:
# op client return None
error_info
=
"(logid={}) {} Failed to predict, please check if "
\
error_info
=
"(log
_
id={}) {} Failed to predict, please check if "
\
"PaddleServingService is working properly."
.
format
(
typical_logid
,
op_info_prefix
)
_LOGGER
.
error
(
error_info
)
for
data_id
in
data_ids
:
err_channeldata_dict
[
data_id
]
=
ChannelData
(
e
code
=
ChannelDataE
code
.
CLIENT_ERROR
.
value
,
e
rror_code
=
ChannelDataErr
code
.
CLIENT_ERROR
.
value
,
error_info
=
error_info
,
data_id
=
data_id
)
data_id
=
data_id
,
log_id
=
logid_dict
.
get
(
data_id
))
else
:
# transform np format to dict format
var_names
=
midped_batch
.
keys
()
...
...
@@ -552,7 +788,7 @@ class Op(object):
for
name
in
var_names
:
lod_offset_name
=
"{}.lod"
.
format
(
name
)
if
lod_offset_name
in
var_names
:
_LOGGER
.
debug
(
"(logid={}) {} {} is LodTensor"
.
format
(
_LOGGER
.
debug
(
"(log
_
id={}) {} {} is LodTensor"
.
format
(
typical_logid
,
op_info_prefix
,
name
))
lod_var_names
.
add
(
name
)
lod_offset_names
.
add
(
lod_offset_name
)
...
...
@@ -588,38 +824,67 @@ class Op(object):
return
midped_data_dict
,
err_channeldata_dict
def
_run_postprocess
(
self
,
parsed_data_dict
,
midped_data_dict
,
op_info_prefix
):
op_info_prefix
,
logid_dict
):
"""
Run postprocess stage.
Args:
parsed_data_dict: data returned in preprocess stage
midped_data_dict: data returned in process stage
op_info_prefix: prefix op info
logid_dict: logid dict
Returns:
postped_data_dict: data postprocessed
err_channeldata_dict: when exceptions occurred, putting errors in it
"""
_LOGGER
.
debug
(
"{} Running postprocess"
.
format
(
op_info_prefix
))
postped_data_dict
=
collections
.
OrderedDict
()
err_channeldata_dict
=
collections
.
OrderedDict
()
for
data_id
,
midped_data
in
midped_data_dict
.
items
():
log_id
=
logid_dict
.
get
(
data_id
)
postped_data
,
err_channeldata
=
None
,
None
prod_errcode
,
prod_errinfo
=
None
,
None
try
:
postped_data
=
self
.
postprocess
(
parsed_data_dict
[
data_id
],
midped_data
)
postped_data
,
prod_errcode
,
prod_errinfo
=
self
.
postprocess
(
parsed_data_dict
[
data_id
],
midped_data
,
logid_dict
.
get
(
data_id
))
except
Exception
as
e
:
error_info
=
"(
log
id={}) {} Failed to postprocess: {}"
.
format
(
data_id
,
op_info_prefix
,
e
)
error_info
=
"(
data_id={} log_
id={}) {} Failed to postprocess: {}"
.
format
(
data_id
,
log_id
,
op_info_prefix
,
e
)
_LOGGER
.
error
(
error_info
,
exc_info
=
True
)
err_channeldata
=
ChannelData
(
e
code
=
ChannelDataE
code
.
UNKNOW
.
value
,
e
rror_code
=
ChannelDataErr
code
.
UNKNOW
.
value
,
error_info
=
error_info
,
data_id
=
data_id
)
data_id
=
data_id
,
log_id
=
log_id
)
if
prod_errcode
is
not
None
:
# product errors occured
err_channeldata
=
ChannelData
(
error_code
=
ChannelDataErrcode
.
PRODUCT_ERROR
.
value
,
error_info
=
""
,
prod_error_code
=
prod_errcode
,
prod_error_info
=
prod_errinfo
,
data_id
=
data_id
,
log_id
=
log_id
)
if
err_channeldata
is
not
None
:
err_channeldata_dict
[
data_id
]
=
err_channeldata
continue
else
:
if
not
isinstance
(
postped_data
,
dict
):
error_info
=
"(logid={}) {} Failed to postprocess: "
\
error_info
=
"(log
_id={} log_
id={}) {} Failed to postprocess: "
\
"output of postprocess funticon must be "
\
"dict type, but get {}"
.
format
(
data_id
,
op_info_prefix
,
data_id
,
log_id
,
op_info_prefix
,
type
(
postped_data
))
_LOGGER
.
error
(
error_info
)
err_channeldata
=
ChannelData
(
e
code
=
ChannelDataE
code
.
UNKNOW
.
value
,
e
rror_code
=
ChannelDataErr
code
.
UNKNOW
.
value
,
error_info
=
error_info
,
data_id
=
data_id
)
data_id
=
data_id
,
log_id
=
log_id
)
err_channeldata_dict
[
data_id
]
=
err_channeldata
continue
...
...
@@ -629,18 +894,36 @@ class Op(object):
output_data
=
ChannelData
(
ChannelDataType
.
CHANNEL_NPDATA
.
value
,
npdata
=
postped_data
,
data_id
=
data_id
)
data_id
=
data_id
,
log_id
=
log_id
)
else
:
output_data
=
ChannelData
(
ChannelDataType
.
DICT
.
value
,
dictdata
=
postped_data
,
data_id
=
data_id
)
data_id
=
data_id
,
log_id
=
log_id
)
postped_data_dict
[
data_id
]
=
output_data
_LOGGER
.
debug
(
"{} Succ postprocess"
.
format
(
op_info_prefix
))
return
postped_data_dict
,
err_channeldata_dict
def
_auto_batching_generator
(
self
,
input_channel
,
op_name
,
batch_size
,
timeout
,
op_info_prefix
):
"""
Merge batch_size requests for one prediction.Taking one piece of data
from the input channel each time until equals batch_size, or the waiting
time exceeds auto_batching_timeout.
Args:
input_channel: the input channel of Op
op_name: op name
batch_size: batch size, Less than worker_num
timeout: batch timeout, seconds, If timeout is None, and the quantity
taken from the front is less than batch_size, blocking occured.
op_info_prefix: op link info.
Returns:
None
"""
while
True
:
batch
=
[]
while
len
(
batch
)
==
0
:
...
...
@@ -661,6 +944,9 @@ class Op(object):
else
:
channeldata_dict
=
input_channel
.
front
(
op_name
)
batch
.
append
(
channeldata_dict
)
_LOGGER
.
debug
(
"_auto_batching_generator get {} channeldata from op:{} into batch, batch_size:{}"
.
format
(
idx
,
op_name
,
batch_size
))
except
ChannelTimeoutError
:
_LOGGER
.
debug
(
"{} Failed to generate batch: "
"timeout"
.
format
(
op_info_prefix
))
...
...
@@ -670,37 +956,91 @@ class Op(object):
yield
batch
def
_parse_channeldata_batch
(
self
,
batch
,
output_channels
):
"""
Parse channeldatas batch
Args:
batch: auto-batching batch datas
output_channels: output channels
Returns:
parsed_data_dict: parsed from channeldata in batch
need_profile_dict: need profile dict in batch
profile_dict: profile info dict in batch
logid_dict: trace each request in batch
"""
parsed_data_dict
=
collections
.
OrderedDict
()
need_profile_dict
=
{}
profile_dict
=
{}
logid_dict
=
{}
for
channeldata_dict
in
batch
:
(
data_id
,
error_channeldata
,
parsed_data
,
client_need_profile
,
profile_set
)
=
\
client_need_profile
,
profile_set
,
log_id
)
=
\
self
.
_parse_channeldata
(
channeldata_dict
)
if
error_channeldata
is
None
:
parsed_data_dict
[
data_id
]
=
parsed_data
need_profile_dict
[
data_id
]
=
client_need_profile
profile_dict
[
data_id
]
=
profile_set
logid_dict
[
data_id
]
=
log_id
else
:
# error data in predecessor Op
# (error_channeldata with profile info)
self
.
_push_to_output_channels
(
error_channeldata
,
output_channels
)
return
parsed_data_dict
,
need_profile_dict
,
profile_dict
return
parsed_data_dict
,
need_profile_dict
,
profile_dict
,
logid_dict
def
_run
(
self
,
concurrency_idx
,
input_channel
,
output_channels
,
is_thread_op
,
trace_buffer
):
is_thread_op
,
trace_buffer
,
model_config
,
workdir
,
thread_num
,
devices
,
mem_optim
,
ir_optim
):
"""
_run() is the entry function of OP process / thread model.When client
type is local_predictor in process mode, the CUDA environment needs to
be initialized by LocalServiceHandler[child process], otherwise, Cuda
error(3), initialization error is occured. Preprocess, process and
postprocess are executed in the main loop. The preprocess and postprocess
function is usually rewrited by users. Trace data is recorded by trace_que.
Args:
concurrency_idx: thread/process index
input_channel: input channel, take the data to be processed
output_channels: output channel, store processed data
is_thread_op: False, It's process op; True, It's thread op
trace_buffer: store trace infomations
model_config: model config path
workdir: work directory
thread_num: number of threads, concurrent quantity
devices: gpu id list[gpu], "" default[cpu]
mem_optim: use memory/graphics memory optimization, True default.
ir_optim: use calculation chart optimization, False default.
Returns:
None
"""
op_info_prefix
=
"[{}|{}]"
.
format
(
self
.
name
,
concurrency_idx
)
tid
=
threading
.
current_thread
().
ident
# init op
# init op
s
profiler
=
None
try
:
if
is_thread_op
==
False
and
self
.
client_type
==
"local_predictor"
:
self
.
service_handler
=
local_service_handler
.
LocalServiceHandler
(
model_config
=
model_config
,
client_type
=
"local_predictor"
,
workdir
=
workdir
,
thread_num
=
thread_num
,
devices
=
devices
,
mem_optim
=
mem_optim
,
ir_optim
=
ir_optim
)
_LOGGER
.
info
(
"Init cuda env in process {}"
.
format
(
concurrency_idx
))
self
.
local_predictor
=
self
.
service_handler
.
get_client
()
# check all ops initialized successfully.
profiler
=
self
.
_initialize
(
is_thread_op
,
concurrency_idx
)
except
Exception
as
e
:
_LOGGER
.
critical
(
"{}
F
ailed to init op: {}"
.
format
(
op_info_prefix
,
e
),
"{}
f
ailed to init op: {}"
.
format
(
op_info_prefix
,
e
),
exc_info
=
True
)
os
.
_exit
(
-
1
)
_LOGGER
.
info
(
"{} Succ init"
.
format
(
op_info_prefix
))
...
...
@@ -727,7 +1067,7 @@ class Op(object):
# parse channeldata batch
try
:
parsed_data_dict
,
need_profile_dict
,
profile_dict
\
parsed_data_dict
,
need_profile_dict
,
profile_dict
,
logid_dict
\
=
self
.
_parse_channeldata_batch
(
channeldata_dict_batch
,
output_channels
)
except
ChannelStopError
:
...
...
@@ -740,11 +1080,12 @@ class Op(object):
# preprecess
start
=
profiler
.
record
(
"prep#{}_0"
.
format
(
op_info_prefix
))
preped_data_dict
,
err_channeldata_dict
\
=
self
.
_run_preprocess
(
parsed_data_dict
,
op_info_prefix
)
preped_data_dict
,
err_channeldata_dict
,
skip_process_dict
\
=
self
.
_run_preprocess
(
parsed_data_dict
,
op_info_prefix
,
logid_dict
)
end
=
profiler
.
record
(
"prep#{}_1"
.
format
(
op_info_prefix
))
prep_time
=
end
-
start
try
:
# put error requests into output channel, skip process and postprocess stage
for
data_id
,
err_channeldata
in
err_channeldata_dict
.
items
():
self
.
_push_to_output_channels
(
data
=
err_channeldata
,
...
...
@@ -761,7 +1102,7 @@ class Op(object):
# process
start
=
profiler
.
record
(
"midp#{}_0"
.
format
(
op_info_prefix
))
midped_data_dict
,
err_channeldata_dict
\
=
self
.
_run_process
(
preped_data_dict
,
op_info_prefix
)
=
self
.
_run_process
(
preped_data_dict
,
op_info_prefix
,
skip_process_dict
,
logid_dict
)
end
=
profiler
.
record
(
"midp#{}_1"
.
format
(
op_info_prefix
))
midp_time
=
end
-
start
try
:
...
...
@@ -781,8 +1122,7 @@ class Op(object):
# postprocess
start
=
profiler
.
record
(
"postp#{}_0"
.
format
(
op_info_prefix
))
postped_data_dict
,
err_channeldata_dict
\
=
self
.
_run_postprocess
(
parsed_data_dict
,
midped_data_dict
,
op_info_prefix
)
=
self
.
_run_postprocess
(
parsed_data_dict
,
midped_data_dict
,
op_info_prefix
,
logid_dict
)
end
=
profiler
.
record
(
"postp#{}_1"
.
format
(
op_info_prefix
))
postp_time
=
end
-
start
try
:
...
...
@@ -838,6 +1178,19 @@ class Op(object):
break
def
_initialize
(
self
,
is_thread_op
,
concurrency_idx
):
"""
Initialize one OP object in the target function of a thread or porcess.
Initialize the client object with _client_config and _server_endpoints.
Create a TimeProfiler per thread or process for recording profiler info.
Args:
is_thread_op: True, one op runs in one thread; False, one op runs
in one process.
concurrency_idx: process id, Thread mode does not use this param.
Returns:
TimeProfiler
"""
if
is_thread_op
:
with
self
.
_for_init_op_lock
:
if
not
self
.
_succ_init_op
:
...
...
@@ -877,9 +1230,17 @@ class Op(object):
class
RequestOp
(
Op
):
""" RequestOp do not run preprocess, process, postprocess. """
"""
RequestOp is a special Op, for unpacking one request package. If the
request needs one special unpackaging method, you need to inherit class
RequestOp and rewrite function unpack_request_package.Notice!!! Class
RequestOp does not run preprocess, process, postprocess.
"""
def
__init__
(
self
):
"""
Initialize the RequestOp
"""
# PipelineService.name = "@DAGExecutor"
super
(
RequestOp
,
self
).
__init__
(
name
=
"@DAGExecutor"
,
input_ops
=
[])
# init op
...
...
@@ -890,7 +1251,25 @@ class RequestOp(Op):
os
.
_exit
(
-
1
)
def
unpack_request_package
(
self
,
request
):
dictdata
=
{}
"""
Unpack request package by gateway.proto
Args:
request: HTTP body, JSON format
Returns:
dict_data: json fields in HTTP body
log_id: log_id
prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
product errores occured.It is handled in the same way
as exception.
prod_errinfo: "" default
"""
dict_data
=
{}
log_id
=
None
if
request
is
None
:
_LOGGER
.
critical
(
"request is None"
)
raise
ValueError
(
"request is None"
)
for
idx
,
key
in
enumerate
(
request
.
key
):
data
=
request
.
value
[
idx
]
try
:
...
...
@@ -899,14 +1278,27 @@ class RequestOp(Op):
data
=
evaled_data
except
Exception
as
e
:
pass
dictdata
[
key
]
=
data
return
dictdata
dict_data
[
key
]
=
data
log_id
=
request
.
logid
_LOGGER
.
info
(
"RequestOp unpack one request. log_id:{}, clientip:{}
\
name:{}, method:{}"
.
format
(
log_id
,
request
.
clientip
,
request
.
name
,
request
.
method
))
return
dict_data
,
log_id
,
None
,
""
class
ResponseOp
(
Op
):
""" ResponseOp do not run preprocess, process, postprocess. """
"""
ResponseOp is a special Op, for packing one response package. If the channeldata
needs a special packaging method, you need to inherit class ReponseOp and rewrite
pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
process, postprocess.
"""
def
__init__
(
self
,
input_ops
):
"""
Initialize the ResponseOp
"""
super
(
ResponseOp
,
self
).
__init__
(
name
=
"@DAGExecutor"
,
input_ops
=
input_ops
)
# init op
...
...
@@ -918,9 +1310,21 @@ class ResponseOp(Op):
os
.
_exit
(
-
1
)
def
pack_response_package
(
self
,
channeldata
):
"""
Getting channeldata from the last channel, packting the response
package serialized by protobuf.
Args:
channeldata: Type ChannelData
Returns:
resp: pipeline_service_pb2.Response()
"""
resp
=
pipeline_service_pb2
.
Response
()
resp
.
ecode
=
channeldata
.
ecode
if
resp
.
ecode
==
ChannelDataEcode
.
OK
.
value
:
error_code
=
channeldata
.
error_code
error_info
=
""
if
error_code
==
ChannelDataErrcode
.
OK
.
value
:
# Framework level errors
if
channeldata
.
datatype
==
ChannelDataType
.
CHANNEL_NPDATA
.
value
:
feed
=
channeldata
.
parse
()
# ndarray to string:
...
...
@@ -933,8 +1337,8 @@ class ResponseOp(Op):
feed
=
channeldata
.
parse
()
for
name
,
var
in
feed
.
items
():
if
not
isinstance
(
var
,
str
):
resp
.
ecode
=
ChannelDataE
code
.
TYPE_ERROR
.
value
resp
.
error_info
=
self
.
_log
(
error_code
=
ChannelDataErr
code
.
TYPE_ERROR
.
value
error_info
=
self
.
_log
(
"fetch var type must be str({})."
.
format
(
type
(
var
)))
_LOGGER
.
error
(
"(logid={}) Failed to pack RPC "
...
...
@@ -944,19 +1348,46 @@ class ResponseOp(Op):
resp
.
value
.
append
(
var
)
resp
.
key
.
append
(
name
)
else
:
resp
.
ecode
=
ChannelDataE
code
.
TYPE_ERROR
.
value
resp
.
error_info
=
self
.
_log
(
"error type({}) in datatype."
.
format
(
channeldata
.
datatype
))
error_code
=
ChannelDataErr
code
.
TYPE_ERROR
.
value
error_info
=
self
.
_log
(
"error type({}) in datatype."
.
format
(
channeldata
.
datatype
))
_LOGGER
.
error
(
"(logid={}) Failed to pack RPC response"
" package: {}"
.
format
(
channeldata
.
id
,
resp
.
error_info
))
" package: {}"
.
format
(
channeldata
.
id
,
error_info
))
else
:
resp
.
error_info
=
channeldata
.
error_info
# Product level errors
error_info
=
channeldata
.
error_info
if
error_code
==
ChannelDataErrcode
.
PRODUCT_ERROR
.
value
:
#rewrite error_code when product errors occured
error_code
=
channeldata
.
prod_error_code
error_info
=
channeldata
.
prod_error_info
# pack results
if
error_code
is
None
:
error_code
=
0
resp
.
err_no
=
error_code
resp
.
err_msg
=
error_info
return
resp
class
VirtualOp
(
Op
):
''' For connecting two channels. '''
"""
To connect 2 ops across levels in dag view, we create virtual ops
between non-virtual ops, and transfer data only. For examples,
the pred ops of F are D & E.In the process of building DAG, we will
create channels layer by layer according to dag views.Op F is not
in the next layer view of [B, E], so we will create a virtual OP
'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
and 'V3', Finally, we find the non-virtual op F. we create 4 channels
among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
DAG: [A -> B -> C -> D -> F]
\-> E ----------/
DAG view: [[A], [B, E], [C], [D], [F]]
BUILD DAG: [A -> B -> C -> D -> E -> F]
\-> E -> V1-> V2-> V3/
"""
def
__init__
(
self
,
name
,
concurrency
=
1
):
super
(
VirtualOp
,
self
).
__init__
(
...
...
@@ -964,9 +1395,27 @@ class VirtualOp(Op):
self
.
_virtual_pred_ops
=
[]
def
add_virtual_pred_op
(
self
,
op
):
"""
Add the front op of current vritual op.
Args:
op: one op object, may be a virtual op or not.
Returns:
None
"""
self
.
_virtual_pred_ops
.
append
(
op
)
def
_actual_pred_op_names
(
self
,
op
):
"""
Recursively find the front op which is a non-virtual op.
Args:
op: one op object
Returns:
names: the name of non-virtual pred ops.
"""
# can use disjoint-set, but it's not necessary
if
not
isinstance
(
op
,
VirtualOp
):
return
[
op
.
name
]
...
...
@@ -976,6 +1425,15 @@ class VirtualOp(Op):
return
names
def
add_output_channel
(
self
,
channel
):
"""
Adding the output channel of non-virtual pred ops.
Args:
channel: one channel.
Returns:
None.
"""
if
not
isinstance
(
channel
,
(
ThreadChannel
,
ProcessChannel
)):
_LOGGER
.
critical
(
self
.
_log
(
"Failed to add output_channel: output_channel"
...
...
@@ -989,6 +1447,20 @@ class VirtualOp(Op):
def
_run
(
self
,
concurrency_idx
,
input_channel
,
output_channels
,
client_type
,
is_thread_op
):
"""
The target function _run() only transfers data between OPs in one thread
or process.
Args:
concurrency_idx: process id, not avaliable in thread mode.
input_channel: input channel
output_channels: output channels
client_type: no use
is_thread_op: True, thread mode; False, process mode
Returns:
None
"""
op_info_prefix
=
"[{}|{}]"
.
format
(
self
.
name
,
concurrency_idx
)
log
=
get_log_func
(
op_info_prefix
)
tid
=
threading
.
current_thread
().
ident
...
...
python/pipeline/pipeline_client.py
浏览文件 @
09c26365
...
...
@@ -18,7 +18,9 @@ import numpy as np
from
numpy
import
*
import
logging
import
functools
from
.channel
import
ChannelDataEcode
import
json
import
socket
from
.channel
import
ChannelDataErrcode
from
.proto
import
pipeline_service_pb2
from
.proto
import
pipeline_service_pb2_grpc
...
...
@@ -26,6 +28,10 @@ _LOGGER = logging.getLogger(__name__)
class
PipelineClient
(
object
):
"""
PipelineClient provides the basic capabilities of the pipeline SDK
"""
def
__init__
(
self
):
self
.
_channel
=
None
self
.
_profile_key
=
"pipeline.profile"
...
...
@@ -42,6 +48,23 @@ class PipelineClient(object):
def
_pack_request_package
(
self
,
feed_dict
,
profile
):
req
=
pipeline_service_pb2
.
Request
()
logid
=
feed_dict
.
get
(
"logid"
)
if
logid
is
None
:
req
.
logid
=
0
else
:
req
.
logid
=
long
(
logid
)
feed_dict
.
pop
(
"logid"
)
clientip
=
feed_dict
.
get
(
"clientip"
)
if
clientip
is
None
:
hostname
=
socket
.
gethostname
()
ip
=
socket
.
gethostbyname
(
hostname
)
req
.
clientip
=
ip
else
:
req
.
clientip
=
clientip
feed_dict
.
pop
(
"clientip"
)
np
.
set_printoptions
(
threshold
=
sys
.
maxsize
)
for
key
,
value
in
feed_dict
.
items
():
req
.
key
.
append
(
key
)
...
...
@@ -60,29 +83,7 @@ class PipelineClient(object):
return
req
def
_unpack_response_package
(
self
,
resp
,
fetch
):
if
resp
.
ecode
!=
0
:
return
{
"ecode"
:
resp
.
ecode
,
"ecode_desc"
:
ChannelDataEcode
(
resp
.
ecode
),
"error_info"
:
resp
.
error_info
,
}
fetch_map
=
{
"ecode"
:
resp
.
ecode
}
for
idx
,
key
in
enumerate
(
resp
.
key
):
if
key
==
self
.
_profile_key
:
if
resp
.
value
[
idx
]
!=
""
:
sys
.
stderr
.
write
(
resp
.
value
[
idx
])
continue
if
fetch
is
not
None
and
key
not
in
fetch
:
continue
data
=
resp
.
value
[
idx
]
try
:
evaled_data
=
eval
(
data
)
if
isinstance
(
evaled_data
,
np
.
ndarray
):
data
=
evaled_data
except
Exception
as
e
:
pass
fetch_map
[
key
]
=
data
return
fetch_map
return
resp
def
predict
(
self
,
feed_dict
,
fetch
=
None
,
asyn
=
False
,
profile
=
False
):
if
not
isinstance
(
feed_dict
,
dict
):
...
...
python/pipeline/pipeline_server.py
浏览文件 @
09c26365
...
...
@@ -32,6 +32,10 @@ _LOGGER = logging.getLogger(__name__)
class
PipelineServicer
(
pipeline_service_pb2_grpc
.
PipelineServiceServicer
):
"""
Pipeline Servicer entrance.
"""
def
__init__
(
self
,
name
,
response_op
,
dag_conf
,
worker_idx
=-
1
):
super
(
PipelineServicer
,
self
).
__init__
()
self
.
_name
=
name
...
...
@@ -42,10 +46,16 @@ class PipelineServicer(pipeline_service_pb2_grpc.PipelineServiceServicer):
_LOGGER
.
info
(
"[PipelineServicer] succ init"
)
def
inference
(
self
,
request
,
context
):
_LOGGER
.
info
(
"(log_id={}) inference request name:{} self.name:{}"
.
format
(
request
.
logid
,
request
.
name
,
self
.
_name
))
if
request
.
name
!=
""
and
request
.
name
!=
self
.
_name
:
_LOGGER
.
error
(
"(log_id={}) name dismatch error. request.name:{},"
"server.name={}"
.
format
(
request
.
logid
,
request
.
name
,
self
.
_name
))
resp
=
pipeline_service_pb2
.
Response
()
resp
.
ecode
=
channel
.
ChannelDataEcode
.
NO_SERVICE
.
value
resp
.
error_info
=
"Failed to inference: Service name error."
resp
.
err_no
=
channel
.
ChannelDataErrcode
.
NO_SERVICE
.
value
resp
.
err_msg
=
"Failed to inference: Service name error."
resp
.
result
=
""
return
resp
resp
=
self
.
_dag_executor
.
call
(
request
)
return
resp
...
...
@@ -53,7 +63,9 @@ class PipelineServicer(pipeline_service_pb2_grpc.PipelineServiceServicer):
@
contextlib
.
contextmanager
def
_reserve_port
(
port
):
"""Find and reserve a port for all subprocesses to use."""
"""
Find and reserve a port for all subprocesses to use.
"""
sock
=
socket
.
socket
(
socket
.
AF_INET6
,
socket
.
SOCK_STREAM
)
sock
.
setsockopt
(
socket
.
SOL_SOCKET
,
socket
.
SO_REUSEPORT
,
1
)
if
sock
.
getsockopt
(
socket
.
SOL_SOCKET
,
socket
.
SO_REUSEPORT
)
==
0
:
...
...
@@ -66,6 +78,10 @@ def _reserve_port(port):
class
PipelineServer
(
object
):
"""
Pipeline Server : grpc gateway + grpc server.
"""
def
__init__
(
self
,
name
=
None
):
self
.
_name
=
name
# for grpc-gateway path
self
.
_rpc_port
=
None
...
...
@@ -74,6 +90,16 @@ class PipelineServer(object):
self
.
_proxy_server
=
None
def
_grpc_gateway
(
self
,
grpc_port
,
http_port
):
"""
Running a gateway server, linking libproxy_server.so
Args:
grpc_port: GRPC port
http_port: HTTP port
Returns:
None
"""
import
os
from
ctypes
import
cdll
from
.
import
gateway
...
...
@@ -83,6 +109,17 @@ class PipelineServer(object):
proxy_server
.
run_proxy_server
(
grpc_port
,
http_port
)
def
_run_grpc_gateway
(
self
,
grpc_port
,
http_port
):
"""
Starting the GRPC gateway in a new process. Exposing one
available HTTP port outside, and reflecting the data to RPC port.
Args:
grpc_port: GRPC port
http_port: HTTP port
Returns:
None
"""
if
http_port
<=
0
:
_LOGGER
.
info
(
"Ignore grpc_gateway configuration."
)
return
...
...
@@ -99,6 +136,15 @@ class PipelineServer(object):
self
.
_proxy_server
.
start
()
def
set_response_op
(
self
,
response_op
):
"""
Set the response OP.
Args:
response_op: ResponseOp or its subclass object
Returns:
None
"""
if
not
isinstance
(
response_op
,
operator
.
ResponseOp
):
raise
Exception
(
"Failed to set response_op: response_op "
"must be ResponseOp type."
)
...
...
@@ -109,6 +155,17 @@ class PipelineServer(object):
self
.
_used_op
,
_
=
dag
.
DAG
.
get_use_ops
(
self
.
_response_op
)
def
prepare_server
(
self
,
yml_file
=
None
,
yml_dict
=
None
):
"""
Reading configures from the yml file(config.yaml), and launching
local services.
Args:
yml_file: Reading configures from yaml files
yml_dict: Reading configures from yaml dict.
Returns:
None
"""
conf
=
ServerYamlConfChecker
.
load_server_yaml_conf
(
yml_file
=
yml_file
,
yml_dict
=
yml_dict
)
...
...
@@ -158,6 +215,15 @@ class PipelineServer(object):
self
.
_start_local_rpc_service
()
def
_init_ops
(
self
,
op_conf
):
"""
Initializing all OPs from dicetory.
Args:
op_conf: the op configures in yaml dict.
Returns:
None.
"""
default_conf
=
{
"concurrency"
:
1
,
"timeout"
:
-
1
,
...
...
@@ -187,12 +253,22 @@ class PipelineServer(object):
op
.
launch_local_rpc_service
()
def
run_server
(
self
):
"""
If _build_dag_each_worker is True, Starting _worker_num processes and
running one GRPC server in each process. Otherwise, Staring one GRPC
server.
Args:
None
Returns:
None
"""
if
self
.
_build_dag_each_worker
:
with
_reserve_port
(
self
.
_rpc_port
)
as
port
:
bind_address
=
'localhost:{}'
.
format
(
port
)
workers
=
[]
for
i
in
range
(
self
.
_worker_num
):
show_info
=
(
i
==
0
)
worker
=
multiprocessing
.
Process
(
target
=
self
.
_run_server_func
,
args
=
(
bind_address
,
self
.
_response_op
,
self
.
_conf
,
i
))
...
...
@@ -220,6 +296,15 @@ class PipelineServer(object):
server
.
wait_for_termination
()
def
_run_server_func
(
self
,
bind_address
,
response_op
,
dag_conf
,
worker_idx
):
"""
Running one GRPC server with PipelineServicer.
Args:
bind_address: binding IP/Port
response_op: ResponseOp or its subclass object
dag_conf: DAG config
worker_idx: Process index.
"""
options
=
[(
'grpc.so_reuseport'
,
1
),
(
'grpc.max_send_message_length'
,
256
*
1024
*
1024
),
(
'grpc.max_send_message_length'
,
256
*
1024
*
1024
)]
...
...
@@ -235,6 +320,10 @@ class PipelineServer(object):
class
ServerYamlConfChecker
(
object
):
"""
Checking validities of server yaml files.
"""
def
__init__
(
self
):
pass
...
...
python/pipeline/proto/pipeline_service.proto
浏览文件 @
09c26365
...
...
@@ -19,13 +19,16 @@ message Request {
repeated
string
key
=
1
;
repeated
string
value
=
2
;
optional
string
name
=
3
;
optional
string
method
=
4
;
optional
int64
logid
=
5
;
optional
string
clientip
=
6
;
};
message
Response
{
repeated
string
key
=
1
;
repeated
string
value
=
2
;
re
quired
int32
ecode
=
3
;
optional
string
error_info
=
4
;
optional
int32
err_no
=
1
;
optional
string
err_msg
=
2
;
re
peated
string
key
=
3
;
repeated
string
value
=
4
;
};
service
PipelineService
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录