infer.h 27.2 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
W
wangguibao 已提交
16
#include <sys/stat.h>
W
wangguibao 已提交
17
#include <sys/types.h>
W
wangguibao 已提交
18
#include <unistd.h>
W
wangguibao 已提交
19
#include <string>
M
MRXLT 已提交
20
#include <utility>
W
wangguibao 已提交
21
#include <vector>
G
guru4elephant 已提交
22 23 24 25
#include "core/predictor/common/inner_common.h"
#include "core/predictor/framework/bsf.h"
#include "core/predictor/framework/factory.h"
#include "core/predictor/framework/infer_data.h"
W
wangguibao 已提交
26 27 28 29 30

namespace baidu {
namespace paddle_serving {
namespace predictor {

W
wangguibao 已提交
31 32
using configure::ModelToolkitConf;

33 34 35 36 37
class InferEngineCreationParams {
 public:
  InferEngineCreationParams() {
    _path = "";
    _enable_memory_optimization = false;
M
MRXLT 已提交
38
    _enable_ir_optimization = false;
39 40 41 42 43 44 45 46 47 48
    _static_optimization = false;
    _force_update_static_cache = false;
  }

  void set_path(const std::string& path) { _path = path; }

  void set_enable_memory_optimization(bool enable_memory_optimization) {
    _enable_memory_optimization = enable_memory_optimization;
  }

M
MRXLT 已提交
49 50 51 52
  void set_enable_ir_optimization(bool enable_ir_optimization) {
    _enable_ir_optimization = enable_ir_optimization;
  }

53 54 55 56
  bool enable_memory_optimization() const {
    return _enable_memory_optimization;
  }

M
MRXLT 已提交
57 58
  bool enable_ir_optimization() const { return _enable_ir_optimization; }

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  void set_static_optimization(bool static_optimization = false) {
    _static_optimization = static_optimization;
  }

  void set_force_update_static_cache(bool force_update_static_cache = false) {
    _force_update_static_cache = force_update_static_cache;
  }

  bool static_optimization() const { return _static_optimization; }

  bool force_update_static_cache() const { return _force_update_static_cache; }

  std::string get_path() const { return _path; }

  void dump() const {
    LOG(INFO) << "InferEngineCreationParams: "
              << "model_path = " << _path << ", "
              << "enable_memory_optimization = " << _enable_memory_optimization
              << ", "
M
MRXLT 已提交
78
              << "enable_ir_optimization = " << _enable_ir_optimization << ", "
79 80 81 82 83 84 85
              << "static_optimization = " << _static_optimization << ", "
              << "force_update_static_cache = " << _force_update_static_cache;
  }

 private:
  std::string _path;
  bool _enable_memory_optimization;
M
MRXLT 已提交
86
  bool _enable_ir_optimization;
87 88 89 90
  bool _static_optimization;
  bool _force_update_static_cache;
};

W
wangguibao 已提交
91
class InferEngine {
W
wangguibao 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
 public:
  virtual ~InferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    return proc_initialize_impl(conf, version);
  }
  virtual int proc_finalize() { return proc_finalize_impl(); }
  virtual int thrd_initialize() { return thrd_initialize_impl(); }
  virtual int thrd_clear() { return thrd_clear_impl(); }
  virtual int thrd_finalize() { return thrd_finalize_impl(); }
  virtual int infer(const void* in, void* out, uint32_t batch_size = -1) {
    return infer_impl1(in, out, batch_size);
  }

  virtual int reload() = 0;

  virtual uint64_t version() const = 0;

  // begin: framework inner call
  virtual int proc_initialize_impl(const configure::EngineDesc& conf,
                                   bool version) = 0;
  virtual int thrd_initialize_impl() = 0;
  virtual int thrd_finalize_impl() = 0;
  virtual int thrd_clear_impl() = 0;
  virtual int proc_finalize_impl() = 0;
  virtual int infer_impl1(const void* in,
                          void* out,
                          uint32_t batch_size = -1) = 0;
  virtual int infer_impl2(const BatchTensor& in,
                          BatchTensor& out) = 0;  // NOLINT
  // end: framework inner call
};

class ReloadableInferEngine : public InferEngine {
 public:
  virtual ~ReloadableInferEngine() {}
W
wangguibao 已提交
128

W
wangguibao 已提交
129 130 131 132 133
  union last_check_status {
    time_t last_timestamp;
    uint64_t last_md5sum;
    uint64_t last_revision;
  };
W
wangguibao 已提交
134

W
wangguibao 已提交
135 136
  typedef im::bsf::Task<Tensor, Tensor> TaskT;

137
  virtual int load(const InferEngineCreationParams& params) = 0;
W
wangguibao 已提交
138 139 140 141 142 143 144 145

  int proc_initialize_impl(const configure::EngineDesc& conf, bool version) {
    _reload_tag_file = conf.reloadable_meta();
    _reload_mode_tag = conf.reloadable_type();
    _model_data_path = conf.model_data_path();
    _infer_thread_num = conf.runtime_thread_num();
    _infer_batch_size = conf.batch_infer_size();
    _infer_batch_align = conf.enable_batch_align();
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

    bool enable_memory_optimization = false;
    if (conf.has_enable_memory_optimization()) {
      enable_memory_optimization = conf.enable_memory_optimization();
    }

    bool static_optimization = false;
    if (conf.has_static_optimization()) {
      static_optimization = conf.static_optimization();
    }

    bool force_update_static_cache = false;
    if (conf.has_force_update_static_cache()) {
      force_update_static_cache = conf.force_update_static_cache();
    }

M
MRXLT 已提交
162 163 164 165 166
    if (conf.has_enable_ir_optimization()) {
      _infer_engine_params.set_enable_ir_optimization(
          conf.enable_ir_optimization());
    }

167 168 169 170 171 172 173 174 175
    _infer_engine_params.set_path(_model_data_path);
    if (enable_memory_optimization) {
      _infer_engine_params.set_enable_memory_optimization(true);
      _infer_engine_params.set_static_optimization(static_optimization);
      _infer_engine_params.set_force_update_static_cache(
          force_update_static_cache);
    }

    if (!check_need_reload() || load(_infer_engine_params) != 0) {
W
wangguibao 已提交
176 177
      LOG(ERROR) << "Failed load model_data_path" << _model_data_path;
      return -1;
W
wangguibao 已提交
178
    }
W
wangguibao 已提交
179 180 181 182

    if (parse_version_info(conf, version) != 0) {
      LOG(ERROR) << "Failed parse version info";
      return -1;
W
wangguibao 已提交
183
    }
W
wangguibao 已提交
184 185 186 187 188 189 190 191 192

    LOG(WARNING) << "Succ load model_data_path" << _model_data_path;
    return 0;
  }

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    if (proc_initialize_impl(conf, version) != 0) {
      LOG(ERROR) << "Failed proc initialize impl";
      return -1;
W
wangguibao 已提交
193
    }
W
wangguibao 已提交
194 195 196 197

    // init bsf framework
    if (_infer_thread_num <= 0) {
      return 0;
W
wangguibao 已提交
198
    }
W
wangguibao 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212

    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_init_fn(
        boost::bind(&InferEngine::thrd_initialize_impl, this));
    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_reset_fn(
        boost::bind(&InferEngine::thrd_clear_impl, this));
    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_callback_fn(
        boost::bind(&InferEngine::infer_impl2, this, _1, _2));
    im::bsf::TaskExecutor<TaskT>::instance()->set_batch_size(_infer_batch_size);
    im::bsf::TaskExecutor<TaskT>::instance()->set_batch_align(
        _infer_batch_align);
    if (im::bsf::TaskExecutor<TaskT>::instance()->start(_infer_thread_num) !=
        0) {
      LOG(ERROR) << "Failed start bsf executor, threads:" << _infer_thread_num;
      return -1;
W
wangguibao 已提交
213 214
    }

W
wangguibao 已提交
215 216 217
    LOG(WARNING) << "Enable batch schedule framework, thread_num:"
                 << _infer_thread_num << ", batch_size:" << _infer_batch_size
                 << ", enable_batch_align:" << _infer_batch_align;
W
wangguibao 已提交
218

W
wangguibao 已提交
219 220
    return 0;
  }
W
wangguibao 已提交
221

W
wangguibao 已提交
222 223 224 225
  int infer(const void* in, void* out, uint32_t batch_size = -1) {
    if (_infer_thread_num <= 0) {
      return infer_impl1(in, out, batch_size);
    }
W
wangguibao 已提交
226

W
wangguibao 已提交
227 228 229 230 231 232
    im::bsf::TaskManager<Tensor, Tensor> task_manager;
    task_manager.schedule(*(reinterpret_cast<const BatchTensor*>(in)),
                          *(reinterpret_cast<BatchTensor*>(out)));
    task_manager.wait();
    return 0;
  }
W
wangguibao 已提交
233

W
wangguibao 已提交
234 235 236 237
  int thrd_initialize() {
    if (_infer_thread_num > 0) {
      return 0;
    }
W
wangguibao 已提交
238

W
wangguibao 已提交
239 240
    return thrd_initialize_impl();
  }
W
wangguibao 已提交
241

W
wangguibao 已提交
242 243 244 245
  int thrd_clear() {
    if (_infer_thread_num > 0) {
      return 0;
    }
W
wangguibao 已提交
246

W
wangguibao 已提交
247 248
    return thrd_clear_impl();
  }
W
wangguibao 已提交
249

W
wangguibao 已提交
250 251 252 253 254
  int proc_finalize() {
    if (proc_finalize_impl() != 0) {
      LOG(ERROR) << "Failed proc finalize impl";
      return -1;
    }
W
wangguibao 已提交
255

W
wangguibao 已提交
256 257
    if (_infer_thread_num > 0) {
      im::bsf::TaskExecutor<TaskT>::instance()->stop();
W
wangguibao 已提交
258 259
    }

W
wangguibao 已提交
260 261
    return 0;
  }
W
wangguibao 已提交
262

W
wangguibao 已提交
263 264 265
  int reload() {
    if (check_need_reload()) {
      LOG(WARNING) << "begin reload model[" << _model_data_path << "].";
266
      return load(_infer_engine_params);
W
wangguibao 已提交
267 268 269 270 271 272 273
    }
    return 0;
  }

  uint64_t version() const { return _version; }

  uint32_t thread_num() const { return _infer_thread_num; }
W
wangguibao 已提交
274

W
wangguibao 已提交
275 276 277 278 279
 private:
  int parse_version_info(const configure::EngineDesc& config, bool version) {
    _version = uint64_t(-1);
    return 0;
  }
W
wangguibao 已提交
280

W
wangguibao 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  bool check_need_reload() {
    if (_reload_mode_tag == "timestamp_ne") {
      return check_timestamp_ne();
    } else if (_reload_mode_tag == "timestamp_gt") {
      return check_timestamp_gt();
    } else if (_reload_mode_tag == "md5sum") {
      return check_md5sum();
    } else if (_reload_mode_tag == "revision") {
      return check_revision();
    } else if (_reload_mode_tag == "none") {
      return false;
    } else {
      LOG(ERROR) << "Not support check type: " << _reload_mode_tag;
      return false;
    }
  }

  bool check_timestamp_ne() {
    struct stat st;
    if (stat(_reload_tag_file.c_str(), &st) != 0) {
      LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
      return false;
    }
W
wangguibao 已提交
304

W
wangguibao 已提交
305 306 307
    if ((st.st_mode & S_IFREG) && st.st_mtime != _last_status.last_timestamp) {
      _last_status.last_timestamp = st.st_mtime;
      return true;
W
wangguibao 已提交
308 309
    }

W
wangguibao 已提交
310 311
    return false;
  }
W
wangguibao 已提交
312

W
wangguibao 已提交
313 314 315 316 317 318
  bool check_timestamp_gt() {
    struct stat st;
    if (stat(_reload_tag_file.c_str(), &st) != 0) {
      LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
      return false;
    }
W
wangguibao 已提交
319

W
wangguibao 已提交
320 321 322
    if ((st.st_mode & S_IFREG) && st.st_mtime > _last_status.last_timestamp) {
      _last_status.last_timestamp = st.st_mtime;
      return true;
W
wangguibao 已提交
323 324
    }

W
wangguibao 已提交
325 326 327 328 329 330 331 332 333
    return false;
  }

  bool check_md5sum() { return false; }

  bool check_revision() { return false; }

 protected:
  std::string _model_data_path;
334
  InferEngineCreationParams _infer_engine_params;
W
wangguibao 已提交
335 336 337 338 339 340 341 342 343 344

 private:
  std::string _reload_tag_file;
  std::string _reload_mode_tag;
  last_check_status _last_status;
  uint32_t _infer_thread_num;
  uint32_t _infer_batch_size;
  bool _infer_batch_align;
  uint64_t _version;
};
W
wangguibao 已提交
345

W
wangguibao 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
template <typename EngineCore>
struct ModelData {
  ModelData() : current_idx(1) {
    cores[0] = NULL;
    cores[1] = NULL;
  }

  ~ModelData() {
    delete cores[0];
    delete cores[1];
  }

  EngineCore* cores[2];
  uint32_t current_idx;
};

template <typename EngineCore>
class DBReloadableInferEngine : public ReloadableInferEngine {
 public:
  virtual ~DBReloadableInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    THREAD_KEY_CREATE(&_skey, NULL);
    THREAD_MUTEX_INIT(&_mutex, NULL);
    return ReloadableInferEngine::proc_initialize(conf, version);
  }

373
  virtual int load(const InferEngineCreationParams& params) {
W
wangguibao 已提交
374 375
    if (_reload_vec.empty()) {
      return 0;
W
wangguibao 已提交
376 377
    }

W
wangguibao 已提交
378
    for (uint32_t ti = 0; ti < _reload_vec.size(); ++ti) {
379
      if (load_data(_reload_vec[ti], params) != 0) {
W
wangguibao 已提交
380 381 382 383 384
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
    }

385
    LOG(WARNING) << "Succ load engine, path: " << params.get_path();
W
wangguibao 已提交
386

W
wangguibao 已提交
387 388
    return 0;
  }
W
wangguibao 已提交
389

390 391
  int load_data(ModelData<EngineCore>* md,
                const InferEngineCreationParams& params) {
W
wangguibao 已提交
392 393 394
    uint32_t next_idx = (md->current_idx + 1) % 2;
    if (md->cores[next_idx]) {
      delete md->cores[next_idx];
W
wangguibao 已提交
395 396
    }

W
wangguibao 已提交
397
    md->cores[next_idx] = new (std::nothrow) EngineCore;
398 399 400 401

    params.dump();
    if (!md->cores[next_idx] || md->cores[next_idx]->create(params) != 0) {
      LOG(ERROR) << "Failed create model, path: " << params.get_path();
W
wangguibao 已提交
402
      return -1;
W
wangguibao 已提交
403
    }
W
wangguibao 已提交
404 405 406
    md->current_idx = next_idx;
    return 0;
  }
W
wangguibao 已提交
407

W
wangguibao 已提交
408 409 410 411 412
  virtual int thrd_initialize_impl() {
    // memory pool to be inited in non-serving-threads
    if (MempoolWrapper::instance().thread_initialize() != 0) {
      LOG(ERROR) << "Failed thread initialize mempool";
      return -1;
W
wangguibao 已提交
413 414
    }

W
wangguibao 已提交
415
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
416 417 418
    if (!md || load_data(md, _infer_engine_params) != 0) {
      LOG(ERROR) << "Failed create thread data from "
                 << _infer_engine_params.get_path();
W
wangguibao 已提交
419
      return -1;
W
wangguibao 已提交
420 421
    }

W
wangguibao 已提交
422 423 424 425 426 427 428 429 430 431 432
    THREAD_SETSPECIFIC(_skey, md);
    im::bsf::AutoMutex lock(_mutex);
    _reload_vec.push_back(md);
    return 0;
  }

  int thrd_clear_impl() {
    // for non-serving-threads
    if (MempoolWrapper::instance().thread_clear() != 0) {
      LOG(ERROR) << "Failed thread clear mempool";
      return -1;
W
wangguibao 已提交
433
    }
W
wangguibao 已提交
434 435 436 437
    return 0;
  }

  int thrd_finalize_impl() { return 0; }
W
wangguibao 已提交
438

W
wangguibao 已提交
439 440 441 442 443
  int proc_finalize_impl() {
    THREAD_KEY_DELETE(_skey);
    THREAD_MUTEX_DESTROY(&_mutex);
    return 0;
  }
W
wangguibao 已提交
444

W
wangguibao 已提交
445 446 447 448 449 450
  EngineCore* get_core() {
    ModelData<EngineCore>* md =
        (ModelData<EngineCore>*)THREAD_GETSPECIFIC(_skey);
    if (!md) {
      LOG(ERROR) << "Failed get thread specific data";
      return NULL;
W
wangguibao 已提交
451
    }
W
wangguibao 已提交
452 453
    return md->cores[md->current_idx];
  }
W
wangguibao 已提交
454

W
wangguibao 已提交
455 456 457 458
 protected:
  THREAD_KEY_T _skey;
  THREAD_MUTEX_T _mutex;
  std::vector<ModelData<EngineCore>*> _reload_vec;
W
wangguibao 已提交
459

W
wangguibao 已提交
460 461
 private:
};
W
wangguibao 已提交
462

W
wangguibao 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
// 多个EngineCore共用同一份模型数据
template <typename EngineCore>
class CloneDBReloadableInferEngine
    : public DBReloadableInferEngine<EngineCore> {
 public:
  virtual ~CloneDBReloadableInferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    _pd = new (std::nothrow) ModelData<EngineCore>;
    if (!_pd) {
      LOG(ERROR) << "Failed to allocate for ProcData";
      return -1;
    }
    return DBReloadableInferEngine<EngineCore>::proc_initialize(conf, version);
  }

479
  virtual int load(const InferEngineCreationParams& params) {
W
wangguibao 已提交
480 481
    // 加载进程级模型数据
    if (!_pd ||
482 483
        DBReloadableInferEngine<EngineCore>::load_data(_pd, params) != 0) {
      LOG(ERROR) << "Failed to create common model from [" << params.get_path()
W
wangguibao 已提交
484 485 486 487
                 << "].";
      return -1;
    }
    LOG(WARNING) << "Succ load common model[" << _pd->cores[_pd->current_idx]
488
                 << "], path[" << params.get_path() << "].";
W
wangguibao 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501

    if (DBReloadableInferEngine<EngineCore>::_reload_vec.empty()) {
      return 0;
    }

    for (uint32_t ti = 0;
         ti < DBReloadableInferEngine<EngineCore>::_reload_vec.size();
         ++ti) {
      if (load_data(DBReloadableInferEngine<EngineCore>::_reload_vec[ti],
                    _pd->cores[_pd->current_idx]) != 0) {
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
W
wangguibao 已提交
502 503
    }

504
    LOG(WARNING) << "Succ load clone model, path[" << params.get_path() << "]";
W
wangguibao 已提交
505

W
wangguibao 已提交
506 507
    return 0;
  }
W
wangguibao 已提交
508

W
wangguibao 已提交
509 510 511 512 513
  // 加载线程级对象,多个线程级对象共用pd_core的模型数据
  int load_data(ModelData<EngineCore>* td, EngineCore* pd_core) {
    uint32_t next_idx = (td->current_idx + 1) % 2;
    if (td->cores[next_idx]) {
      delete td->cores[next_idx];
W
wangguibao 已提交
514 515
    }

W
wangguibao 已提交
516 517 518 519 520 521
    td->cores[next_idx] = new (std::nothrow) EngineCore;
    if (!td->cores[next_idx] ||
        td->cores[next_idx]->clone(pd_core->get()) != 0) {
      LOG(ERROR) << "Failed clone model from pd_core[ " << pd_core << "], idx["
                 << next_idx << "]";
      return -1;
W
wangguibao 已提交
522
    }
W
wangguibao 已提交
523 524 525 526 527 528
    td->current_idx = next_idx;
    LOG(WARNING) << "td_core[" << td->cores[td->current_idx]
                 << "] clone model from pd_core[" << pd_core
                 << "] succ, cur_idx[" << td->current_idx << "].";
    return 0;
  }
W
wangguibao 已提交
529

W
wangguibao 已提交
530 531 532 533 534
  virtual int thrd_initialize_impl() {
    // memory pool to be inited in non-serving-threads
    if (MempoolWrapper::instance().thread_initialize() != 0) {
      LOG(ERROR) << "Failed thread initialize mempool";
      return -1;
W
wangguibao 已提交
535 536
    }

W
wangguibao 已提交
537 538 539 540 541 542 543 544 545 546 547 548
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
    if (!md || load_data(md, _pd->cores[_pd->current_idx]) != 0) {
      LOG(ERROR) << "Failed clone thread data, origin_core["
                 << _pd->cores[_pd->current_idx] << "].";
      return -1;
    }

    THREAD_SETSPECIFIC(DBReloadableInferEngine<EngineCore>::_skey, md);
    im::bsf::AutoMutex lock(DBReloadableInferEngine<EngineCore>::_mutex);
    DBReloadableInferEngine<EngineCore>::_reload_vec.push_back(md);
    return 0;
  }
W
wangguibao 已提交
549

W
wangguibao 已提交
550 551 552
 protected:
  ModelData<EngineCore>*
      _pd;  // 进程级EngineCore,多个线程级EngineCore共用该对象的模型数据
W
wangguibao 已提交
553 554
};

W
wangguibao 已提交
555
template <typename FluidFamilyCore>
W
Wang Guibao 已提交
556
class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
W
wangguibao 已提交
557 558 559
 public:
  FluidInferEngine() {}
  ~FluidInferEngine() {}
W
wangguibao 已提交
560

W
wangguibao 已提交
561 562 563 564 565 566
  int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) {
    FluidFamilyCore* core =
        DBReloadableInferEngine<FluidFamilyCore>::get_core();
    if (!core || !core->get()) {
      LOG(ERROR) << "Failed get fluid core in infer_impl()";
      return -1;
W
wangguibao 已提交
567 568
    }

W
wangguibao 已提交
569 570 571 572 573 574
    if (!core->Run(in, out)) {
      LOG(ERROR) << "Failed run fluid family core";
      return -1;
    }
    return 0;
  }
W
wangguibao 已提交
575

W
wangguibao 已提交
576 577 578
  int infer_impl2(const BatchTensor& in, BatchTensor& out) {  // NOLINT
    return infer_impl1(&in, &out);
  }
W
wangguibao 已提交
579 580
};

W
wangguibao 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
typedef FactoryPool<InferEngine> StaticInferFactory;

class VersionedInferEngine : public InferEngine {
 public:
  VersionedInferEngine() { _versions.clear(); }
  ~VersionedInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf) {
    if (proc_initialize(conf, false) != 0) {
      LOG(ERROR) << "Failed proc intialize engine: " << conf.name().c_str();
      return -1;
    }

    LOG(WARNING) << "Succ proc initialize engine: " << conf.name().c_str();
    return 0;
  }

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    std::string engine_type = conf.type();
    InferEngine* engine =
        StaticInferFactory::instance().generate_object(engine_type);
    if (!engine) {
      LOG(ERROR) << "Failed generate engine with type:" << engine_type;
      return -1;
    }
M
MRXLT 已提交
606
    VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
M
MRXLT 已提交
607
    int tmp = FLAGS_logtostderr;
W
wangguibao 已提交
608 609 610 611
    if (engine->proc_initialize(conf, version) != 0) {
      LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
      return -1;
    }
M
MRXLT 已提交
612
    VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
M
MRXLT 已提交
613
    FLAGS_logtostderr = tmp;
W
wangguibao 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    auto r = _versions.insert(std::make_pair(engine->version(), engine));
    if (!r.second) {
      LOG(ERROR) << "Failed insert item: " << engine->version()
                 << ", type: " << engine_type;
      return -1;
    }
    LOG(WARNING) << "Succ proc initialize version engine: "
                 << engine->version();
    return 0;
  }

  int proc_finalize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->proc_finalize() != 0) {
        LOG(ERROR) << "Failed proc finalize version engine: " << iter->first;
      }
      LOG(WARNING) << "Succ proc finalize version engine: " << iter->first;
    }
    return 0;
  }

  int thrd_initialize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_initialize() != 0) {
        LOG(ERROR) << "Failed thrd initialize version engine: " << iter->first;
W
wangguibao 已提交
639
        return -1;
W
wangguibao 已提交
640 641
      }
      LOG(WARNING) << "Succ thrd initialize version engine: " << iter->first;
W
wangguibao 已提交
642
    }
W
wangguibao 已提交
643 644
    return 0;
  }
W
wangguibao 已提交
645

W
wangguibao 已提交
646 647 648 649
  int thrd_clear() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_clear() != 0) {
        LOG(ERROR) << "Failed thrd clear version engine: " << iter->first;
W
wangguibao 已提交
650
        return -1;
W
wangguibao 已提交
651
      }
W
wangguibao 已提交
652
    }
W
wangguibao 已提交
653 654
    return 0;
  }
W
wangguibao 已提交
655

W
wangguibao 已提交
656 657 658 659 660 661 662
  int thrd_finalize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_finalize() != 0) {
        LOG(ERROR) << "Failed thrd finalize version engine: " << iter->first;
        return -1;
      }
      LOG(WARNING) << "Succ thrd finalize version engine: " << iter->first;
W
wangguibao 已提交
663
    }
W
wangguibao 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    return 0;
  }

  int reload() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->reload() != 0) {
        LOG(ERROR) << "Failed reload version engine: " << iter->first;
        return -1;
      }
      LOG(WARNING) << "Succ reload version engine: " << iter->first;
    }
    return 0;
  }

  uint64_t version() const {
    InferEngine* engine = default_engine();
    if (engine) {
      return engine->version();
    } else {
      return uint64_t(-1);
    }
  }

  // inference interface
  InferEngine* default_engine() const {
    if (_versions.size() != 1) {
      LOG(ERROR) << "Ambiguous default engine version:" << _versions.size();
      return NULL;
    }

    return _versions.begin()->second;
  }

  int infer(const void* in, void* out, uint32_t batch_size) {
    InferEngine* engine = default_engine();
    if (!engine) {
      LOG(WARNING) << "fail to get default engine";
      return -1;
    }
    return engine->infer(in, out, batch_size);
  }

  template <typename T>
  T* get_core() {
    InferEngine* engine = default_engine();
    if (!engine) {
      LOG(WARNING) << "fail to get core";
      return NULL;
    }
    auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(engine);
    if (db_engine) {
      return db_engine->get_core();
    }
    LOG(WARNING) << "fail to get core";
    return NULL;
  }

  // versioned inference interface
  int infer(const void* in, void* out, uint32_t batch_size, uint64_t version) {
    auto iter = _versions.find(version);
    if (iter == _versions.end()) {
      LOG(ERROR) << "Not found version engine: " << version;
      return -1;
    }

    return iter->second->infer(in, out, batch_size);
  }

  template <typename T>
  T* get_core(uint64_t version) {
    auto iter = _versions.find(version);
    if (iter == _versions.end()) {
      LOG(ERROR) << "Not found version engine: " << version;
      return NULL;
    }

    auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(iter->second);
    if (db_engine) {
      return db_engine->get_core();
    }
    LOG(WARNING) << "fail to get core for " << version;
    return NULL;
  }

  // --
  int proc_initialize_impl(const configure::EngineDesc& conf, bool) {
    return -1;
  }
  int thrd_initialize_impl() { return -1; }
  int thrd_finalize_impl() { return -1; }
  int thrd_clear_impl() { return -1; }
  int proc_finalize_impl() { return -1; }
  int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) {
    return -1;
  }
  int infer_impl2(const BatchTensor& in, BatchTensor& out) {  // NOLINT
    return -1;
  }  // NOLINT

 private:
  boost::unordered_map<uint64_t, InferEngine*> _versions;
W
wangguibao 已提交
765 766
};

W
wangguibao 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
class InferManager {
 public:
  static InferManager& instance() {
    static InferManager ins;
    return ins;
  }

  int proc_initialize(const char* path, const char* file) {
    ModelToolkitConf model_toolkit_conf;
    if (configure::read_proto_conf(path, file, &model_toolkit_conf) != 0) {
      LOG(ERROR) << "failed load infer config, path: " << path << "/" << file;
      return -1;
    }
    size_t engine_num = model_toolkit_conf.engines_size();
    for (size_t ei = 0; ei < engine_num; ++ei) {
B
barrierye 已提交
782 783
      LOG(INFO) << "model_toolkit_conf.engines(" << ei
                << ").name: " << model_toolkit_conf.engines(ei).name();
W
wangguibao 已提交
784 785 786 787 788 789 790 791
      std::string engine_name = model_toolkit_conf.engines(ei).name();
      VersionedInferEngine* engine = new (std::nothrow) VersionedInferEngine();
      if (!engine) {
        LOG(ERROR) << "Failed generate versioned engine: " << engine_name;
        return -1;
      }
      if (engine->proc_initialize(model_toolkit_conf.engines(ei)) != 0) {
        LOG(ERROR) << "Failed initialize version engine, name:" << engine_name;
W
wangguibao 已提交
792
        return -1;
W
wangguibao 已提交
793 794 795 796 797 798 799
      }
      auto r = _map.insert(std::make_pair(engine_name, engine));
      if (!r.second) {
        LOG(ERROR) << "Failed insert item: " << engine_name;
        return -1;
      }
      LOG(WARNING) << "Succ proc initialize engine: " << engine_name;
W
wangguibao 已提交
800
    }
W
wangguibao 已提交
801 802 803 804 805 806 807
    return 0;
  }

  int thrd_initialize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_initialize() != 0) {
        LOG(ERROR) << "Failed thrd initialize engine, name: " << it->first;
W
wangguibao 已提交
808
        return -1;
W
wangguibao 已提交
809 810
      }
      LOG(WARNING) << "Succ thrd initialize engine, name: " << it->first;
W
wangguibao 已提交
811
    }
W
wangguibao 已提交
812 813
    return 0;
  }
W
wangguibao 已提交
814

W
wangguibao 已提交
815 816 817 818 819 820 821 822 823
  int thrd_clear() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_clear() != 0) {
        LOG(ERROR) << "Failed thrd clear engine, name: " << it->first;
        return -1;
      }
    }
    return 0;
  }
W
wangguibao 已提交
824

W
wangguibao 已提交
825 826 827 828 829 830 831 832 833
  int reload() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->reload() != 0) {
        LOG(ERROR) << "Failed reload engine, name: " << it->first;
        return -1;
      }
    }
    return 0;
  }
W
wangguibao 已提交
834

W
wangguibao 已提交
835 836 837 838 839 840 841 842 843 844
  int thrd_finalize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_finalize() != 0) {
        LOG(ERROR) << "Failed thrd finalize engine, name: " << it->first;
        return -1;
      }
      LOG(WARNING) << "Succ thrd finalize engine, name: " << it->first;
    }
    return 0;
  }
W
wangguibao 已提交
845

W
wangguibao 已提交
846 847 848 849 850 851 852 853
  int proc_finalize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->proc_finalize() != 0) {
        LOG(ERROR) << "Failed proc finalize engine, name: " << it->first;
        return -1;
      }
      LOG(WARNING) << "Succ proc finalize engine, name: " << it->first;
    }
W
wangguibao 已提交
854
    _map.clear();
W
wangguibao 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
    return 0;
  }

  // Inference interface
  int infer(const char* model_name,
            const void* in,
            void* out,
            uint32_t batch_size = -1) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return -1;
    }
    return it->second->infer(in, out, batch_size);
  }

  template <typename T>
  T* get_core(const char* model_name) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return NULL;
    }
    auto infer_engine =
        dynamic_cast<DBReloadableInferEngine<T>*>(it->second->default_engine());
    if (infer_engine) {
      return infer_engine->get_core();
    }
    LOG(WARNING) << "fail to get core for " << model_name;
    return NULL;
  }

  // Versioned inference interface
  int infer(const char* model_name,
            const void* in,
            void* out,
            uint32_t batch_size,
            uint64_t version) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return -1;
    }
    return it->second->infer(in, out, batch_size, version);
  }

  template <typename T>
  T* get_core(const char* model_name, uint64_t version) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return NULL;
    }
    return it->second->get_core<T>(version);
  }

  int query_version(const std::string& model, uint64_t& version) {  // NOLINT
    auto it = _map.find(model);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model;
      return -1;
    }
    auto infer_engine = it->second->default_engine();
    if (!infer_engine) {
      LOG(WARNING) << "Cannot get default engine for model:" << model;
      return -1;
    }
    version = infer_engine->version();
    LOG(INFO) << "Succ get version: " << version << " for model: " << model;
    return 0;
  }

 private:
  boost::unordered_map<std::string, VersionedInferEngine*> _map;
};
W
wangguibao 已提交
930

W
wangguibao 已提交
931 932 933
}  // namespace predictor
}  // namespace paddle_serving
}  // namespace baidu