Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
05e74bdd
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
05e74bdd
编写于
8月 11, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'pipeline-auto-batch' of
https://github.com/barrierye/Serving
into pipeline-auto-batch
上级
e8541933
c96b7e22
变更
29
显示空白变更内容
内联
并排
Showing
29 changed file
with
590 addition
and
259 deletion
+590
-259
core/configure/proto/multi_lang_general_model_service.proto
core/configure/proto/multi_lang_general_model_service.proto
+1
-0
core/general-client/include/general_model.h
core/general-client/include/general_model.h
+4
-2
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+6
-2
core/general-client/src/pybind_general_model.cpp
core/general-client/src/pybind_general_model.cpp
+8
-4
core/general-server/op/general_infer_helper.h
core/general-server/op/general_infer_helper.h
+4
-1
core/general-server/op/general_infer_op.cpp
core/general-server/op/general_infer_op.cpp
+9
-5
core/general-server/op/general_reader_op.cpp
core/general-server/op/general_reader_op.cpp
+30
-22
core/general-server/op/general_response_op.cpp
core/general-server/op/general_response_op.cpp
+22
-15
core/general-server/proto/general_model_service.proto
core/general-server/proto/general_model_service.proto
+1
-0
core/general-server/proto/load_general_model_service.proto
core/general-server/proto/load_general_model_service.proto
+1
-0
core/pdcodegen/plugin/pdcodegen
core/pdcodegen/plugin/pdcodegen
+0
-0
core/pdcodegen/src/pdcodegen.cpp
core/pdcodegen/src/pdcodegen.cpp
+4
-0
core/sdk-cpp/proto/general_model_service.proto
core/sdk-cpp/proto/general_model_service.proto
+1
-0
java/src/main/java/io/paddle/serving/client/Client.java
java/src/main/java/io/paddle/serving/client/Client.java
+113
-18
java/src/main/proto/multi_lang_general_model_service.proto
java/src/main/proto/multi_lang_general_model_service.proto
+1
-0
python/examples/pipeline/imdb_model_ensemble/test_pipeline_server.py
...ples/pipeline/imdb_model_ensemble/test_pipeline_server.py
+4
-5
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+10
-7
python/paddle_serving_server/__init__.py
python/paddle_serving_server/__init__.py
+8
-4
python/paddle_serving_server_gpu/__init__.py
python/paddle_serving_server_gpu/__init__.py
+8
-4
python/pipeline/__init__.py
python/pipeline/__init__.py
+0
-4
python/pipeline/analyse.py
python/pipeline/analyse.py
+1
-1
python/pipeline/channel.py
python/pipeline/channel.py
+11
-3
python/pipeline/dag.py
python/pipeline/dag.py
+27
-21
python/pipeline/logger.py
python/pipeline/logger.py
+46
-60
python/pipeline/operator.py
python/pipeline/operator.py
+128
-43
python/pipeline/pipeline_client.py
python/pipeline/pipeline_client.py
+1
-1
python/pipeline/pipeline_server.py
python/pipeline/pipeline_server.py
+16
-11
python/pipeline/profiler.py
python/pipeline/profiler.py
+35
-24
python/pipeline/util.py
python/pipeline/util.py
+90
-2
未找到文件。
core/configure/proto/multi_lang_general_model_service.proto
浏览文件 @
05e74bdd
...
...
@@ -37,6 +37,7 @@ message InferenceRequest {
repeated
string
feed_var_names
=
2
;
repeated
string
fetch_var_names
=
3
;
required
bool
is_python
=
4
[
default
=
false
];
required
uint64
log_id
=
5
[
default
=
0
];
};
message
InferenceResponse
{
...
...
core/general-client/include/general_model.h
浏览文件 @
05e74bdd
...
...
@@ -227,7 +227,8 @@ class PredictorClient {
const
std
::
vector
<
std
::
vector
<
int
>>&
int_shape
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res_batch
,
// NOLINT
const
int
&
pid
);
const
int
&
pid
,
const
uint64_t
log_id
);
int
numpy_predict
(
const
std
::
vector
<
std
::
vector
<
py
::
array_t
<
float
>>>&
float_feed_batch
,
...
...
@@ -238,7 +239,8 @@ class PredictorClient {
const
std
::
vector
<
std
::
vector
<
int
>>&
int_shape
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
PredictorRes
&
predict_res_batch
,
// NOLINT
const
int
&
pid
);
const
int
&
pid
,
const
uint64_t
log_id
);
private:
PredictorApi
_api
;
...
...
core/general-client/src/general_model.cpp
浏览文件 @
05e74bdd
...
...
@@ -144,7 +144,8 @@ int PredictorClient::batch_predict(
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res_batch
,
const
int
&
pid
)
{
const
int
&
pid
,
const
uint64_t
log_id
)
{
int
batch_size
=
std
::
max
(
float_feed_batch
.
size
(),
int_feed_batch
.
size
());
predict_res_batch
.
clear
();
...
...
@@ -162,6 +163,7 @@ int PredictorClient::batch_predict(
VLOG
(
2
)
<<
"int feed name size: "
<<
int_feed_name
.
size
();
VLOG
(
2
)
<<
"max body size : "
<<
brpc
::
fLU64
::
FLAGS_max_body_size
;
Request
req
;
req
.
set_log_id
(
log_id
);
for
(
auto
&
name
:
fetch_name
)
{
req
.
add_fetch_var_names
(
name
);
}
...
...
@@ -356,7 +358,8 @@ int PredictorClient::numpy_predict(
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res_batch
,
const
int
&
pid
)
{
const
int
&
pid
,
const
uint64_t
log_id
)
{
int
batch_size
=
std
::
max
(
float_feed_batch
.
size
(),
int_feed_batch
.
size
());
VLOG
(
2
)
<<
"batch size: "
<<
batch_size
;
predict_res_batch
.
clear
();
...
...
@@ -374,6 +377,7 @@ int PredictorClient::numpy_predict(
VLOG
(
2
)
<<
"int feed name size: "
<<
int_feed_name
.
size
();
VLOG
(
2
)
<<
"max body size : "
<<
brpc
::
fLU64
::
FLAGS_max_body_size
;
Request
req
;
req
.
set_log_id
(
log_id
);
for
(
auto
&
name
:
fetch_name
)
{
req
.
add_fetch_var_names
(
name
);
}
...
...
core/general-client/src/pybind_general_model.cpp
浏览文件 @
05e74bdd
...
...
@@ -107,7 +107,8 @@ PYBIND11_MODULE(serving_client, m) {
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res_batch
,
const
int
&
pid
)
{
const
int
&
pid
,
const
uint64_t
log_id
)
{
return
self
.
batch_predict
(
float_feed_batch
,
float_feed_name
,
float_shape
,
...
...
@@ -116,7 +117,8 @@ PYBIND11_MODULE(serving_client, m) {
int_shape
,
fetch_name
,
predict_res_batch
,
pid
);
pid
,
log_id
);
},
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"numpy_predict"
,
...
...
@@ -131,7 +133,8 @@ PYBIND11_MODULE(serving_client, m) {
const
std
::
vector
<
std
::
vector
<
int
>>
&
int_shape
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
PredictorRes
&
predict_res_batch
,
const
int
&
pid
)
{
const
int
&
pid
,
const
uint64_t
log_id
)
{
return
self
.
numpy_predict
(
float_feed_batch
,
float_feed_name
,
float_shape
,
...
...
@@ -140,7 +143,8 @@ PYBIND11_MODULE(serving_client, m) {
int_shape
,
fetch_name
,
predict_res_batch
,
pid
);
pid
,
log_id
);
},
py
::
call_guard
<
py
::
gil_scoped_release
>
());
}
...
...
core/general-server/op/general_infer_helper.h
浏览文件 @
05e74bdd
...
...
@@ -35,6 +35,7 @@ struct GeneralBlob {
std
::
vector
<
paddle
::
PaddleTensor
>
tensor_vector
;
int64_t
time_stamp
[
20
];
int
p_size
=
0
;
uint64_t
_log_id
=
-
1
;
// for logging
int
_batch_size
;
...
...
@@ -46,9 +47,11 @@ struct GeneralBlob {
tensor_vector
.
clear
();
}
int
SetBatchSize
(
int
batch_size
)
{
_batch_size
=
batch_size
;
}
void
SetBatchSize
(
int
batch_size
)
{
_batch_size
=
batch_size
;
}
void
SetLogId
(
uint64_t
log_id
)
{
_log_id
=
log_id
;
}
int
GetBatchSize
()
const
{
return
_batch_size
;
}
uint64_t
GetLogId
()
const
{
return
_log_id
;
}
std
::
string
ShortDebugString
()
const
{
return
"Not implemented!"
;
}
};
...
...
core/general-server/op/general_infer_op.cpp
浏览文件 @
05e74bdd
...
...
@@ -47,22 +47,25 @@ int GeneralInferOp::inference() {
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
VLOG
(
2
)
<<
"Get precedent op name: "
<<
pre_name
;
uint64_t
log_id
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
output_blob
->
SetLogId
(
log_id
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op:"
<<
pre_name
;
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
GetBatchSize
();
VLOG
(
2
)
<<
"input batch size: "
<<
batch_size
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
input batch size: "
<<
batch_size
;
output_blob
->
SetBatchSize
(
batch_size
);
VLOG
(
2
)
<<
"infer batch size: "
<<
batch_size
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
infer batch size: "
<<
batch_size
;
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
...
...
@@ -70,7 +73,8 @@ int GeneralInferOp::inference() {
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
...
...
core/general-server/op/general_reader_op.cpp
浏览文件 @
05e74bdd
...
...
@@ -72,6 +72,7 @@ int conf_check(const Request *req,
int
GeneralReaderOp
::
inference
()
{
// reade request from client
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
uint64_t
log_id
=
req
->
log_id
();
int
batch_size
=
req
->
insts_size
();
int
input_var_num
=
0
;
...
...
@@ -83,25 +84,28 @@ int GeneralReaderOp::inference() {
TensorVector
*
out
=
&
res
->
tensor_vector
;
res
->
SetBatchSize
(
batch_size
);
res
->
SetLogId
(
log_id
);
if
(
!
res
)
{
LOG
(
ERROR
)
<<
"Failed get op tls reader object output"
;
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed get op tls reader object output"
;
}
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
int
var_num
=
req
->
insts
(
0
).
tensor_array_size
();
VLOG
(
2
)
<<
"var num: "
<<
var_num
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
var num: "
<<
var_num
;
VLOG
(
2
)
<<
"start to call load general model_conf op"
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") start to call load general model_conf op"
;
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
VLOG
(
2
)
<<
"get resource pointer done."
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
get resource pointer done."
;
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
();
VLOG
(
2
)
<<
"print general model config done."
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
print general model config done."
;
// TODO(guru4elephant): how to do conditional check?
/*
...
...
@@ -122,7 +126,8 @@ int GeneralReaderOp::inference() {
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
paddle
::
PaddleTensor
lod_tensor
;
elem_type
[
i
]
=
req
->
insts
(
0
).
tensor_array
(
i
).
elem_type
();
VLOG
(
2
)
<<
"var["
<<
i
<<
"] has elem type: "
<<
elem_type
[
i
];
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") var["
<<
i
<<
"] has elem type: "
<<
elem_type
[
i
];
if
(
elem_type
[
i
]
==
0
)
{
// int64
elem_size
[
i
]
=
sizeof
(
int64_t
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
INT64
;
...
...
@@ -137,17 +142,19 @@ int GeneralReaderOp::inference() {
if
(
model_config
->
_is_lod_feed
[
i
])
{
lod_tensor
.
lod
.
resize
(
1
);
lod_tensor
.
lod
[
0
].
push_back
(
0
);
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is lod_tensor"
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
var["
<<
i
<<
"] is lod_tensor"
;
}
else
{
lod_tensor
.
shape
.
push_back
(
batch_size
);
capacity
[
i
]
=
1
;
for
(
int
k
=
0
;
k
<
req
->
insts
(
0
).
tensor_array
(
i
).
shape_size
();
++
k
)
{
int
dim
=
req
->
insts
(
0
).
tensor_array
(
i
).
shape
(
k
);
VLOG
(
2
)
<<
"shape for var["
<<
i
<<
"]: "
<<
dim
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") shape for var["
<<
i
<<
"]: "
<<
dim
;
capacity
[
i
]
*=
dim
;
lod_tensor
.
shape
.
push_back
(
dim
);
}
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is tensor, capacity: "
<<
capacity
[
i
];
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") var["
<<
i
<<
"] is tensor, capacity: "
<<
capacity
[
i
];
}
lod_tensor
.
name
=
model_config
->
_feed_name
[
i
];
out
->
push_back
(
lod_tensor
);
...
...
@@ -167,11 +174,12 @@ int GeneralReaderOp::inference() {
}
else
if
(
tensor
.
int_data_size
()
>
0
)
{
data_len
=
tensor
.
int_data_size
();
}
VLOG
(
2
)
<<
"tensor size for var["
<<
i
<<
"]: "
<<
data_len
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") tensor size for var["
<<
i
<<
"]: "
<<
data_len
;
tensor_size
+=
data_len
;
int
cur_len
=
out
->
at
(
i
).
lod
[
0
].
back
();
VLOG
(
2
)
<<
"current len: "
<<
cur_len
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
current len: "
<<
cur_len
;
int
sample_len
=
0
;
if
(
tensor
.
shape_size
()
==
1
)
{
...
...
@@ -180,7 +188,7 @@ int GeneralReaderOp::inference() {
sample_len
=
tensor
.
shape
(
0
);
}
out
->
at
(
i
).
lod
[
0
].
push_back
(
cur_len
+
sample_len
);
VLOG
(
2
)
<<
"new len: "
<<
cur_len
+
sample_len
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
new len: "
<<
cur_len
+
sample_len
;
}
out
->
at
(
i
).
data
.
Resize
(
tensor_size
*
elem_size
[
i
]);
out
->
at
(
i
).
shape
=
{
out
->
at
(
i
).
lod
[
0
].
back
()};
...
...
@@ -190,11 +198,11 @@ int GeneralReaderOp::inference() {
if
(
out
->
at
(
i
).
shape
.
size
()
==
1
)
{
out
->
at
(
i
).
shape
.
push_back
(
1
);
}
VLOG
(
2
)
<<
"var["
<<
i
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
var["
<<
i
<<
"] is lod_tensor and len="
<<
out
->
at
(
i
).
lod
[
0
].
back
();
}
else
{
out
->
at
(
i
).
data
.
Resize
(
batch_size
*
capacity
[
i
]
*
elem_size
[
i
]);
VLOG
(
2
)
<<
"var["
<<
i
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
var["
<<
i
<<
"] is tensor and capacity="
<<
batch_size
*
capacity
[
i
];
}
}
...
...
@@ -203,8 +211,8 @@ int GeneralReaderOp::inference() {
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
elem_type
[
i
]
==
0
)
{
int64_t
*
dst_ptr
=
static_cast
<
int64_t
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"
first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
int64_data
(
0
);
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
int64_data
(
0
);
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
int
elem_num
=
req
->
insts
(
j
).
tensor_array
(
i
).
int64_data_size
();
...
...
@@ -219,8 +227,8 @@ int GeneralReaderOp::inference() {
}
}
else
if
(
elem_type
[
i
]
==
1
)
{
float
*
dst_ptr
=
static_cast
<
float
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"
first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
float_data
(
0
);
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
float_data
(
0
);
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
int
elem_num
=
req
->
insts
(
j
).
tensor_array
(
i
).
float_data_size
();
...
...
@@ -235,8 +243,8 @@ int GeneralReaderOp::inference() {
}
}
else
if
(
elem_type
[
i
]
==
2
)
{
int32_t
*
dst_ptr
=
static_cast
<
int32_t
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"
first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
int_data
(
0
);
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
int_data
(
0
);
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
int
elem_num
=
req
->
insts
(
j
).
tensor_array
(
i
).
int_data_size
();
...
...
@@ -252,7 +260,7 @@ int GeneralReaderOp::inference() {
}
}
VLOG
(
2
)
<<
"output size: "
<<
out
->
size
();
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
output size: "
<<
out
->
size
();
timeline
.
Pause
();
int64_t
end
=
timeline
.
TimeStampUS
();
...
...
@@ -260,7 +268,7 @@ int GeneralReaderOp::inference() {
AddBlobInfo
(
res
,
start
);
AddBlobInfo
(
res
,
end
);
VLOG
(
2
)
<<
"read data from client success"
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
read data from client success"
;
return
0
;
}
DEFINE_OP
(
GeneralReaderOp
);
...
...
core/general-server/op/general_response_op.cpp
浏览文件 @
05e74bdd
...
...
@@ -75,10 +75,12 @@ int GeneralResponseOp::inference() {
VLOG
(
2
)
<<
"pre names["
<<
pi
<<
"]: "
<<
pre_name
<<
" ("
<<
pre_node_names
.
size
()
<<
")"
;
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
uint64_t
curr_logid
=
input_blob
->
GetLogId
();
// fprintf(stderr, "input(%s) blob address %x\n", pre_names.c_str(),
// input_blob);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op: "
<<
pre_name
;
LOG
(
ERROR
)
<<
"(logid="
<<
curr_logid
<<
") Failed mutable depended argument, op: "
<<
pre_name
;
return
-
1
;
}
...
...
@@ -92,17 +94,19 @@ int GeneralResponseOp::inference() {
for
(
auto
&
idx
:
fetch_index
)
{
Tensor
*
tensor
=
fetch_inst
->
add_tensor_array
();
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
VLOG
(
2
)
<<
"
out["
<<
idx
<<
"] "
<<
model_config
->
_fetch_name
[
idx
]
<<
" is lod_tensor"
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
") out["
<<
idx
<<
"] "
<<
model_config
->
_fetch_name
[
idx
]
<<
" is lod_tensor"
;
for
(
int
k
=
0
;
k
<
in
->
at
(
idx
).
shape
.
size
();
++
k
)
{
VLOG
(
2
)
<<
"shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
VLOG
(
2
)
<<
"(logid="
<<
curr_logid
<<
") shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
in
->
at
(
idx
).
shape
[
k
]);
}
}
else
{
VLOG
(
2
)
<<
"
out["
<<
idx
<<
"] "
<<
model_config
->
_fetch_name
[
idx
]
<<
" is tensor"
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
") out["
<<
idx
<<
"] "
<<
model_config
->
_fetch_name
[
idx
]
<<
" is tensor"
;
for
(
int
k
=
0
;
k
<
in
->
at
(
idx
).
shape
.
size
();
++
k
)
{
VLOG
(
2
)
<<
"shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
VLOG
(
2
)
<<
"(logid="
<<
curr_logid
<<
") shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
in
->
at
(
idx
).
shape
[
k
]);
}
}
...
...
@@ -119,8 +123,8 @@ int GeneralResponseOp::inference() {
auto
dtype
=
in
->
at
(
idx
).
dtype
;
if
(
dtype
==
paddle
::
PaddleDType
::
INT64
)
{
VLOG
(
2
)
<<
"
Prepare int64 var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
") Prepare int64 var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
int64_t
*
data_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
idx
).
data
.
data
());
// from
// https://stackoverflow.com/questions/15499641/copy-a-stdvector-to-a-repeated-field-from-protobuf-with-memcpy
...
...
@@ -130,16 +134,16 @@ int GeneralResponseOp::inference() {
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
mutable_int64_data
()
->
Swap
(
&
tmp_data
);
}
else
if
(
dtype
==
paddle
::
PaddleDType
::
FLOAT32
)
{
VLOG
(
2
)
<<
"
Prepare float var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
") Prepare float var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
float
*
data_ptr
=
static_cast
<
float
*>
(
in
->
at
(
idx
).
data
.
data
());
google
::
protobuf
::
RepeatedField
<
float
>
tmp_data
(
data_ptr
,
data_ptr
+
cap
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
mutable_float_data
()
->
Swap
(
&
tmp_data
);
}
else
if
(
dtype
==
paddle
::
PaddleDType
::
INT32
)
{
VLOG
(
2
)
<<
"
Prepare int32 var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
")Prepare int32 var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
int32_t
*
data_ptr
=
static_cast
<
int32_t
*>
(
in
->
at
(
idx
).
data
.
data
());
google
::
protobuf
::
RepeatedField
<
int32_t
>
tmp_data
(
data_ptr
,
data_ptr
+
cap
);
...
...
@@ -154,7 +158,8 @@ int GeneralResponseOp::inference() {
}
}
VLOG
(
2
)
<<
"fetch var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"] ready"
;
VLOG
(
2
)
<<
"(logid="
<<
curr_logid
<<
") fetch var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"] ready"
;
var_idx
++
;
}
}
...
...
@@ -167,7 +172,9 @@ int GeneralResponseOp::inference() {
// a more elegant way.
for
(
uint32_t
pi
=
0
;
pi
<
pre_node_names
.
size
();
++
pi
)
{
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_node_names
[
pi
]);
VLOG
(
2
)
<<
"p size for input blob: "
<<
input_blob
->
p_size
;
uint64_t
curr_logid
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
curr_logid
<<
") p size for input blob: "
<<
input_blob
->
p_size
;
int
profile_time_idx
=
-
1
;
if
(
pi
==
0
)
{
profile_time_idx
=
0
;
...
...
core/general-server/proto/general_model_service.proto
浏览文件 @
05e74bdd
...
...
@@ -37,6 +37,7 @@ message Request {
repeated
FeedInst
insts
=
1
;
repeated
string
fetch_var_names
=
2
;
optional
bool
profile_server
=
3
[
default
=
false
];
required
uint64
log_id
=
4
[
default
=
0
];
};
message
Response
{
...
...
core/general-server/proto/load_general_model_service.proto
浏览文件 @
05e74bdd
...
...
@@ -21,6 +21,7 @@ option cc_generic_services = true;
message
RequestAndResponse
{
required
int32
a
=
1
;
required
float
b
=
2
;
required
uint64
log_id
=
3
[
default
=
0
];
};
service
LoadGeneralModelService
{
...
...
core/pdcodegen/plugin/pdcodegen
已删除
100755 → 0
浏览文件 @
e8541933
文件已删除
core/pdcodegen/src/pdcodegen.cpp
浏览文件 @
05e74bdd
...
...
@@ -280,6 +280,7 @@ class PdsCodeGenerator : public CodeGenerator {
" baidu::rpc::ClosureGuard done_guard(done);
\n
"
" baidu::rpc::Controller* cntl =
\n
"
" static_cast<baidu::rpc::Controller*>(cntl_base);
\n
"
" cntl->set_log_id(request->log_id());
\n
"
" ::baidu::paddle_serving::predictor::InferService* svr =
\n
"
" "
"::baidu::paddle_serving::predictor::InferServiceManager::instance("
...
...
@@ -317,6 +318,7 @@ class PdsCodeGenerator : public CodeGenerator {
" baidu::rpc::ClosureGuard done_guard(done);
\n
"
" baidu::rpc::Controller* cntl =
\n
"
" static_cast<baidu::rpc::Controller*>(cntl_base);
\n
"
" cntl->set_log_id(request->log_id());
\n
"
" ::baidu::paddle_serving::predictor::InferService* svr =
\n
"
" "
"::baidu::paddle_serving::predictor::InferServiceManager::instance("
...
...
@@ -1011,6 +1013,7 @@ class PdsCodeGenerator : public CodeGenerator {
" brpc::ClosureGuard done_guard(done);
\n
"
" brpc::Controller* cntl =
\n
"
" static_cast<brpc::Controller*>(cntl_base);
\n
"
" cntl->set_log_id(request->log_id());
\n
"
" ::baidu::paddle_serving::predictor::InferService* svr =
\n
"
" "
"::baidu::paddle_serving::predictor::InferServiceManager::instance("
...
...
@@ -1048,6 +1051,7 @@ class PdsCodeGenerator : public CodeGenerator {
" brpc::ClosureGuard done_guard(done);
\n
"
" brpc::Controller* cntl =
\n
"
" static_cast<brpc::Controller*>(cntl_base);
\n
"
" cntl->set_log_id(request->log_id());
\n
"
" ::baidu::paddle_serving::predictor::InferService* svr =
\n
"
" "
"::baidu::paddle_serving::predictor::InferServiceManager::instance("
...
...
core/sdk-cpp/proto/general_model_service.proto
浏览文件 @
05e74bdd
...
...
@@ -37,6 +37,7 @@ message Request {
repeated
FeedInst
insts
=
1
;
repeated
string
fetch_var_names
=
2
;
optional
bool
profile_server
=
3
[
default
=
false
];
required
uint64
log_id
=
4
[
default
=
0
];
};
message
Response
{
...
...
java/src/main/java/io/paddle/serving/client/Client.java
浏览文件 @
05e74bdd
...
...
@@ -192,14 +192,16 @@ public class Client {
private
InferenceRequest
_packInferenceRequest
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
throws
IllegalArgumentException
{
Iterable
<
String
>
fetch
,
long
log_id
)
throws
IllegalArgumentException
{
List
<
String
>
feed_var_names
=
new
ArrayList
<
String
>();
feed_var_names
.
addAll
(
feed_batch
.
get
(
0
).
keySet
());
InferenceRequest
.
Builder
req_builder
=
InferenceRequest
.
newBuilder
()
.
addAllFeedVarNames
(
feed_var_names
)
.
addAllFetchVarNames
(
fetch
)
.
setIsPython
(
false
);
.
setIsPython
(
false
)
.
setLogId
(
log_id
);
for
(
HashMap
<
String
,
INDArray
>
feed_data:
feed_batch
)
{
FeedInst
.
Builder
inst_builder
=
FeedInst
.
newBuilder
();
for
(
String
name:
feed_var_names
)
{
...
...
@@ -332,76 +334,151 @@ public class Client {
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
predict
(
feed
,
fetch
,
false
);
return
predict
(
feed
,
fetch
,
false
,
0
);
}
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
predict
(
feed
,
fetch
,
false
,
log_id
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
ensemble_predict
(
feed
,
fetch
,
false
);
return
ensemble_predict
(
feed
,
fetch
,
false
,
0
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
ensemble_predict
(
feed
,
fetch
,
false
,
log_id
);
}
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
asyn_predict
(
feed
,
fetch
,
false
);
return
asyn_predict
(
feed
,
fetch
,
false
,
0
);
}
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
asyn_predict
(
feed
,
fetch
,
false
,
log_id
);
}
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
predict
(
feed
,
fetch
,
need_variant_tag
,
0
);
}
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>();
feed_batch
.
add
(
feed
);
return
predict
(
feed_batch
,
fetch
,
need_variant_tag
);
return
predict
(
feed_batch
,
fetch
,
need_variant_tag
,
log_id
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
ensemble_predict
(
feed
,
fetch
,
need_variant_tag
,
0
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>();
feed_batch
.
add
(
feed
);
return
ensemble_predict
(
feed_batch
,
fetch
,
need_variant_tag
);
return
ensemble_predict
(
feed_batch
,
fetch
,
need_variant_tag
,
log_id
);
}
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
asyn_predict
(
feed
,
fetch
,
need_variant_tag
,
0
);
}
public
PredictFuture
asyn_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>();
feed_batch
.
add
(
feed
);
return
asyn_predict
(
feed_batch
,
fetch
,
need_variant_tag
);
return
asyn_predict
(
feed_batch
,
fetch
,
need_variant_tag
,
log_id
);
}
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
predict
(
feed_batch
,
fetch
,
false
);
return
predict
(
feed_batch
,
fetch
,
false
,
0
);
}
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
predict
(
feed_batch
,
fetch
,
false
,
log_id
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
ensemble_predict
(
feed_batch
,
fetch
,
false
);
return
ensemble_predict
(
feed_batch
,
fetch
,
false
,
0
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
ensemble_predict
(
feed_batch
,
fetch
,
false
,
log_id
);
}
public
PredictFuture
asyn_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
asyn_predict
(
feed_batch
,
fetch
,
false
);
return
asyn_predict
(
feed_batch
,
fetch
,
false
,
0
);
}
public
PredictFuture
asyn_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
long
log_id
)
{
return
asyn_predict
(
feed_batch
,
fetch
,
false
,
log_id
);
}
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
predict
(
feed_batch
,
fetch
,
need_variant_tag
,
0
);
}
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
try
{
profiler_
.
record
(
"java_prepro_0"
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
,
log_id
);
profiler_
.
record
(
"java_prepro_1"
);
profiler_
.
record
(
"java_client_infer_0"
);
...
...
@@ -415,7 +492,7 @@ public class Client {
=
new
ArrayList
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>(
ensemble_result
.
entrySet
());
if
(
list
.
size
()
!=
1
)
{
System
.
out
.
format
(
"
predict failed
: please use ensemble_predict impl.\n"
);
System
.
out
.
format
(
"
Failed to predict
: please use ensemble_predict impl.\n"
);
return
null
;
}
profiler_
.
record
(
"java_postpro_1"
);
...
...
@@ -423,7 +500,7 @@ public class Client {
return
list
.
get
(
0
).
getValue
();
}
catch
(
StatusRuntimeException
e
)
{
System
.
out
.
format
(
"
predict failed
: %s\n"
,
e
.
toString
());
System
.
out
.
format
(
"
Failed to predict
: %s\n"
,
e
.
toString
());
return
null
;
}
}
...
...
@@ -432,9 +509,18 @@ public class Client {
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
return
ensemble_predict
(
feed_batch
,
fetch
,
need_variant_tag
,
0
);
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
try
{
profiler_
.
record
(
"java_prepro_0"
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
,
log_id
);
profiler_
.
record
(
"java_prepro_1"
);
profiler_
.
record
(
"java_client_infer_0"
);
...
...
@@ -449,7 +535,7 @@ public class Client {
return
ensemble_result
;
}
catch
(
StatusRuntimeException
e
)
{
System
.
out
.
format
(
"
predict failed
: %s\n"
,
e
.
toString
());
System
.
out
.
format
(
"
Failed to predict
: %s\n"
,
e
.
toString
());
return
null
;
}
}
...
...
@@ -458,7 +544,16 @@ public class Client {
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
return
asyn_predict
(
feed_batch
,
fetch
,
need_variant_tag
,
0
);
}
public
PredictFuture
asyn_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
,
long
log_id
)
{
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
,
log_id
);
ListenableFuture
<
InferenceResponse
>
future
=
futureStub_
.
inference
(
req
);
PredictFuture
predict_future
=
new
PredictFuture
(
future
,
(
InferenceResponse
resp
)
->
{
...
...
java/src/main/proto/multi_lang_general_model_service.proto
浏览文件 @
05e74bdd
...
...
@@ -37,6 +37,7 @@ message InferenceRequest {
repeated
string
feed_var_names
=
2
;
repeated
string
fetch_var_names
=
3
;
required
bool
is_python
=
4
[
default
=
false
];
required
uint64
log_id
=
5
[
default
=
0
];
};
message
InferenceResponse
{
...
...
python/examples/pipeline/imdb_model_ensemble/test_pipeline_server.py
浏览文件 @
05e74bdd
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import
paddle_serving_server.pipeline
as
pipeline
from
paddle_serving_server.pipeline
import
Op
,
RequestOp
,
ResponseOp
from
paddle_serving_server.pipeline
import
PipelineServer
from
paddle_serving_server.pipeline.proto
import
pipeline_service_pb2
...
...
@@ -22,12 +21,12 @@ from paddle_serving_app.reader import IMDBDataset
import
logging
_LOGGER
=
logging
.
getLogger
()
console_handler
=
pipeline
.
logger
.
StreamHandler
()
console
_handler
.
setLevel
(
logging
.
INFO
)
console
_handler
.
setFormatter
(
user_handler
=
logging
.
StreamHandler
()
user
_handler
.
setLevel
(
logging
.
INFO
)
user
_handler
.
setFormatter
(
logging
.
Formatter
(
"%(levelname)s %(asctime)s [%(filename)s:%(lineno)d] %(message)s"
))
_LOGGER
.
addHandler
(
console
_handler
)
_LOGGER
.
addHandler
(
user
_handler
)
class
ImdbRequestOp
(
RequestOp
):
...
...
python/paddle_serving_client/__init__.py
浏览文件 @
05e74bdd
...
...
@@ -233,7 +233,7 @@ class Client(object):
# key))
pass
def
predict
(
self
,
feed
=
None
,
fetch
=
None
,
need_variant_tag
=
False
):
def
predict
(
self
,
feed
=
None
,
fetch
=
None
,
need_variant_tag
=
False
,
log_id
=
0
):
self
.
profile_
.
record
(
'py_prepro_0'
)
if
feed
is
None
or
fetch
is
None
:
...
...
@@ -319,12 +319,12 @@ class Client(object):
res
=
self
.
client_handle_
.
numpy_predict
(
float_slot_batch
,
float_feed_names
,
float_shape
,
int_slot_batch
,
int_feed_names
,
int_shape
,
fetch_names
,
result_batch_handle
,
self
.
pid
)
self
.
pid
,
log_id
)
elif
self
.
has_numpy_input
==
False
:
res
=
self
.
client_handle_
.
batch_predict
(
float_slot_batch
,
float_feed_names
,
float_shape
,
int_slot_batch
,
int_feed_names
,
int_shape
,
fetch_names
,
result_batch_handle
,
self
.
pid
)
self
.
pid
,
log_id
)
else
:
raise
ValueError
(
"Please make sure the inputs are all in list type or all in numpy.array type"
...
...
@@ -466,10 +466,11 @@ class MultiLangClient(object):
if
var
.
is_lod_tensor
:
self
.
lod_tensor_set_
.
add
(
var
.
alias_name
)
def
_pack_inference_request
(
self
,
feed
,
fetch
,
is_python
):
def
_pack_inference_request
(
self
,
feed
,
fetch
,
is_python
,
log_id
):
req
=
multi_lang_general_model_service_pb2
.
InferenceRequest
()
req
.
fetch_var_names
.
extend
(
fetch
)
req
.
is_python
=
is_python
req
.
log_id
=
log_id
feed_batch
=
None
if
isinstance
(
feed
,
dict
):
feed_batch
=
[
feed
]
...
...
@@ -602,12 +603,13 @@ class MultiLangClient(object):
fetch
,
need_variant_tag
=
False
,
asyn
=
False
,
is_python
=
True
):
is_python
=
True
,
log_id
=
0
):
if
not
asyn
:
try
:
self
.
profile_
.
record
(
'py_prepro_0'
)
req
=
self
.
_pack_inference_request
(
feed
,
fetch
,
is_python
=
is_python
)
feed
,
fetch
,
is_python
=
is_python
,
log_id
=
log_id
)
self
.
profile_
.
record
(
'py_prepro_1'
)
self
.
profile_
.
record
(
'py_client_infer_0'
)
...
...
@@ -626,7 +628,8 @@ class MultiLangClient(object):
except
grpc
.
RpcError
as
e
:
return
{
"serving_status_code"
:
e
.
code
()}
else
:
req
=
self
.
_pack_inference_request
(
feed
,
fetch
,
is_python
=
is_python
)
req
=
self
.
_pack_inference_request
(
feed
,
fetch
,
is_python
=
is_python
,
log_id
=
log_id
)
call_future
=
self
.
stub_
.
Inference
.
future
(
req
,
timeout
=
self
.
rpc_timeout_s_
)
return
MultiLangPredictFuture
(
...
...
python/paddle_serving_server/__init__.py
浏览文件 @
05e74bdd
...
...
@@ -502,6 +502,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
feed_names
=
list
(
request
.
feed_var_names
)
fetch_names
=
list
(
request
.
fetch_var_names
)
is_python
=
request
.
is_python
log_id
=
request
.
log_id
feed_batch
=
[]
for
feed_inst
in
request
.
insts
:
feed_dict
=
{}
...
...
@@ -530,7 +531,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
data
.
shape
=
list
(
feed_inst
.
tensor_array
[
idx
].
shape
)
feed_dict
[
name
]
=
data
feed_batch
.
append
(
feed_dict
)
return
feed_batch
,
fetch_names
,
is_python
return
feed_batch
,
fetch_names
,
is_python
,
log_id
def
_pack_inference_response
(
self
,
ret
,
fetch_names
,
is_python
):
resp
=
multi_lang_general_model_service_pb2
.
InferenceResponse
()
...
...
@@ -583,10 +584,13 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
return
resp
def
Inference
(
self
,
request
,
context
):
feed_dict
,
fetch_names
,
is_python
=
self
.
_unpack_inference_request
(
request
)
feed_dict
,
fetch_names
,
is_python
,
log_id
=
\
self
.
_unpack_inference_request
(
request
)
ret
=
self
.
bclient_
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch_names
,
need_variant_tag
=
True
)
feed
=
feed_dict
,
fetch
=
fetch_names
,
need_variant_tag
=
True
,
log_id
=
log_id
)
return
self
.
_pack_inference_response
(
ret
,
fetch_names
,
is_python
)
def
GetClientConfig
(
self
,
request
,
context
):
...
...
python/paddle_serving_server_gpu/__init__.py
浏览文件 @
05e74bdd
...
...
@@ -552,6 +552,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
feed_names
=
list
(
request
.
feed_var_names
)
fetch_names
=
list
(
request
.
fetch_var_names
)
is_python
=
request
.
is_python
log_id
=
request
.
log_id
feed_batch
=
[]
for
feed_inst
in
request
.
insts
:
feed_dict
=
{}
...
...
@@ -580,7 +581,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
data
.
shape
=
list
(
feed_inst
.
tensor_array
[
idx
].
shape
)
feed_dict
[
name
]
=
data
feed_batch
.
append
(
feed_dict
)
return
feed_batch
,
fetch_names
,
is_python
return
feed_batch
,
fetch_names
,
is_python
,
log_id
def
_pack_inference_response
(
self
,
ret
,
fetch_names
,
is_python
):
resp
=
multi_lang_general_model_service_pb2
.
InferenceResponse
()
...
...
@@ -633,10 +634,13 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
return
resp
def
Inference
(
self
,
request
,
context
):
feed_dict
,
fetch_names
,
is_python
=
self
.
_unpack_inference_request
(
request
)
feed_dict
,
fetch_names
,
is_python
,
log_id
\
=
self
.
_unpack_inference_request
(
request
)
ret
=
self
.
bclient_
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch_names
,
need_variant_tag
=
True
)
feed
=
feed_dict
,
fetch
=
fetch_names
,
need_variant_tag
=
True
,
log_id
=
log_id
)
return
self
.
_pack_inference_response
(
ret
,
fetch_names
,
is_python
)
def
GetClientConfig
(
self
,
request
,
context
):
...
...
python/pipeline/__init__.py
浏览文件 @
05e74bdd
...
...
@@ -16,7 +16,3 @@ from operator import Op, RequestOp, ResponseOp
from
pipeline_server
import
PipelineServer
from
pipeline_client
import
PipelineClient
from
analyse
import
Analyst
from
operator
import
Op
,
RequestOp
,
ResponseOp
from
pipeline_server
import
PipelineServer
from
pipeline_client
import
PipelineClient
from
analyse
import
Analyst
python/pipeline/analyse.py
浏览文件 @
05e74bdd
...
...
@@ -17,7 +17,7 @@ import copy
import
re
import
logging
_LOGGER
=
logging
.
getLogger
(
"pipeline.analyse"
)
_LOGGER
=
logging
.
getLogger
(
__name__
)
class
Analyst
(
object
):
...
...
python/pipeline/channel.py
浏览文件 @
05e74bdd
...
...
@@ -29,7 +29,7 @@ import enum
import
os
import
copy
_LOGGER
=
logging
.
getLogger
(
"pipeline.channel"
)
_LOGGER
=
logging
.
getLogger
(
__name__
)
class
ChannelDataEcode
(
enum
.
Enum
):
...
...
@@ -181,6 +181,14 @@ class ChannelData(object):
os
.
_exit
(
-
1
)
return
feed
def
__cmp__
(
self
,
other
):
if
self
.
id
<
other
.
id
:
return
-
1
elif
self
.
id
==
other
.
id
:
return
0
else
:
return
1
def
__str__
(
self
):
return
"type[{}], ecode[{}], id[{}]"
.
format
(
ChannelDataType
(
self
.
datatype
).
name
,
self
.
ecode
,
self
.
id
)
...
...
@@ -222,7 +230,7 @@ class ProcessChannel(object):
# see more:
# - https://bugs.python.org/issue18277
# - https://hg.python.org/cpython/rev/860fc6a2bd21
self
.
_que
=
manager
.
Queue
(
maxsize
=
maxsize
)
self
.
_que
=
manager
.
Priority
Queue
(
maxsize
=
maxsize
)
self
.
_maxsize
=
maxsize
self
.
name
=
name
self
.
_stop
=
manager
.
Value
(
'i'
,
0
)
...
...
@@ -489,7 +497,7 @@ class ProcessChannel(object):
self
.
_cv
.
notify_all
()
class
ThreadChannel
(
Queue
.
Queue
):
class
ThreadChannel
(
Queue
.
Priority
Queue
):
"""
(Thread version)The channel used for communication between Ops.
...
...
python/pipeline/dag.py
浏览文件 @
05e74bdd
...
...
@@ -24,19 +24,20 @@ else:
raise
Exception
(
"Error Python version"
)
import
os
import
logging
import
collections
from
.operator
import
Op
,
RequestOp
,
ResponseOp
,
VirtualOp
from
.channel
import
(
ThreadChannel
,
ProcessChannel
,
ChannelData
,
ChannelDataEcode
,
ChannelDataType
,
ChannelStopError
)
from
.profiler
import
TimeProfiler
,
PerformanceTracer
from
.util
import
NameGenerator
from
.util
import
NameGenerator
,
ThreadIdGenerator
,
PipelineProcSyncManager
from
.proto
import
pipeline_service_pb2
_LOGGER
=
logging
.
getLogger
(
"pipeline.dag"
)
_LOGGER
=
logging
.
getLogger
(
__name__
)
class
DAGExecutor
(
object
):
def
__init__
(
self
,
response_op
,
server_conf
):
def
__init__
(
self
,
response_op
,
server_conf
,
worker_idx
):
build_dag_each_worker
=
server_conf
[
"build_dag_each_worker"
]
server_worker_num
=
server_conf
[
"worker_num"
]
dag_conf
=
server_conf
[
"dag"
]
...
...
@@ -74,9 +75,17 @@ class DAGExecutor(object):
if
self
.
_tracer
is
not
None
:
self
.
_tracer
.
start
()
self
.
_id_lock
=
threading
.
Lock
()
self
.
_id_counter
=
0
self
.
_reset_max_id
=
1000000000000000000
# generate id: data_id == request_id == log_id
base_counter
=
0
gen_id_step
=
1
if
build_dag_each_worker
:
base_counter
=
worker_idx
gen_id_step
=
server_worker_num
self
.
_id_generator
=
ThreadIdGenerator
(
max_id
=
1000000000000000000
,
base_counter
=
base_counter
,
step
=
gen_id_step
)
self
.
_cv_pool
=
{}
self
.
_cv_for_cv_pool
=
threading
.
Condition
()
self
.
_fetch_buffer
=
{}
...
...
@@ -98,13 +107,7 @@ class DAGExecutor(object):
_LOGGER
.
info
(
"[DAG Executor] Stop"
)
def
_get_next_data_id
(
self
):
data_id
=
None
with
self
.
_id_lock
:
if
self
.
_id_counter
>=
self
.
_reset_max_id
:
_LOGGER
.
info
(
"[DAG Executor] Reset request id"
)
self
.
_id_counter
-=
self
.
_reset_max_id
data_id
=
self
.
_id_counter
self
.
_id_counter
+=
1
data_id
=
self
.
_id_generator
.
next
()
cond_v
=
threading
.
Condition
()
with
self
.
_cv_for_cv_pool
:
self
.
_cv_pool
[
data_id
]
=
cond_v
...
...
@@ -282,12 +285,14 @@ class DAGExecutor(object):
end_call
=
self
.
_profiler
.
record
(
"call_{}#DAG_1"
.
format
(
data_id
))
if
self
.
_tracer
is
not
None
:
if
resp_channeldata
.
ecode
==
ChannelDataEcode
.
OK
.
value
:
trace_buffer
.
put
((
"DAG"
,
"call_{}"
.
format
(
data_id
),
True
,
end_call
-
start_call
))
else
:
trace_buffer
.
put
((
"DAG"
,
"call_{}"
.
format
(
data_id
),
False
,
end_call
-
start_call
))
trace_buffer
.
put
({
"name"
:
"DAG"
,
"id"
:
data_id
,
"succ"
:
resp_channeldata
.
ecode
==
ChannelDataEcode
.
OK
.
value
,
"actions"
:
{
"call_{}"
.
format
(
data_id
):
end_call
-
start_call
,
},
})
profile_str
=
self
.
_profiler
.
gen_profile_str
()
if
self
.
_server_use_profile
:
...
...
@@ -330,7 +335,7 @@ class DAG(object):
self
.
_build_dag_each_worker
=
build_dag_each_worker
self
.
_tracer
=
tracer
if
not
self
.
_is_thread_op
:
self
.
_manager
=
multiprocessing
.
Manager
()
self
.
_manager
=
PipelineProcSync
Manager
()
_LOGGER
.
info
(
"[DAG] Succ init"
)
def
get_use_ops
(
self
,
response_op
):
...
...
@@ -554,6 +559,7 @@ class DAG(object):
self
.
_pack_func
=
pack_func
self
.
_unpack_func
=
unpack_func
if
self
.
_tracer
is
not
None
:
self
.
_tracer
.
set_channels
(
self
.
_channels
)
return
self
.
_input_channel
,
self
.
_output_channel
,
self
.
_pack_func
,
self
.
_unpack_func
...
...
python/pipeline/logger.py
浏览文件 @
05e74bdd
...
...
@@ -13,7 +13,7 @@
# limitations under the License.
import
logging
import
logging.
handlers
import
logging.
config
import
os
...
...
@@ -25,66 +25,52 @@ class SectionLevelFilter(object):
return
logRecord
.
levelno
in
self
.
_levels
class
OutOfMouduleFilter
(
object
):
def
__init__
(
self
,
out_names
):
self
.
_out_names
=
out_names
def
filter
(
self
,
logRecord
):
return
logRecord
.
name
not
in
self
.
_out_names
class
OutOfMouduleAndSectionLevelFilter
(
object
):
def
__init__
(
self
,
out_names
,
levels
):
self
.
_out_names
=
out_names
self
.
_levels
=
levels
def
filter
(
self
,
logRecord
):
if
logRecord
.
name
in
self
.
_out_names
:
return
False
return
logRecord
.
levelno
in
self
.
_levels
class
StreamHandler
(
logging
.
StreamHandler
):
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
(
StreamHandler
,
self
).
__init__
(
*
args
,
**
kwargs
)
self
.
addFilter
(
OutOfMouduleFilter
([
"pipeline.profiler"
]))
log_dir
=
"PipelineServingLogs"
if
not
os
.
path
.
exists
(
log_dir
):
os
.
makedirs
(
log_dir
)
# root logger
_LOGGER
=
logging
.
getLogger
()
_LOGGER
.
setLevel
(
logging
.
DEBUG
)
formatter
=
logging
.
Formatter
(
"%(levelname)s %(asctime)s [%(filename)s:%(lineno)d] %(message)s"
)
# info and warn
file_info
=
logging
.
handlers
.
RotatingFileHandler
(
os
.
path
.
join
(
log_dir
,
"INFO.log"
))
file_info
.
addFilter
(
OutOfMouduleFilter
([
"pipeline.profiler"
]))
file_info
.
addFilter
(
SectionLevelFilter
([
logging
.
INFO
,
logging
.
WARNING
]))
file_info
.
setFormatter
(
formatter
)
# err and critical
file_err
=
logging
.
handlers
.
RotatingFileHandler
(
os
.
path
.
join
(
log_dir
,
"ERROR.log"
))
file_err
.
addFilter
(
OutOfMouduleFilter
([
"pipeline.profiler"
]))
file_err
.
setLevel
(
logging
.
ERROR
)
file_err
.
setFormatter
(
formatter
)
_LOGGER
.
addHandler
(
file_info
)
_LOGGER
.
addHandler
(
file_err
)
# tracer logger
_TRACER
=
logging
.
getLogger
(
"pipeline.profiler"
)
_TRACER
.
setLevel
(
logging
.
INFO
)
_TRACER
.
addFilter
(
logging
.
Filter
(
"pipeline.profiler"
))
# tracer
tracer_formatter
=
logging
.
Formatter
(
"%(asctime)s %(message)s"
)
file_trace
=
logging
.
handlers
.
RotatingFileHandler
(
os
.
path
.
join
(
log_dir
,
"TRACE.log"
))
file_trace
.
setFormatter
(
tracer_formatter
)
_TRACER
.
addHandler
(
file_trace
)
logger_config
=
{
"version"
:
1
,
"formatters"
:
{
"normal_fmt"
:
{
"format"
:
"%(levelname)s %(asctime)s [%(filename)s:%(lineno)d] %(message)s"
,
},
"tracer_fmt"
:
{
"format"
:
"%(asctime)s %(message)s"
,
},
},
"handlers"
:
{
"f_pipeline.log"
:
{
"class"
:
"logging.FileHandler"
,
"level"
:
"INFO"
,
"formatter"
:
"normal_fmt"
,
"filename"
:
os
.
path
.
join
(
log_dir
,
"pipeline.log"
),
},
"f_pipeline.log.wf"
:
{
"class"
:
"logging.FileHandler"
,
"level"
:
"WARNING"
,
"formatter"
:
"normal_fmt"
,
"filename"
:
os
.
path
.
join
(
log_dir
,
"pipeline.log.wf"
),
},
"f_tracer.log"
:
{
"class"
:
"logging.FileHandler"
,
"level"
:
"INFO"
,
"formatter"
:
"tracer_fmt"
,
"filename"
:
os
.
path
.
join
(
log_dir
,
"pipeline.tracer"
),
},
},
"loggers"
:
{
# propagate = True
"."
.
join
(
__name__
.
split
(
"."
)[:
-
1
]
+
[
"profiler"
]):
{
"level"
:
"INFO"
,
"handlers"
:
[
"f_tracer.log"
],
},
},
"root"
:
{
"level"
:
"DEBUG"
,
"handlers"
:
[
"f_pipeline.log"
,
"f_pipeline.log.wf"
],
},
}
logging
.
config
.
dictConfig
(
logger_config
)
python/pipeline/operator.py
浏览文件 @
05e74bdd
...
...
@@ -22,8 +22,15 @@ import logging
import
func_timeout
import
os
import
sys
import
collections
import
numpy
as
np
from
numpy
import
*
if
sys
.
version_info
.
major
==
2
:
import
Queue
elif
sys
.
version_info
.
major
==
3
:
import
queue
as
Queue
else
:
raise
Exception
(
"Error Python version"
)
from
.proto
import
pipeline_service_pb2
from
.channel
import
(
ThreadChannel
,
ProcessChannel
,
ChannelDataEcode
,
...
...
@@ -32,7 +39,7 @@ from .channel import (ThreadChannel, ProcessChannel, ChannelDataEcode,
from
.util
import
NameGenerator
from
.profiler
import
UnsafeTimeProfiler
as
TimeProfiler
_LOGGER
=
logging
.
getLogger
(
"pipeline.operator"
)
_LOGGER
=
logging
.
getLogger
(
__name__
)
_op_name_gen
=
NameGenerator
(
"Op"
)
...
...
@@ -127,7 +134,7 @@ class Op(object):
fetch_names
):
if
self
.
with_serving
==
False
:
_LOGGER
.
info
(
"Op({}) has no client (and it also do not "
"run the process function"
.
format
(
self
.
name
))
"run the process function
)
"
.
format
(
self
.
name
))
return
None
if
client_type
==
'brpc'
:
client
=
Client
()
...
...
@@ -199,7 +206,7 @@ class Op(object):
(
_
,
input_dict
),
=
input_dicts
.
items
()
return
input_dict
def
process
(
self
,
feed_batch
):
def
process
(
self
,
feed_batch
,
typical_logid
):
err
,
err_info
=
ChannelData
.
check_batch_npdata
(
feed_batch
)
if
err
!=
0
:
_LOGGER
.
critical
(
...
...
@@ -207,7 +214,7 @@ class Op(object):
"preprocess func."
.
format
(
err_info
)))
os
.
_exit
(
-
1
)
call_result
=
self
.
client
.
predict
(
feed
=
feed_batch
,
fetch
=
self
.
_fetch_names
)
feed
=
feed_batch
,
fetch
=
self
.
_fetch_names
,
log_id
=
typical_logid
)
if
isinstance
(
self
.
client
,
MultiLangClient
):
if
call_result
is
None
or
call_result
[
"serving_status_code"
]
!=
0
:
return
None
...
...
@@ -294,8 +301,8 @@ class Op(object):
def
_run_preprocess
(
self
,
parsed_data_dict
,
op_info_prefix
):
_LOGGER
.
debug
(
"{} Running preprocess"
.
format
(
op_info_prefix
))
preped_data_dict
=
{}
err_channeldata_dict
=
{}
preped_data_dict
=
collections
.
OrderedDict
()
err_channeldata_dict
=
collections
.
OrderedDict
()
for
data_id
,
parsed_data
in
parsed_data_dict
.
items
():
preped_data
,
error_channeldata
=
None
,
None
try
:
...
...
@@ -326,68 +333,132 @@ class Op(object):
def
_run_process
(
self
,
preped_data_dict
,
op_info_prefix
):
_LOGGER
.
debug
(
"{} Running process"
.
format
(
op_info_prefix
))
midped_data_dict
=
{}
err_channeldata_dict
=
{}
midped_data_dict
=
collections
.
OrderedDict
()
err_channeldata_dict
=
collections
.
OrderedDict
()
if
self
.
with_serving
:
data_ids
=
preped_data_dict
.
keys
()
typical_logid
=
data_ids
[
0
]
if
len
(
data_ids
)
!=
1
:
for
data_id
in
data_ids
:
_LOGGER
.
info
(
"(logid={}) {} During access to PaddleServingService,"
" we selected logid={} (from batch: {}) as a "
"representative for logging."
.
format
(
data_id
,
op_info_prefix
,
typical_logid
,
data_ids
))
# combine samples to batch
one_input
=
preped_data_dict
[
data_ids
[
0
]]
feed_batch
=
[]
input_offset
=
None
if
isinstance
(
one_input
,
dict
):
# sample input
feed_batch
=
[
preped_data_dict
[
data_id
]
for
data_id
in
data_ids
]
input_offset
=
list
(
range
(
len
(
data_ids
)
+
1
))
elif
isinstance
(
one_input
,
list
):
# batch input
input_offset
=
[
0
]
for
data_id
in
data_ids
:
batch_input
=
preped_data_dict
[
data_id
]
offset
=
input_offset
[
-
1
]
+
len
(
batch_input
)
feed_batch
+=
batch_input
input_offset
.
append
(
offset
)
else
:
_LOGGER
.
critical
(
"{} Failed to process: expect input type is dict(sample"
" input) or list(batch input), but get {}"
.
format
(
op_info_prefix
,
type
(
one_input
)))
os
.
_exit
(
-
1
)
midped_batch
=
None
ecode
=
ChannelDataEcode
.
OK
.
value
if
self
.
_timeout
<=
0
:
try
:
midped_batch
=
self
.
process
(
feed_batch
)
midped_batch
=
self
.
process
(
feed_batch
,
typical_logid
)
except
Exception
as
e
:
ecode
=
ChannelDataEcode
.
UNKNOW
.
value
error_info
=
"{} Failed to process(batch: {}): {}"
.
format
(
op_info_prefix
,
data_ids
,
e
)
error_info
=
"
(logid={})
{} Failed to process(batch: {}): {}"
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
,
e
)
_LOGGER
.
error
(
error_info
,
exc_info
=
True
)
else
:
for
i
in
range
(
self
.
_retry
):
try
:
midped_batch
=
func_timeout
.
func_timeout
(
self
.
_timeout
,
self
.
process
,
args
=
(
feed_batch
,
))
self
.
_timeout
,
self
.
process
,
args
=
(
feed_batch
,
typical_logid
))
except
func_timeout
.
FunctionTimedOut
as
e
:
if
i
+
1
>=
self
.
_retry
:
ecode
=
ChannelDataEcode
.
TIMEOUT
.
value
error_info
=
"{} Failed to process(batch: {}): "
\
error_info
=
"
(logid={})
{} Failed to process(batch: {}): "
\
"exceeded retry count."
.
format
(
op_info_prefix
,
data_ids
)
typical_logid
,
op_info_prefix
,
data_ids
)
_LOGGER
.
error
(
error_info
)
else
:
_LOGGER
.
warning
(
"{} Failed to process(batch: {}): timeout, and retrying({}/{})"
.
format
(
op_info_prefix
,
data_ids
,
i
+
1
,
self
.
_retry
))
"(logid={}) {} Failed to process(batch: {}): timeout,"
" and retrying({}/{})..."
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
,
i
+
1
,
self
.
_retry
))
except
Exception
as
e
:
ecode
=
ChannelDataEcode
.
UNKNOW
.
value
error_info
=
"{} Failed to process(batch: {}): {}"
.
format
(
op_info_prefix
,
data_ids
,
e
)
error_info
=
"
(logid={})
{} Failed to process(batch: {}): {}"
.
format
(
typical_logid
,
op_info_prefix
,
data_ids
,
e
)
_LOGGER
.
error
(
error_info
,
exc_info
=
True
)
break
else
:
break
if
ecode
!=
ChannelDataEcode
.
OK
.
value
:
for
data_id
in
data_ids
:
_LOGGER
.
error
(
"(logid={}) {}"
.
format
(
data_id
,
error_info
))
err_channeldata_dict
[
data_id
]
=
ChannelData
(
ecode
=
ecode
,
error_info
=
error_info
,
data_id
=
data_id
)
elif
midped_batch
is
None
:
# op client return None
error_info
=
"{} Failed to predict, please check if PaddleServingService"
\
" is working properly."
.
format
(
op_info_prefix
)
error_info
=
"(logid={}) {} Failed to predict, please check if "
\
"PaddleServingService is working properly."
.
format
(
typical_logid
,
op_info_prefix
)
_LOGGER
.
error
(
error_info
)
for
data_id
in
data_ids
:
_LOGGER
.
error
(
"(logid={}) {}"
.
format
(
data_id
,
error_info
))
err_channeldata_dict
[
data_id
]
=
ChannelData
(
ecode
=
ChannelDataEcode
.
CLIENT_ERROR
.
value
,
error_info
=
error_info
,
data_id
=
data_id
)
else
:
# transform np format to dict format
var_names
=
midped_batch
.
keys
()
lod_var_names
=
set
()
lod_offset_names
=
set
()
for
name
in
var_names
:
lod_offset_name
=
"{}.lod"
.
format
(
name
)
if
lod_offset_name
in
var_names
:
_LOGGER
.
debug
(
"(logid={}) {} {} is LodTensor"
.
format
(
typical_logid
,
op_info_prefix
,
name
))
lod_var_names
.
add
(
name
)
lod_offset_names
.
add
(
lod_offset_name
)
for
idx
,
data_id
in
enumerate
(
data_ids
):
midped_data_dict
[
data_id
]
=
{
k
:
v
[
idx
]
for
k
,
v
in
midped_batch
.
items
()
}
midped_data_dict
[
data_id
]
=
{}
for
name
,
value
in
midped_batch
.
items
():
if
name
in
lod_offset_names
:
continue
if
name
in
lod_var_names
:
# lodtensor
lod_offset_name
=
"{}.lod"
.
format
(
name
)
lod_offset
=
midped_batch
[
lod_offset_name
]
for
idx
,
data_id
in
enumerate
(
data_ids
):
data_offset_left
=
input_offset
[
idx
]
data_offset_right
=
input_offset
[
idx
+
1
]
lod_offset_left
=
lod_offset
[
data_offset_left
]
lod_offset_right
=
lod_offset
[
data_offset_right
]
midped_data_dict
[
data_id
][
name
]
=
value
[
lod_offset_left
:
lod_offset_right
]
midped_data_dict
[
data_id
][
lod_offset_name
]
=
\
lod_offset
[
data_offset_left
:
data_offset_right
+
1
]
-
lod_offset
[
data_offset_left
]
else
:
# normal tensor
for
idx
,
data_id
in
enumerate
(
data_ids
):
left
=
input_offset
[
idx
]
right
=
input_offset
[
idx
+
1
]
midped_data_dict
[
data_id
][
name
]
=
value
[
left
:
right
]
else
:
midped_data_dict
=
preped_data_dict
_LOGGER
.
debug
(
"{} Succ process"
.
format
(
op_info_prefix
))
...
...
@@ -396,8 +467,8 @@ class Op(object):
def
_run_postprocess
(
self
,
parsed_data_dict
,
midped_data_dict
,
op_info_prefix
):
_LOGGER
.
debug
(
"{} Running postprocess"
.
format
(
op_info_prefix
))
postped_data_dict
=
{}
err_channeldata_dict
=
{}
postped_data_dict
=
collections
.
OrderedDict
()
err_channeldata_dict
=
collections
.
OrderedDict
()
for
data_id
,
midped_data
in
midped_data_dict
.
items
():
postped_data
,
err_channeldata
=
None
,
None
try
:
...
...
@@ -476,7 +547,7 @@ class Op(object):
yield
batch
def
_parse_channeldata_batch
(
self
,
batch
,
output_channels
):
parsed_data_dict
=
{}
parsed_data_dict
=
collections
.
OrderedDict
()
need_profile_dict
=
{}
profile_dict
=
{}
for
channeldata_dict
in
batch
:
...
...
@@ -520,6 +591,7 @@ class Op(object):
op_info_prefix
=
op_info_prefix
)
start
,
end
=
None
,
None
trace_que
=
collections
.
deque
()
while
True
:
start
=
int
(
round
(
_time
()
*
1000000
))
try
:
...
...
@@ -529,8 +601,7 @@ class Op(object):
self
.
_finalize
(
is_thread_op
)
break
end
=
int
(
round
(
_time
()
*
1000000
))
if
trace_buffer
is
not
None
:
trace_buffer
.
put
((
self
.
name
,
"in"
,
True
,
end
-
start
))
in_time
=
end
-
start
# parse channeldata batch
try
:
...
...
@@ -550,8 +621,7 @@ class Op(object):
preped_data_dict
,
err_channeldata_dict
\
=
self
.
_run_preprocess
(
parsed_data_dict
,
op_info_prefix
)
end
=
profiler
.
record
(
"prep#{}_1"
.
format
(
op_info_prefix
))
if
trace_buffer
is
not
None
:
trace_buffer
.
put
((
self
.
name
,
"prep"
,
True
,
end
-
start
))
prep_time
=
end
-
start
try
:
for
data_id
,
err_channeldata
in
err_channeldata_dict
.
items
():
self
.
_push_to_output_channels
(
...
...
@@ -563,7 +633,7 @@ class Op(object):
_LOGGER
.
debug
(
"{} Stop."
.
format
(
op_info_prefix
))
self
.
_finalize
(
is_thread_op
)
break
if
len
(
p
ars
ed_data_dict
)
==
0
:
if
len
(
p
rep
ed_data_dict
)
==
0
:
continue
# process
...
...
@@ -571,8 +641,7 @@ class Op(object):
midped_data_dict
,
err_channeldata_dict
\
=
self
.
_run_process
(
preped_data_dict
,
op_info_prefix
)
end
=
profiler
.
record
(
"midp#{}_1"
.
format
(
op_info_prefix
))
if
trace_buffer
is
not
None
:
trace_buffer
.
put
((
self
.
name
,
"midp"
,
True
,
end
-
start
))
midp_time
=
end
-
start
try
:
for
data_id
,
err_channeldata
in
err_channeldata_dict
.
items
():
self
.
_push_to_output_channels
(
...
...
@@ -593,12 +662,11 @@ class Op(object):
=
self
.
_run_postprocess
(
parsed_data_dict
,
midped_data_dict
,
op_info_prefix
)
end
=
profiler
.
record
(
"postp#{}_1"
.
format
(
op_info_prefix
))
if
trace_buffer
is
not
None
:
trace_buffer
.
put
((
self
.
name
,
"postp"
,
True
,
end
-
start
))
postp_time
=
end
-
start
try
:
for
data_id
,
err_channeldata
in
err_channeldata_dict
.
items
():
self
.
_push_to_output_channels
(
data
=
err
or
_channeldata
,
data
=
err_channeldata
,
channels
=
output_channels
,
client_need_profile
=
need_profile_dict
[
data_id
],
profile_set
=
profile_dict
[
data_id
])
...
...
@@ -627,8 +695,25 @@ class Op(object):
self
.
_finalize
(
is_thread_op
)
break
end
=
int
(
round
(
_time
()
*
1000000
))
out_time
=
end
-
start
if
trace_buffer
is
not
None
:
trace_buffer
.
put
((
self
.
name
,
"out"
,
True
,
end
-
start
))
trace_que
.
append
({
"name"
:
self
.
name
,
"actions"
:
{
"in"
:
in_time
,
"prep"
:
prep_time
,
"midp"
:
midp_time
,
"postp"
:
postp_time
,
"out"
:
out_time
,
}
})
while
trace_que
:
info
=
trace_que
[
0
]
try
:
trace_buffer
.
put_nowait
(
info
)
trace_que
.
popleft
()
except
Queue
.
Full
:
break
def
_initialize
(
self
,
is_thread_op
,
client_type
,
concurrency_idx
):
if
is_thread_op
:
...
...
@@ -718,7 +803,7 @@ class ResponseOp(Op):
feed
=
channeldata
.
parse
()
# ndarray to string:
# https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
np
.
set_printoptions
(
threshold
=
np
.
nan
)
np
.
set_printoptions
(
threshold
=
sys
.
maxsize
)
for
name
,
var
in
feed
.
items
():
resp
.
value
.
append
(
var
.
__repr__
())
resp
.
key
.
append
(
name
)
...
...
python/pipeline/pipeline_client.py
浏览文件 @
05e74bdd
...
...
@@ -22,7 +22,7 @@ from .channel import ChannelDataEcode
from
.proto
import
pipeline_service_pb2
from
.proto
import
pipeline_service_pb2_grpc
_LOGGER
=
logging
.
getLogger
(
"pipeline.pipeline_client"
)
_LOGGER
=
logging
.
getLogger
(
__name__
)
class
PipelineClient
(
object
):
...
...
python/pipeline/pipeline_server.py
浏览文件 @
05e74bdd
...
...
@@ -26,14 +26,14 @@ from .proto import pipeline_service_pb2_grpc
from
.operator
import
ResponseOp
from
.dag
import
DAGExecutor
_LOGGER
=
logging
.
getLogger
(
"pipeline.pipeline_server"
)
_LOGGER
=
logging
.
getLogger
(
__name__
)
class
PipelineServicer
(
pipeline_service_pb2_grpc
.
PipelineServiceServicer
):
def
__init__
(
self
,
response_op
,
dag_conf
):
def
__init__
(
self
,
response_op
,
dag_conf
,
worker_idx
=-
1
):
super
(
PipelineServicer
,
self
).
__init__
()
# init dag executor
self
.
_dag_executor
=
DAGExecutor
(
response_op
,
dag_conf
)
self
.
_dag_executor
=
DAGExecutor
(
response_op
,
dag_conf
,
worker_idx
)
self
.
_dag_executor
.
start
()
_LOGGER
.
info
(
"[PipelineServicer] succ init"
)
...
...
@@ -92,8 +92,9 @@ class PipelineServer(object):
json
.
dumps
(
conf
,
indent
=
4
,
separators
=
(
','
,
':'
))))
if
self
.
_build_dag_each_worker
is
True
:
_LOGGER
.
info
(
"(Make sure that install grpcio whl with --no-binary flag)"
)
_LOGGER
.
warning
(
"(Make sure that install grpcio whl with --no-binary flag: "
"pip install grpcio --no-binary grpcio)"
)
_LOGGER
.
info
(
"-------------------------------------------"
)
self
.
_conf
=
conf
...
...
@@ -107,27 +108,31 @@ class PipelineServer(object):
show_info
=
(
i
==
0
)
worker
=
multiprocessing
.
Process
(
target
=
self
.
_run_server_func
,
args
=
(
bind_address
,
self
.
_response_op
,
self
.
_conf
))
args
=
(
bind_address
,
self
.
_response_op
,
self
.
_conf
,
i
))
worker
.
start
()
workers
.
append
(
worker
)
for
worker
in
workers
:
worker
.
join
()
else
:
server
=
grpc
.
server
(
futures
.
ThreadPoolExecutor
(
max_workers
=
self
.
_worker_num
))
futures
.
ThreadPoolExecutor
(
max_workers
=
self
.
_worker_num
),
options
=
[(
'grpc.max_send_message_length'
,
256
*
1024
*
1024
),
(
'grpc.max_receive_message_length'
,
256
*
1024
*
1024
)])
pipeline_service_pb2_grpc
.
add_PipelineServiceServicer_to_server
(
PipelineServicer
(
self
.
_response_op
,
self
.
_conf
),
server
)
server
.
add_insecure_port
(
'[::]:{}'
.
format
(
self
.
_port
))
server
.
start
()
server
.
wait_for_termination
()
def
_run_server_func
(
self
,
bind_address
,
response_op
,
dag_conf
):
options
=
((
'grpc.so_reuseport'
,
1
),
)
def
_run_server_func
(
self
,
bind_address
,
response_op
,
dag_conf
,
worker_idx
):
options
=
[(
'grpc.so_reuseport'
,
1
),
(
'grpc.max_send_message_length'
,
256
*
1024
*
1024
),
(
'grpc.max_send_message_length'
,
256
*
1024
*
1024
)]
server
=
grpc
.
server
(
futures
.
ThreadPoolExecutor
(
max_workers
=
1
,
),
options
=
options
)
pipeline_service_pb2_grpc
.
add_PipelineServiceServicer_to_server
(
PipelineServicer
(
response_op
,
dag_conf
),
server
)
PipelineServicer
(
response_op
,
dag_conf
,
worker_idx
),
server
)
server
.
add_insecure_port
(
bind_address
)
server
.
start
()
server
.
wait_for_termination
()
...
...
@@ -177,7 +182,7 @@ class ServerYamlConfChecker(object):
@
staticmethod
def
check_tracer_conf
(
conf
):
default_conf
=
{
"interval_s"
:
600
,
}
default_conf
=
{
"interval_s"
:
-
1
,
}
conf_type
=
{
"interval_s"
:
int
,
}
...
...
python/pipeline/profiler.py
浏览文件 @
05e74bdd
...
...
@@ -27,7 +27,8 @@ import time
import
threading
import
multiprocessing
_TRACER
=
logging
.
getLogger
(
"pipeline.profiler"
)
_LOGGER
=
logging
.
getLogger
(
__name__
)
_LOGGER
.
propagate
=
False
class
PerformanceTracer
(
object
):
...
...
@@ -67,23 +68,32 @@ class PerformanceTracer(object):
self
.
_channels
=
channels
def
_trace_func
(
self
,
channels
):
actions
=
[
"in"
,
"prep"
,
"midp"
,
"postp"
,
"out"
]
a
ll_a
ctions
=
[
"in"
,
"prep"
,
"midp"
,
"postp"
,
"out"
]
calcu_actions
=
[
"prep"
,
"midp"
,
"postp"
]
while
True
:
op_cost
=
{}
err_request
=
[]
err_count
=
0
_
TRAC
ER
.
info
(
"==================== TRACER ======================"
)
_
LOGG
ER
.
info
(
"==================== TRACER ======================"
)
# op
while
True
:
try
:
name
,
action
,
stage
,
cost
=
self
.
_data_buffer
.
get_nowait
()
if
stage
==
False
:
# only for name == DAG
assert
name
==
"DAG"
item
=
self
.
_data_buffer
.
get_nowait
()
name
=
item
[
"name"
]
actions
=
item
[
"actions"
]
if
name
==
"DAG"
:
succ
=
item
[
"succ"
]
req_id
=
item
[
"id"
]
if
not
succ
:
err_count
+=
1
err_request
.
append
(
req_id
)
if
name
not
in
op_cost
:
op_cost
[
name
]
=
{}
for
action
,
cost
in
actions
.
items
():
if
action
not
in
op_cost
[
name
]:
op_cost
[
name
][
action
]
=
[]
op_cost
[
name
][
action
].
append
(
cost
)
...
...
@@ -98,15 +108,15 @@ class PerformanceTracer(object):
tot_cost
+=
op_cost
[
name
][
action
]
if
name
!=
"DAG"
:
_
TRAC
ER
.
info
(
"Op({}):"
.
format
(
name
))
for
action
in
actions
:
_
LOGG
ER
.
info
(
"Op({}):"
.
format
(
name
))
for
action
in
a
ll_a
ctions
:
if
action
in
op_cost
[
name
]:
_
TRAC
ER
.
info
(
"
\t
{}[{} ms]"
.
format
(
_
LOGG
ER
.
info
(
"
\t
{}[{} ms]"
.
format
(
action
,
op_cost
[
name
][
action
]))
for
action
in
calcu_actions
:
if
action
in
op_cost
[
name
]:
calcu_cost
+=
op_cost
[
name
][
action
]
_
TRAC
ER
.
info
(
"
\t
idle[{}]"
.
format
(
1
-
1.0
*
calcu_cost
/
_
LOGG
ER
.
info
(
"
\t
idle[{}]"
.
format
(
1
-
1.0
*
calcu_cost
/
tot_cost
))
if
"DAG"
in
op_cost
:
...
...
@@ -116,21 +126,22 @@ class PerformanceTracer(object):
qps
=
1.0
*
tot
/
self
.
_interval_s
ave_cost
=
sum
(
calls
)
/
tot
latencys
=
[
50
,
60
,
70
,
80
,
90
,
95
,
99
]
_TRACER
.
info
(
"DAGExecutor:"
)
_TRACER
.
info
(
"
\t
query count[{}]"
.
format
(
tot
))
_TRACER
.
info
(
"
\t
qps[{} q/s]"
.
format
(
qps
))
_TRACER
.
info
(
"
\t
succ[{}]"
.
format
(
1
-
1.0
*
err_count
/
tot
))
_TRACER
.
info
(
"
\t
latency:"
)
_TRACER
.
info
(
"
\t\t
ave[{} ms]"
.
format
(
ave_cost
))
_LOGGER
.
info
(
"DAGExecutor:"
)
_LOGGER
.
info
(
"
\t
Query count[{}]"
.
format
(
tot
))
_LOGGER
.
info
(
"
\t
QPS[{} q/s]"
.
format
(
qps
))
_LOGGER
.
info
(
"
\t
Succ[{}]"
.
format
(
1
-
1.0
*
err_count
/
tot
))
_LOGGER
.
info
(
"
\t
Error req[{}]"
.
format
(
", "
.
join
([
str
(
x
)
for
x
in
err_request
)]))
_LOGGER
.
info
(
"
\t
Latency:"
)
_LOGGER
.
info
(
"
\t\t
ave[{} ms]"
.
format
(
ave_cost
))
for
latency
in
latencys
:
_
TRAC
ER
.
info
(
"
\t\t
.{}[{} ms]"
.
format
(
latency
,
calls
[
int
(
_
LOGG
ER
.
info
(
"
\t\t
.{}[{} ms]"
.
format
(
latency
,
calls
[
int
(
tot
*
latency
/
100.0
)]))
# channel
_
TRAC
ER
.
info
(
"Channel (server worker num[{}]):"
.
format
(
_
LOGG
ER
.
info
(
"Channel (server worker num[{}]):"
.
format
(
self
.
_server_worker_num
))
for
channel
in
channels
:
_
TRAC
ER
.
info
(
"
\t
{}(In: {}, Out: {}) size[{}/{}]"
.
format
(
_
LOGG
ER
.
info
(
"
\t
{}(In: {}, Out: {}) size[{}/{}]"
.
format
(
channel
.
name
,
channel
.
get_producers
(),
channel
.
get_consumers
(),
...
...
python/pipeline/util.py
浏览文件 @
05e74bdd
...
...
@@ -13,13 +13,101 @@
# limitations under the License.
import
sys
import
logging
import
threading
import
multiprocessing
import
multiprocessing.managers
if
sys
.
version_info
.
major
==
2
:
import
Queue
from
Queue
import
PriorityQueue
elif
sys
.
version_info
.
major
==
3
:
import
queue
as
Queue
from
queue
import
PriorityQueue
else
:
raise
Exception
(
"Error Python version"
)
_LOGGER
=
logging
.
getLogger
(
__name__
)
class
NameGenerator
(
object
):
# use unsafe-id-generator
def
__init__
(
self
,
prefix
):
self
.
_idx
=
-
1
self
.
_prefix
=
prefix
self
.
_id_generator
=
UnsafeIdGenerator
(
1000000000000000000
)
def
next
(
self
):
next_id
=
self
.
_id_generator
.
next
()
return
"{}{}"
.
format
(
self
.
_prefix
,
next_id
)
class
UnsafeIdGenerator
(
object
):
def
__init__
(
self
,
max_id
,
base_counter
=
0
,
step
=
1
):
self
.
_base_counter
=
base_counter
self
.
_counter
=
self
.
_base_counter
self
.
_step
=
step
self
.
_max_id
=
max_id
# for reset
def
next
(
self
):
if
self
.
_counter
>=
self
.
_max_id
:
self
.
_counter
=
self
.
_base_counter
_LOGGER
.
info
(
"Reset Id: {}"
.
format
(
self
.
_counter
))
next_id
=
self
.
_counter
self
.
_counter
+=
self
.
_step
return
next_id
class
ThreadIdGenerator
(
UnsafeIdGenerator
):
def
__init__
(
self
,
max_id
,
base_counter
=
0
,
step
=
1
,
lock
=
None
):
# if you want to use your lock, you may need to use Reentrant-Lock
self
.
_lock
=
lock
if
self
.
_lock
is
None
:
self
.
_lock
=
threading
.
Lock
()
super
(
ThreadIdGenerator
,
self
).
__init__
(
max_id
,
base_counter
,
step
)
def
next
(
self
):
self
.
_idx
+=
1
return
"{}{}"
.
format
(
self
.
_prefix
,
self
.
_idx
)
next_id
=
None
with
self
.
_lock
:
if
self
.
_counter
>=
self
.
_max_id
:
self
.
_counter
=
self
.
_base_counter
_LOGGER
.
info
(
"Reset Id: {}"
.
format
(
self
.
_counter
))
next_id
=
self
.
_counter
self
.
_counter
+=
self
.
_step
return
next_id
class
ProcessIdGenerator
(
UnsafeIdGenerator
):
def
__init__
(
self
,
max_id
,
base_counter
=
0
,
step
=
1
,
lock
=
None
):
# if you want to use your lock, you may need to use Reentrant-Lock
self
.
_lock
=
lock
if
self
.
_lock
is
None
:
self
.
_lock
=
multiprocessing
.
Lock
()
self
.
_base_counter
=
base_counter
self
.
_counter
=
multiprocessing
.
Manager
().
Value
(
'i'
,
0
)
self
.
_step
=
step
self
.
_max_id
=
max_id
def
next
(
self
):
next_id
=
None
with
self
.
_lock
:
if
self
.
_counter
.
value
>=
self
.
_max_id
:
self
.
_counter
.
value
=
self
.
_base_counter
_LOGGER
.
info
(
"Reset Id: {}"
.
format
(
self
.
_counter
.
value
))
next_id
=
self
.
_counter
.
value
self
.
_counter
.
value
+=
self
.
_step
return
next_id
def
PipelineProcSyncManager
():
"""
add PriorityQueue into SyncManager, see more:
https://stackoverflow.com/questions/25324560/strange-queue-priorityqueue-behaviour-with-multiprocessing-in-python-2-7-6?answertab=active#tab-top
"""
class
PipelineManager
(
multiprocessing
.
managers
.
SyncManager
):
pass
PipelineManager
.
register
(
"PriorityQueue"
,
PriorityQueue
)
m
=
PipelineManager
()
m
.
start
()
return
m
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录