Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
06263404
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
06263404
编写于
11月 10, 2021
作者:
H
huangjianhui
提交者:
GitHub
11月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Create model_zoo.md
create model_zoo.md
上级
1d1f4b03
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
34 addition
and
0 deletion
+34
-0
doc/model_zoo.md
doc/model_zoo.md
+34
-0
未找到文件。
doc/model_zoo.md
0 → 100644
浏览文件 @
06263404
# Model Zoo
本页面展示了Paddle Serving目前支持的预训练模型以及下载链接
若您想为Paddle Serving提供新的模型,可通过
[
pull requese
](
https://github.com/PaddlePaddle/Serving/pulls
)
提交PR
*特别感谢[PadddlePaddle 全链条](https://www.paddlepaddle.org.cn/wholechain)以及[PaddleHub](https://www.paddlepaddle.org.cn/hub)为Paddle Serving提供的部分预训练模型*
| Model | Type | Dataset | Size | Download | Sample Input| Model mode |
| --- | --- | --- | --- | --- | --- | --- |
| ResNet_V2_50 | PaddleClas | ImageNet | 90.78 MB |
[
.tar.gz
](
https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/resnet_v2_50_imagenet.tar.gz
)
|
[
daisy.jpg
](
../examples/PaddleClas/resnet_v2_50/daisy.jpg
)
|Eager|
| MobileNet_v2 | PaddleClas | ImageNet | 8.06 MB |
[
.tar.gz
](
https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/mobilenet_v2_imagenet.tar.gz
)
|
[
daisy.jpg
](
../examples/PaddleClas/mobilenet/daisy.jpg
)
|Eager|
| Bert | PaddleNLP | zhwiki | 361.96 MB |
[
.tar.gz
](
https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
)
|
[
data-c.txt
](
../examples/PaddleNLP/data-c.txt
)
|Eager|
| Senta | PaddleNLP | Baidu | 578.37 MB |
[
.tar.gz
](
https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/senta_bilstm.tar.gz
)
| |Eager|
| Squeezenet 1_1 | Image Classification | ImageNet | 4.4 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/squeezenet1_1.mar
)
|
[
kitten.jpg
](
../examples/image_classifier/kitten.jpg
)
|Eager|
| MNIST digit classifier | Image Classification | MNIST | 4.3 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/mnist_v2.mar
)
|
[
0.png
](
../examples/image_classifier/mnist/test_data/0.png
)
|Eager|
| Resnet 152 |Image Classification | ImageNet | 214 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/resnet-152-batch_v2.mar
)
|
[
kitten.jpg
](
../examples/image_classifier/kitten.jpg
)
|Eager|
| Faster RCNN | Object Detection | COCO | 148 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/fastrcnn.mar
)
|
[
persons.jpg
](
../examples/object_detector/persons.jpg
)
|Eager|
| MASK RCNN | Object Detection | COCO | 158 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/maskrcnn.mar
)
|
[
persons.jpg
](
../examples/object_detector/persons.jpg
)
|Eager|
| Text classifier | Text Classification | AG_NEWS | 169 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/my_text_classifier_v4.mar
)
|
[
sample_text.txt
](
../examples/text_classification/sample_text.txt
)
|Eager|
| FCN ResNet 101 | Image Segmentation | COCO | 193 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/fcn_resnet_101.mar
)
|
[
persons.jpg
](
../examples/image_segmenter/persons.jpg
)
|Eager|
| DeepLabV3 ResNet 101 | Image Segmentation | COCO | 217 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/deeplabv3_resnet_101_eager.mar
)
|
[
persons.jpg
](
https://github.com/pytorch/serve/blob/master/examples/image_segmenter/persons.jpg
)
|Eager|
| AlexNet Scripted | Image Classification | ImageNet | 216 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/alexnet_scripted.mar
)
|
[
kitten.jpg
](
../examples/image_classifier/kitten.jpg
)
|Torchscripted |
| Densenet161 Scripted| Image Classification | ImageNet | 105 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/densenet161_scripted.mar
)
|
[
kitten.jpg
](
../examples/image_classifier/kitten.jpg
)
|Torchscripted |
| Resnet18 Scripted| Image Classification | ImageNet | 42 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/resnet-18_scripted.mar
)
|
[
kitten.jpg
](
../examples/image_classifier/kitten.jpg
)
|Torchscripted |
| VGG16 Scripted| Image Classification | ImageNet | 489 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/vgg16_scripted.mar
)
|
[
kitten.jpg
](
../examples/image_classifier/kitten.jpg
)
|Torchscripted |
| Squeezenet 1_1 Scripted | Image Classification | ImageNet | 4.4 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/squeezenet1_1_scripted.mar
)
|
[
kitten.jpg
](
../examples/image_classifier/kitten.jpg
)
|Torchscripted |
| MNIST digit classifier Scripted | Image Classification | MNIST | 4.3 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/mnist_scripted_v2.mar
)
|
[
0.png
](
../examples/image_classifier/mnist/test_data/0.png
)
|Torchscripted |
| Resnet 152 Scripted |Image Classification | ImageNet | 215 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/resnet-152-scripted_v2.mar
)
|
[
kitten.jpg
](
../examples/image_classifier/kitten.jpg
)
|Torchscripted |
| Text classifier Scripted | Text Classification | AG_NEWS | 169 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/my_text_classifier_scripted_v3.mar
)
|
[
sample_text.txt
](
../examples/text_classification/sample_text.txt
)
|Torchscripted |
| FCN ResNet 101 Scripted | Image Segmentation | COCO | 193 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/fcn_resnet_101_scripted.mar
)
|
[
persons.jpg
](
../examples/image_segmenter/persons.jpg
)
|Torchscripted |
| DeepLabV3 ResNet 101 Scripted | Image Segmentation | COCO | 217 MB |
[
.mar
](
https://torchserve.pytorch.org/mar_files/deeplabv3_resnet_101_scripted.mar
)
|
[
persons.jpg
](
https://github.com/pytorch/serve/blob/master/examples/image_segmenter/persons.jpg
)
|Torchscripted |
Refer
[
example
](
../examples
)
for more details on above models.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录