Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
081fe25b
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
081fe25b
编写于
8月 31, 2021
作者:
S
ShiningZhang
提交者:
GitHub
8月 31, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into develop
上级
5080f33b
a152d43d
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
484 addition
and
53 deletion
+484
-53
core/general-server/op/general_dist_kv_infer_op.cpp
core/general-server/op/general_dist_kv_infer_op.cpp
+60
-15
python/paddle_serving_client/client.py
python/paddle_serving_client/client.py
+0
-1
python/pipeline/channel.py
python/pipeline/channel.py
+3
-1
python/pipeline/gateway/proto/gateway.proto
python/pipeline/gateway/proto/gateway.proto
+96
-8
python/pipeline/operator.py
python/pipeline/operator.py
+144
-0
python/pipeline/pipeline_client.py
python/pipeline/pipeline_client.py
+86
-21
python/pipeline/proto/pipeline_service.proto
python/pipeline/proto/pipeline_service.proto
+95
-7
未找到文件。
core/general-server/op/general_dist_kv_infer_op.cpp
浏览文件 @
081fe25b
...
...
@@ -70,10 +70,13 @@ int GeneralDistKVInferOp::inference() {
<<
") Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
Timer
timeline
;
timeline
.
Start
();
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
std
::
vector
<
uint64_t
>
keys
;
std
::
vector
<
uint64_t
>
unique_keys
;
std
::
unordered_map
<
uint64_t
,
rec
::
mcube
::
CubeValue
*>
key_map
;
std
::
vector
<
rec
::
mcube
::
CubeValue
>
values
;
int
sparse_count
=
0
;
// sparse inputs counts, sparse would seek cube
int
dense_count
=
0
;
// dense inputs counts, dense would directly call paddle infer
...
...
@@ -94,7 +97,8 @@ int GeneralDistKVInferOp::inference() {
dataptr_size_pairs
.
push_back
(
std
::
make_pair
(
data_ptr
,
elem_num
));
}
keys
.
resize
(
key_len
);
VLOG
(
3
)
<<
"(logid="
<<
log_id
<<
") cube number of keys to look up: "
<<
key_len
;
unique_keys
.
resize
(
key_len
);
int
key_idx
=
0
;
for
(
size_t
i
=
0
;
i
<
dataptr_size_pairs
.
size
();
++
i
)
{
std
::
copy
(
dataptr_size_pairs
[
i
].
first
,
...
...
@@ -102,20 +106,35 @@ int GeneralDistKVInferOp::inference() {
keys
.
begin
()
+
key_idx
);
key_idx
+=
dataptr_size_pairs
[
i
].
second
;
}
int
unique_keys_count
=
0
;
for
(
size_t
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
if
(
key_map
.
find
(
keys
[
i
])
==
key_map
.
end
())
{
key_map
[
keys
[
i
]]
=
nullptr
;
unique_keys
[
unique_keys_count
++
]
=
keys
[
i
];
}
}
unique_keys
.
resize
(
unique_keys_count
);
VLOG
(
1
)
<<
"(logid="
<<
log_id
<<
") cube number of keys to look up: "
<<
key_len
<<
" uniq keys: "
<<
unique_keys_count
;
rec
::
mcube
::
CubeAPI
*
cube
=
rec
::
mcube
::
CubeAPI
::
instance
();
std
::
vector
<
std
::
string
>
table_names
=
cube
->
get_table_names
();
if
(
table_names
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"cube init error or cube config not given."
;
return
-
1
;
}
// gather keys and seek cube servers, put results in values
int
ret
=
cube
->
seek
(
table_names
[
0
],
keys
,
&
values
);
VLOG
(
3
)
<<
"(logid="
<<
log_id
<<
") cube seek status: "
<<
ret
;
int64_t
seek_start
=
timeline
.
TimeStampUS
();
int
ret
=
cube
->
seek
(
table_names
[
0
],
unique_keys
,
&
values
);
int64_t
seek_end
=
timeline
.
TimeStampUS
();
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") cube seek status: "
<<
ret
<<
" seek_time: "
<<
seek_end
-
seek_start
;
for
(
size_t
i
=
0
;
i
<
unique_keys
.
size
();
++
i
)
{
key_map
[
unique_keys
[
i
]]
=
&
values
[
i
];
}
if
(
values
.
size
()
!=
keys
.
size
()
||
values
[
0
].
buff
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"cube value return null"
;
}
//
EMBEDDING_SIZE means the length of sparse vector, user can define length here.
size_t
EMBEDDING_SIZE
=
values
[
0
].
buff
.
size
(
)
/
sizeof
(
float
);
//
size_t EMBEDDING_SIZE = values[0].buff.size() / sizeof(float);
size_t
EMBEDDING_SIZE
=
(
values
[
0
].
buff
.
size
()
-
10
)
/
sizeof
(
float
);
TensorVector
sparse_out
;
sparse_out
.
resize
(
sparse_count
);
TensorVector
dense_out
;
...
...
@@ -127,7 +146,9 @@ int GeneralDistKVInferOp::inference() {
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
().
front
();
//copy data to tnsor
int
cube_key_found
=
0
;
int
cube_key_miss
=
0
;
for
(
size_t
i
=
0
;
i
<
in
->
size
();
++
i
)
{
if
(
in
->
at
(
i
).
dtype
!=
paddle
::
PaddleDType
::
INT64
)
{
dense_out
[
dense_idx
]
=
in
->
at
(
i
);
...
...
@@ -150,20 +171,39 @@ int GeneralDistKVInferOp::inference() {
float
*
dst_ptr
=
static_cast
<
float
*>
(
sparse_out
[
sparse_idx
].
data
.
data
());
for
(
int
x
=
0
;
x
<
sparse_out
[
sparse_idx
].
lod
[
0
].
back
();
++
x
)
{
float
*
data_ptr
=
dst_ptr
+
x
*
EMBEDDING_SIZE
;
memcpy
(
data_ptr
,
values
[
cube_val_idx
].
buff
.
data
(),
values
[
cube_val_idx
].
buff
.
size
());
cube_val_idx
++
;
uint64_t
cur_key
=
keys
[
cube_val_idx
];
rec
::
mcube
::
CubeValue
*
cur_val
=
key_map
[
cur_key
];
if
(
cur_val
->
buff
.
size
()
==
0
)
{
memset
(
data_ptr
,
(
float
)
0.0
,
sizeof
(
float
)
*
EMBEDDING_SIZE
);
VLOG
(
3
)
<<
"(logid="
<<
log_id
<<
") cube key not found: "
<<
keys
[
cube_val_idx
];
++
cube_key_miss
;
++
cube_val_idx
;
continue
;
}
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") key: "
<<
keys
[
cube_val_idx
]
<<
" , cube value len:"
<<
cur_val
->
buff
.
size
();
memcpy
(
data_ptr
,
cur_val
->
buff
.
data
(),
cur_val
->
buff
.
size
());
//VLOG(3) << keys[cube_val_idx] << ":" << data_ptr[0] << ", " << data_ptr[1] << ", " <<data_ptr[2] << ", " <<data_ptr[3] << ", " <<data_ptr[4] << ", " <<data_ptr[5] << ", " <<data_ptr[6] << ", " <<data_ptr[7] << ", " <<data_ptr[8];
++
cube_key_found
;
++
cube_val_idx
;
}
++
sparse_idx
;
}
VLOG
(
3
)
<<
"(logid="
<<
log_id
<<
") sparse tensor load success."
;
bool
cube_fail
=
(
cube_key_found
==
0
);
if
(
cube_fail
)
{
LOG
(
WARNING
)
<<
"(logid="
<<
log_id
<<
") cube seek fail"
;
//CopyBlobInfo(input_blob, output_blob);
//return 0;
}
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") cube key found: "
<<
cube_key_found
<<
" , cube key miss: "
<<
cube_key_miss
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") sparse tensor load success."
;
timeline
.
Pause
();
VLOG
(
2
)
<<
"dist kv, cube and datacopy time: "
<<
timeline
.
ElapsedUS
();
TensorVector
infer_in
;
infer_in
.
insert
(
infer_in
.
end
(),
dense_out
.
begin
(),
dense_out
.
end
());
infer_in
.
insert
(
infer_in
.
end
(),
sparse_out
.
begin
(),
sparse_out
.
end
());
int
batch_size
=
input_blob
->
_batch_size
;
output_blob
->
_batch_size
=
batch_size
;
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
// call paddle inference here
...
...
@@ -173,7 +213,12 @@ int GeneralDistKVInferOp::inference() {
return
-
1
;
}
int64_t
end
=
timeline
.
TimeStampUS
();
if
(
cube_fail
)
{
float
*
out_ptr
=
static_cast
<
float
*>
(
out
->
at
(
0
).
data
.
data
());
out_ptr
[
0
]
=
0.0
;
}
timeline
.
Pause
();
VLOG
(
2
)
<<
"dist kv, pure paddle infer time: "
<<
timeline
.
ElapsedUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
AddBlobInfo
(
output_blob
,
end
);
...
...
python/paddle_serving_client/client.py
浏览文件 @
081fe25b
...
...
@@ -341,7 +341,6 @@ class Client(object):
string_feed_names
=
[]
string_lod_slot_batch
=
[]
string_shape
=
[]
fetch_names
=
[]
for
key
in
fetch_list
:
...
...
python/pipeline/channel.py
浏览文件 @
081fe25b
...
...
@@ -45,7 +45,9 @@ class ChannelDataErrcode(enum.Enum):
CLOSED_ERROR
=
6
NO_SERVICE
=
7
UNKNOW
=
8
PRODUCT_ERROR
=
9
INPUT_PARAMS_ERROR
=
9
PRODUCT_ERROR
=
100
class
ProductErrCode
(
enum
.
Enum
):
...
...
python/pipeline/gateway/proto/gateway.proto
浏览文件 @
081fe25b
...
...
@@ -18,22 +18,110 @@ option go_package = "./;pipeline_serving";
import
"google/api/annotations.proto"
;
// Tensor structure, consistent with PADDLE variable types.
// Descriptions of input and output data.
message
Tensor
{
// VarType: INT64
repeated
int64
int64_data
=
1
;
// VarType: FP32, FP16
repeated
float
float_data
=
2
;
// VarType: INT32, INT16, INT8
repeated
int32
int_data
=
3
;
// VarType: FP64
repeated
double
float64_data
=
4
;
// VarType: BF16, UINT8
repeated
uint32
uint32_data
=
5
;
// VarType: BOOL
repeated
bool
bool_data
=
6
;
// (No support)VarType: COMPLEX64, 2x represents the real part, 2x+1
// represents the imaginary part
repeated
float
complex64_data
=
7
;
// (No support)VarType: COMPLEX128, 2x represents the real part, 2x+1
// represents the imaginary part
repeated
double
complex128_data
=
8
;
// VarType: STRING
repeated
string
str_data
=
9
;
// Element types:
// 0 => INT64
// 1 => FP32
// 2 => INT32
// 3 => FP64
// 4 => INT16
// 5 => FP16
// 6 => BF16
// 7 => UINT8
// 8 => INT8
// 9 => BOOL
// 10 => COMPLEX64
// 11 => COMPLEX128
// 12 => STRING
int32
elem_type
=
10
;
// Shape of the tensor, including batch dimensions.
repeated
int32
shape
=
11
;
// Level of data(LOD), support variable length data, only for fetch tensor
// currently.
repeated
int32
lod
=
12
;
// Correspond to the variable 'name' in the model description prototxt.
string
name
=
13
;
};
// The structure of the service request. The input data can be repeated string
// pairs or tensors.
message
Request
{
// The input data are repeated string pairs.
// for examples. key is "words", value is the string of words.
repeated
string
key
=
1
;
repeated
string
value
=
2
;
// The input data are repeated tensors for complex data structures.
// Becase tensors can save more data information and reduce the amount of data
// transferred.
repeated
Tensor
tensors
=
3
;
// The name field in the RESTful API
string
name
=
4
;
// The method field in the RESTful API
string
method
=
5
;
// For tracing requests and logs
int64
logid
=
6
;
// For tracking sources
string
clientip
=
7
;
};
// The structure of the service response. The output data can be repeated string
// pairs or tensors.
message
Response
{
// Error code
int32
err_no
=
1
;
// Error messages
string
err_msg
=
2
;
// The results of string pairs
repeated
string
key
=
3
;
repeated
string
value
=
4
;
};
message
Request
{
repeated
string
key
=
1
;
repeated
string
value
=
2
;
string
name
=
3
;
string
method
=
4
;
int64
logid
=
5
;
string
clientip
=
6
;
// The results of tensors
repeated
Tensor
tensors
=
5
;
};
// Python pipeline service
service
PipelineService
{
rpc
inference
(
Request
)
returns
(
Response
)
{
option
(
google.api.http
)
=
{
...
...
python/pipeline/operator.py
浏览文件 @
081fe25b
...
...
@@ -45,6 +45,23 @@ from .pipeline_client import PipelineClient as PPClient
_LOGGER
=
logging
.
getLogger
(
__name__
)
_op_name_gen
=
NameGenerator
(
"Op"
)
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE
=
{
0
:
"int64"
,
# VarType.INT64
1
:
"float32"
,
# VarType.FP32
2
:
"int32"
,
# VarType.INT32
3
:
"float64"
,
# VarType.FP64
4
:
"int16"
,
# VarType.int16
5
:
"float16"
,
# VarType.FP32
6
:
"uint16"
,
# VarType.BF16
7
:
"uint8"
,
# VarType.UINT8
8
:
"int8"
,
# VarType.INT8
9
:
"bool"
,
# VarType.BOOL
10
:
"complex64"
,
# VarType.COMPLEX64
11
:
"complex128"
,
# VarType.COMPLEX128
12
:
"string"
,
# dismatch with numpy
}
class
Op
(
object
):
def
__init__
(
self
,
...
...
@@ -85,6 +102,9 @@ class Op(object):
self
.
_server_use_profile
=
False
self
.
_tracer
=
None
# for grpc_pipeline predict mode. False, string key/val; True, tensor format.
self
.
_pack_tensor_format
=
False
# only for thread op
self
.
_for_init_op_lock
=
threading
.
Lock
()
self
.
_for_close_op_lock
=
threading
.
Lock
()
...
...
@@ -372,6 +392,9 @@ class Op(object):
os
.
_exit
(
-
1
)
self
.
_input_ops
.
append
(
op
)
def
set_pack_tensor_format
(
self
,
is_tensor_format
=
False
):
self
.
_pack_tensor_format
=
is_tensor_format
def
get_jump_to_ops
(
self
):
return
self
.
_jump_to_ops
...
...
@@ -577,6 +600,7 @@ class Op(object):
feed_dict
=
feed_batch
[
0
],
fetch
=
self
.
_fetch_names
,
asyn
=
False
,
pack_tensor_format
=
self
.
_pack_tensor_format
,
profile
=
False
)
if
call_result
is
None
:
_LOGGER
.
error
(
...
...
@@ -1530,6 +1554,85 @@ class RequestOp(Op):
_LOGGER
.
critical
(
"Op(Request) Failed to init: {}"
.
format
(
e
))
os
.
_exit
(
-
1
)
def
proto_tensor_2_numpy
(
self
,
tensor
):
"""
Convert proto tensor to numpy array, The supported types are as follows:
INT64
FP32
INT32
FP64
INT16
FP16
BF16
UINT8
INT8
BOOL
Unsupported type:
COMPLEX64
COMPLEX128
STRING
Args:
tensor: one tensor in request.tensors.
Returns:
np.ndnumpy
"""
if
tensor
is
None
or
tensor
.
elem_type
is
None
or
tensor
.
name
is
None
:
_LOGGER
.
error
(
"input params of tensor is wrong. tensor: {}"
.
format
(
tensor
))
return
None
dims
=
[]
if
tensor
.
shape
is
None
:
dims
.
append
(
1
)
else
:
for
one_dim
in
tensor
.
shape
:
dims
.
append
(
one_dim
)
np_data
=
None
_LOGGER
.
info
(
"proto_to_numpy, name:{}, type:{}, dims:{}"
.
format
(
tensor
.
name
,
tensor
.
elem_type
,
dims
))
if
tensor
.
elem_type
==
0
:
# VarType: INT64
np_data
=
np
.
array
(
tensor
.
int64_data
).
astype
(
int64
).
reshape
(
dims
)
elif
tensor
.
elem_type
==
1
:
# VarType: FP32
np_data
=
np
.
array
(
tensor
.
float_data
).
astype
(
float32
).
reshape
(
dims
)
elif
tensor
.
elem_type
==
2
:
# VarType: INT32
np_data
=
np
.
array
(
tensor
.
int_data
).
astype
(
int32
).
reshape
(
dims
)
elif
tensor
.
elem_type
==
3
:
# VarType: FP64
np_data
=
np
.
array
(
tensor
.
float64_data
).
astype
(
float64
).
reshape
(
dims
)
elif
tensor
.
elem_type
==
4
:
# VarType: INT16
np_data
=
np
.
array
(
tensor
.
int_data
).
astype
(
int16
).
reshape
(
dims
)
elif
tensor
.
elem_type
==
5
:
# VarType: FP16
np_data
=
np
.
array
(
tensor
.
float_data
).
astype
(
float16
).
reshape
(
dims
)
elif
tensor
.
elem_type
==
6
:
# VarType: BF16
np_data
=
np
.
array
(
tensor
.
uint32_data
).
astype
(
uint16
).
reshape
(
dims
)
elif
tensor
.
elem_type
==
7
:
# VarType: UINT8
np_data
=
np
.
array
(
tensor
.
uint32_data
).
astype
(
uint8
).
reshape
(
dims
)
elif
tensor
.
elem_type
==
8
:
# VarType: INT8
np_data
=
np
.
array
(
tensor
.
int_data
).
astype
(
int8
).
reshape
(
dims
)
elif
tensor
.
elem_type
==
9
:
# VarType: BOOL
np_data
=
np
.
array
(
tensor
.
bool_data
).
astype
(
bool
).
reshape
(
dims
)
else
:
_LOGGER
.
error
(
"Sorry, the type {} of tensor {} is not supported."
.
format
(
tensor
.
elem_type
,
tensor
.
name
))
raise
ValueError
(
"Sorry, the type {} of tensor {} is not supported."
.
format
(
tensor
.
elem_type
,
tensor
.
name
))
return
np_data
def
unpack_request_package
(
self
,
request
):
"""
Unpack request package by gateway.proto
...
...
@@ -1550,9 +1653,43 @@ class RequestOp(Op):
_LOGGER
.
critical
(
"request is None"
)
raise
ValueError
(
"request is None"
)
# unpack key/value string list
for
idx
,
key
in
enumerate
(
request
.
key
):
dict_data
[
key
]
=
request
.
value
[
idx
]
log_id
=
request
.
logid
# unpack proto.tensors data.
for
one_tensor
in
request
.
tensors
:
name
=
one_tensor
.
name
elem_type
=
one_tensor
.
elem_type
if
one_tensor
.
name
is
None
:
_LOGGER
.
error
(
"Tensor name is None."
)
raise
ValueError
(
"Tensor name is None."
)
numpy_dtype
=
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE
.
get
(
elem_type
)
if
numpy_dtype
is
None
:
_LOGGER
.
error
(
"elem_type:{} is dismatch in unpack_request_package."
,
format
(
elem_type
))
raise
ValueError
(
"elem_type:{} error"
.
format
(
elem_type
))
if
numpy_dtype
==
"string"
:
new_string
=
""
if
one_tensor
.
str_data
is
None
:
_LOGGER
.
error
(
"str_data of tensor:{} is None, elem_type is {}."
.
format
(
name
,
elem_type
))
raise
ValueError
(
"str_data of tensor:{} is None, elem_type is {}."
.
format
(
name
,
elem_type
))
for
one_str
in
one_tensor
.
str_data
:
new_string
+=
one_str
dict_data
[
name
]
=
new_string
else
:
dict_data
[
name
]
=
self
.
proto_tensor_2_numpy
(
one_tensor
)
_LOGGER
.
debug
(
"RequestOp unpack one request. log_id:{}, clientip:{}
\
name:{}, method:{}"
.
format
(
log_id
,
request
.
clientip
,
request
.
name
,
request
.
method
))
...
...
@@ -1574,6 +1711,7 @@ class ResponseOp(Op):
"""
super
(
ResponseOp
,
self
).
__init__
(
name
=
"@DAGExecutor"
,
input_ops
=
input_ops
)
# init op
try
:
self
.
init_op
()
...
...
@@ -1582,6 +1720,12 @@ class ResponseOp(Op):
e
,
exc_info
=
True
))
os
.
_exit
(
-
1
)
# init ResponseOp
self
.
is_pack_tensor
=
False
def
set_pack_format
(
self
,
isTensor
=
False
):
self
.
is_pack_tensor
=
isTensor
def
pack_response_package
(
self
,
channeldata
):
"""
Getting channeldata from the last channel, packting the response
...
...
python/pipeline/pipeline_client.py
浏览文件 @
081fe25b
...
...
@@ -46,7 +46,7 @@ class PipelineClient(object):
self
.
_stub
=
pipeline_service_pb2_grpc
.
PipelineServiceStub
(
self
.
_channel
)
def
_pack_request_package
(
self
,
feed_dict
,
profile
):
def
_pack_request_package
(
self
,
feed_dict
,
p
ack_tensor_format
,
p
rofile
):
req
=
pipeline_service_pb2
.
Request
()
logid
=
feed_dict
.
get
(
"logid"
)
...
...
@@ -69,11 +69,13 @@ class PipelineClient(object):
feed_dict
.
pop
(
"clientip"
)
np
.
set_printoptions
(
threshold
=
sys
.
maxsize
)
if
pack_tensor_format
is
False
:
# pack string key/val format
for
key
,
value
in
feed_dict
.
items
():
req
.
key
.
append
(
key
)
if
(
sys
.
version_info
.
major
==
2
and
isinstance
(
value
,
(
str
,
unicode
))
or
if
(
sys
.
version_info
.
major
==
2
and
isinstance
(
value
,
(
str
,
unicode
))
or
((
sys
.
version_info
.
major
==
3
)
and
isinstance
(
value
,
str
))):
req
.
value
.
append
(
value
)
continue
...
...
@@ -83,11 +85,72 @@ class PipelineClient(object):
elif
isinstance
(
value
,
list
):
req
.
value
.
append
(
np
.
array
(
value
).
__repr__
())
else
:
raise
TypeError
(
"only str and np.ndarray type is supported: {}"
.
format
(
type
(
value
)))
raise
TypeError
(
"only str and np.ndarray type is supported: {}"
.
format
(
type
(
value
)))
if
profile
:
req
.
key
.
append
(
self
.
_profile_key
)
req
.
value
.
append
(
self
.
_profile_value
)
else
:
# pack tensor format
for
key
,
value
in
feed_dict
.
items
():
one_tensor
=
req
.
tensors
.
add
()
one_tensor
.
name
=
key
if
(
sys
.
version_info
.
major
==
2
and
isinstance
(
value
,
(
str
,
unicode
))
or
((
sys
.
version_info
.
major
==
3
)
and
isinstance
(
value
,
str
))):
one_tensor
.
string_data
.
add
(
value
)
one_tensor
.
elem_type
=
12
#12 => string
continue
if
isinstance
(
value
,
np
.
ndarray
):
# copy shape
_LOGGER
.
info
(
"value shape is {}"
.
format
(
value
.
shape
))
for
one_dim
in
value
.
shape
:
one_tensor
.
shape
.
append
(
one_dim
)
flat_value
=
value
.
flatten
().
tolist
()
# copy data
if
value
.
dtype
==
"int64"
:
one_tensor
.
int64_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
0
elif
value
.
dtype
==
"float32"
:
one_tensor
.
float_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
1
elif
value
.
dtype
==
"int32"
:
one_tensor
.
int_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
2
elif
value
.
dtype
==
"float64"
:
one_tensor
.
float64_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
3
elif
value
.
dtype
==
"int16"
:
one_tensor
.
int_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
4
elif
value
.
dtype
==
"float16"
:
one_tensor
.
float_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
5
elif
value
.
dtype
==
"uint16"
:
one_tensor
.
uint32_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
6
elif
value
.
dtype
==
"uint8"
:
one_tensor
.
uint32_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
7
elif
value
.
dtype
==
"int8"
:
one_tensor
.
int_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
8
elif
value
.
dtype
==
"bool"
:
one_tensor
.
bool_data
.
extend
(
flat_value
)
one_tensor
.
elem_type
=
9
else
:
_LOGGER
.
error
(
"value type {} of tensor {} is not supported."
.
format
(
value
.
dtype
,
key
))
else
:
raise
TypeError
(
"only str and np.ndarray type is supported: {}"
.
format
(
type
(
value
)))
return
req
def
_unpack_response_package
(
self
,
resp
,
fetch
):
...
...
@@ -97,6 +160,7 @@ class PipelineClient(object):
feed_dict
,
fetch
=
None
,
asyn
=
False
,
pack_tensor_format
=
False
,
profile
=
False
,
log_id
=
0
):
if
not
isinstance
(
feed_dict
,
dict
):
...
...
@@ -104,7 +168,8 @@ class PipelineClient(object):
"feed must be dict type with format: {name: value}."
)
if
fetch
is
not
None
and
not
isinstance
(
fetch
,
list
):
raise
TypeError
(
"fetch must be list type with format: [name]."
)
req
=
self
.
_pack_request_package
(
feed_dict
,
profile
)
req
=
self
.
_pack_request_package
(
feed_dict
,
pack_tensor_format
,
profile
)
req
.
logid
=
log_id
if
not
asyn
:
resp
=
self
.
_stub
.
inference
(
req
)
...
...
python/pipeline/proto/pipeline_service.proto
浏览文件 @
081fe25b
...
...
@@ -12,25 +12,113 @@
// See the License for the specific language governing permissions and
// limitations under the License.
syntax
=
"proto
2
"
;
syntax
=
"proto
3
"
;
package
baidu
.
paddle_serving.pipeline_serving
;
// Tensor structure, consistent with PADDLE variable types.
// Descriptions of input and output data.
message
Tensor
{
// VarType: INT64
repeated
int64
int64_data
=
1
;
// VarType: FP32, FP16
repeated
float
float_data
=
2
;
// VarType: INT32, INT16, INT8
repeated
int32
int_data
=
3
;
// VarType: FP64
repeated
double
float64_data
=
4
;
// VarType: BF16, UINT8
repeated
uint32
uint32_data
=
5
;
// VarType: BOOL
repeated
bool
bool_data
=
6
;
// (No support)VarType: COMPLEX64, 2x represents the real part, 2x+1
// represents the imaginary part
repeated
float
complex64_data
=
7
;
// (No support)VarType: COMPLEX128, 2x represents the real part, 2x+1
// represents the imaginary part
repeated
double
complex128_data
=
8
;
// VarType: STRING
repeated
string
str_data
=
9
;
// Element types:
// 0 => INT64
// 1 => FP32
// 2 => INT32
// 3 => FP64
// 4 => INT16
// 5 => FP16
// 6 => BF16
// 7 => UINT8
// 8 => INT8
// 9 => BOOL
// 10 => COMPLEX64
// 11 => COMPLEX128
// 12 => STRING
int32
elem_type
=
10
;
// Shape of the tensor, including batch dimensions.
repeated
int32
shape
=
11
;
// Level of data(LOD), support variable length data, only for fetch tensor
// currently.
repeated
int32
lod
=
12
;
// Correspond to the variable 'name' in the model description prototxt.
string
name
=
13
;
};
// The structure of the service request. The input data can be repeated string
// pairs or tensors.
message
Request
{
// The input data are repeated string pairs.
// for examples. key is "words", value is the string of words.
repeated
string
key
=
1
;
repeated
string
value
=
2
;
optional
string
name
=
3
;
optional
string
method
=
4
;
optional
int64
logid
=
5
;
optional
string
clientip
=
6
;
// The input data are repeated tensors for complex data structures.
// Becase tensors can save more data information and reduce the amount of data
// transferred.
repeated
Tensor
tensors
=
3
;
// The name field in the RESTful API
string
name
=
4
;
// The method field in the RESTful API
string
method
=
5
;
// For tracing requests and logs
int64
logid
=
6
;
// For tracking sources
string
clientip
=
7
;
};
// The structure of the service response. The output data can be repeated string
// pairs or tensors.
message
Response
{
optional
int32
err_no
=
1
;
optional
string
err_msg
=
2
;
// Error code
int32
err_no
=
1
;
// Error messages
string
err_msg
=
2
;
// The results of string pairs
repeated
string
key
=
3
;
repeated
string
value
=
4
;
// The results of tensors
repeated
Tensor
tensors
=
5
;
};
// Python pipeline service
service
PipelineService
{
rpc
inference
(
Request
)
returns
(
Response
)
{}
};
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录