general_infer_op.cpp 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_infer_op.h"
16 17 18 19 20 21 22
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
23
#include "core/util/include/timer.h"
24 25 26 27 28

namespace baidu {
namespace paddle_serving {
namespace serving {

29
using baidu::paddle_serving::Timer;
30 31 32
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
33
using baidu::paddle_serving::predictor::general_model::Request;
34 35
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
36
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
37 38

int GeneralInferOp::inference() {
39
  VLOG(2) << "Going to run inference";
B
barrierye 已提交
40
  const std::vector<std::string> pre_node_names = pre_names();
B
barrierye 已提交
41
  if (pre_node_names.size() != 1) {
B
barrierye 已提交
42 43 44
    LOG(ERROR) << "This op(" << op_name()
               << ") can only have one predecessor op, but received "
               << pre_node_names.size();
B
barrierye 已提交
45 46 47
    return -1;
  }
  const std::string pre_name = pre_node_names[0];
B
barrierye 已提交
48

B
barrierye 已提交
49
  const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
B
barriery 已提交
50 51
  uint64_t log_id = input_blob->GetLogId();
  VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
B
barrierye 已提交
52
  GeneralBlob *output_blob = mutable_data<GeneralBlob>();
B
barriery 已提交
53
  output_blob->SetLogId(log_id);
B
barrierye 已提交
54

B
barrierye 已提交
55
  if (!input_blob) {
B
barriery 已提交
56 57
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed mutable depended argument, op:" << pre_name;
B
barrierye 已提交
58
    return -1;
B
barrierye 已提交
59
  }
60

B
barrierye 已提交
61 62 63
  const TensorVector *in = &input_blob->tensor_vector;
  TensorVector *out = &output_blob->tensor_vector;
  int batch_size = input_blob->GetBatchSize();
B
barriery 已提交
64
  VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;
65

B
barrierye 已提交
66
  output_blob->SetBatchSize(batch_size);
M
MRXLT 已提交
67

B
barriery 已提交
68
  VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
B
barrierye 已提交
69

70
  Timer timeline;
G
guru4elephant 已提交
71
  int64_t start = timeline.TimeStampUS();
72
  timeline.Start();
M
MRXLT 已提交
73

B
barrierye 已提交
74 75
  if (InferManager::instance().infer(
          engine_name().c_str(), in, out, batch_size)) {
B
barriery 已提交
76 77
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed do infer in fluid model: " << engine_name().c_str();
78 79
    return -1;
  }
G
guru4elephant 已提交
80

G
guru4elephant 已提交
81 82 83 84
  int64_t end = timeline.TimeStampUS();
  CopyBlobInfo(input_blob, output_blob);
  AddBlobInfo(output_blob, start);
  AddBlobInfo(output_blob, end);
85 86 87 88 89 90 91
  return 0;
}
DEFINE_OP(GeneralInferOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu