benchmark.py 3.9 KB
Newer Older
H
HexToString 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

from __future__ import unicode_literals, absolute_import
import os
import sys
import time
import json
import requests
import numpy as np
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args, show_latency
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop
from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize

args = benchmark_args()


def single_func(idx, resource):
    total_number = 0
    profile_flags = False
    latency_flags = False
    if os.getenv("FLAGS_profile_client"):
        profile_flags = True
    if os.getenv("FLAGS_serving_latency"):
        latency_flags = True
        latency_list = []

    if args.request == "rpc":
        client = Client()
        client.load_client_config(args.model)
        client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
        start = time.time()
        for i in range(turns):
            if args.batch_size >= 1:
                l_start = time.time()
                seq = Sequential([
                    File2Image(), Resize(256), CenterCrop(224), RGB2BGR(),
                    Transpose((2, 0, 1)), Div(255), Normalize(
                        [0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
                ])
                image_file = "daisy.jpg"
                img = seq(image_file)
H
HexToString 已提交
59 60 61
                feed_data = np.array(img)
                feed_data = np.expand_dims(feed_data, 0).repeat(
                    args.batch_size, axis=0)
H
HexToString 已提交
62
                result = client.predict(
H
HexToString 已提交
63 64 65
                    feed={"image": feed_data},
                    fetch=["save_infer_model/scale_0.tmp_0"],
                    batch=True)
H
HexToString 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                l_end = time.time()
                if latency_flags:
                    latency_list.append(l_end * 1000 - l_start * 1000)
                total_number = total_number + 1
            else:
                print("unsupport batch size {}".format(args.batch_size))

    else:
        raise ValueError("not implemented {} request".format(args.request))
    end = time.time()
    if latency_flags:
        return [[end - start], latency_list, [total_number]]
    else:
        return [[end - start]]


if __name__ == '__main__':
    multi_thread_runner = MultiThreadRunner()
    endpoint_list = ["127.0.0.1:9393"]
    turns = 1
    start = time.time()
    result = multi_thread_runner.run(
        single_func, args.thread, {"endpoint": endpoint_list,
                                   "turns": turns})
    end = time.time()
    total_cost = end - start
    total_number = 0
    avg_cost = 0
    for i in range(args.thread):
        avg_cost += result[0][i]
        total_number += result[2][i]
    avg_cost = avg_cost / args.thread

    print("total cost-include init: {}s".format(total_cost))
    print("each thread cost: {}s. ".format(avg_cost))
    print("qps: {}samples/s".format(args.batch_size * total_number / (
        avg_cost * args.thread)))
H
HexToString 已提交
103 104
    print("qps(request): {}samples/s".format(total_number / (avg_cost *
                                                             args.thread)))
H
HexToString 已提交
105 106 107
    print("total count: {} ".format(total_number))
    if os.getenv("FLAGS_serving_latency"):
        show_latency(result[1])