serve.py 12.7 KB
Newer Older
G
guru4elephant 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
G
guru4elephant 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
    Host a trained paddle model with one line command
    Example:
G
guru4elephant 已提交
18
        python -m paddle_serving_server.serve --model ./serving_server_model --port 9292
G
guru4elephant 已提交
19
"""
G
guru4elephant 已提交
20
import argparse
Z
zhangjun 已提交
21
import os
H
HexToString 已提交
22 23 24 25
import json
import base64
import time
from multiprocessing import Process
W
wangjiawei04 已提交
26
import sys
T
TeslaZhao 已提交
27 28 29 30
if sys.version_info.major == 2:
    from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
elif sys.version_info.major == 3:
    from http.server import BaseHTTPRequestHandler, HTTPServer
G
guru4elephant 已提交
31

H
HexToString 已提交
32 33 34 35 36 37 38 39
from contextlib import closing
import socket


# web_service.py is still used by Pipeline.
def port_is_available(port):
    with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
        sock.settimeout(2)
H
HexToString 已提交
40
        result = sock.connect_ex(('127.0.0.1', port))
H
HexToString 已提交
41 42 43 44 45
    if result != 0:
        return True
    else:
        return False

Z
update  
zhangjun 已提交
46

H
HexToString 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
def format_gpu_to_strlist(unformatted_gpus):
    gpus_strlist = []
    if isinstance(unformatted_gpus, int):
        gpus_strlist = [str(unformatted_gpus)]
    elif isinstance(unformatted_gpus, list):
        if unformatted_gpus == [""]:
            gpus_strlist = ["-1"]
        elif len(unformatted_gpus) == 0:
            gpus_strlist = ["-1"]
        else:
            gpus_strlist = [str(x) for x in unformatted_gpus]
    elif isinstance(unformatted_gpus, str):
        if unformatted_gpus == "":
            gpus_strlist = ["-1"]
        else:
            gpus_strlist = [unformatted_gpus]
    elif unformatted_gpus == None:
        gpus_strlist = ["-1"]
    else:
        raise ValueError("error input of set_gpus")

    # check cuda visible
    if "CUDA_VISIBLE_DEVICES" in os.environ:
        env_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
        for op_gpus_str in gpus_strlist:
            op_gpu_list = op_gpus_str.split(",")
            # op_gpu_list == ["-1"] means this op use CPU
            # so don`t check cudavisible.
            if op_gpu_list == ["-1"]:
                continue
            for ids in op_gpu_list:
                if ids not in env_gpus:
                    print("gpu_ids is not in CUDA_VISIBLE_DEVICES.")
                    exit(-1)

    # check gpuid is valid
    for op_gpus_str in gpus_strlist:
        op_gpu_list = op_gpus_str.split(",")
        use_gpu = False
        for ids in op_gpu_list:
            if int(ids) < -1:
                raise ValueError("The input of gpuid error.")
            if int(ids) >= 0:
                use_gpu = True
            if int(ids) == -1 and use_gpu:
                raise ValueError("You can not use CPU and GPU in one model.")

    return gpus_strlist


def is_gpu_mode(unformatted_gpus):
    gpus_strlist = format_gpu_to_strlist(unformatted_gpus)
    for op_gpus_str in gpus_strlist:
        op_gpu_list = op_gpus_str.split(",")
        for ids in op_gpu_list:
            if int(ids) >= 0:
                return True
    return False


Z
zhangjun 已提交
107
def serve_args():
G
guru4elephant 已提交
108
    parser = argparse.ArgumentParser("serve")
B
barrierye 已提交
109
    parser.add_argument(
H
HexToString 已提交
110 111 112 113 114
        "--thread",
        type=int,
        default=4,
        help="Concurrency of server,[4,1024]",
        choices=range(4, 1025))
B
barrierye 已提交
115
    parser.add_argument(
H
HexToString 已提交
116
        "--port", type=int, default=9393, help="Port of the starting gpu")
B
barrierye 已提交
117
    parser.add_argument(
H
HexToString 已提交
118
        "--device", type=str, default="cpu", help="Type of device")
119 120 121 122 123 124 125 126 127 128
    parser.add_argument(
        "--gpu_ids", type=str, default="", nargs="+", help="gpu ids")
    parser.add_argument(
        "--op_num", type=int, default=0, nargs="+", help="Number of each op")
    parser.add_argument(
        "--op_max_batch",
        type=int,
        default=32,
        nargs="+",
        help="Max batch of each op")
G
guru4elephant 已提交
129
    parser.add_argument(
130
        "--model", type=str, default="", nargs="+", help="Model for serving")
B
barrierye 已提交
131 132 133 134 135
    parser.add_argument(
        "--workdir",
        type=str,
        default="workdir",
        help="Working dir of current service")
Z
zhangjun 已提交
136 137
    parser.add_argument(
        "--use_mkl", default=False, action="store_true", help="Use MKL")
138 139 140 141 142 143 144 145 146 147
    parser.add_argument(
        "--precision",
        type=str,
        default="fp32",
        help="precision mode(fp32, int8, fp16, bf16)")
    parser.add_argument(
        "--use_calib",
        default=False,
        action="store_true",
        help="Use TensorRT Calibration")
M
MRXLT 已提交
148
    parser.add_argument(
M
MRXLT 已提交
149
        "--mem_optim_off",
M
MRXLT 已提交
150 151 152
        default=False,
        action="store_true",
        help="Memory optimize")
M
MRXLT 已提交
153
    parser.add_argument(
M
MRXLT 已提交
154
        "--ir_optim", default=False, action="store_true", help="Graph optimize")
M
MRXLT 已提交
155 156 157
    parser.add_argument(
        "--max_body_size",
        type=int,
M
bug fix  
MRXLT 已提交
158
        default=512 * 1024 * 1024,
M
MRXLT 已提交
159
        help="Limit sizes of messages")
H
HexToString 已提交
160 161 162 163 164
    parser.add_argument(
        "--use_encryption_model",
        default=False,
        action="store_true",
        help="Use encryption model")
Z
zhangjun 已提交
165 166 167 168 169 170
    parser.add_argument(
        "--use_trt", default=False, action="store_true", help="Use TensorRT")
    parser.add_argument(
        "--use_lite", default=False, action="store_true", help="Use PaddleLite")
    parser.add_argument(
        "--use_xpu", default=False, action="store_true", help="Use XPU")
T
TeslaZhao 已提交
171 172 173 174 175 176 177 178 179 180
    parser.add_argument(
        "--product_name",
        type=str,
        default=None,
        help="product_name for authentication")
    parser.add_argument(
        "--container_id",
        type=str,
        default=None,
        help="container_id for authentication")
181 182 183 184 185
    parser.add_argument(
        "--gpu_multi_stream",
        default=False,
        action="store_true",
        help="Use gpu_multi_stream")
G
guru4elephant 已提交
186 187
    return parser.parse_args()

Z
update  
zhangjun 已提交
188

189
def start_gpu_card_model(gpu_mode, port, args):  # pylint: disable=doc-string-missing
H
HexToString 已提交
190

H
HexToString 已提交
191 192 193
    device = "cpu"
    if gpu_mode == True:
        device = "gpu"
194

G
guru4elephant 已提交
195 196
    thread_num = args.thread
    model = args.model
M
MRXLT 已提交
197
    mem_optim = args.mem_optim_off is False
M
MRXLT 已提交
198
    ir_optim = args.ir_optim
M
MRXLT 已提交
199
    use_mkl = args.use_mkl
Z
zhangjun 已提交
200
    max_body_size = args.max_body_size
201
    workdir = "{}_{}".format(args.workdir, port)
G
guru4elephant 已提交
202 203 204 205

    if model == "":
        print("You must specify your serving model")
        exit(-1)
G
guru4elephant 已提交
206

207 208 209 210 211
    for single_model_config in args.model:
        if os.path.isdir(single_model_config):
            pass
        elif os.path.isfile(single_model_config):
            raise ValueError("The input of --model should be a dir not file.")
Z
zhangjun 已提交
212
    import paddle_serving_server as serving
G
guru4elephant 已提交
213 214
    op_maker = serving.OpMaker()
    op_seq_maker = serving.OpSeqMaker()
215
    read_op = op_maker.create('general_reader')
G
guru4elephant 已提交
216
    op_seq_maker.add_op(read_op)
217 218
    for idx, single_model in enumerate(model):
        infer_op_name = "general_infer"
H
HexToString 已提交
219 220 221
        # 目前由于ocr的节点Det模型依赖于opencv的第三方库
        # 只有使用ocr的时候,才会加入opencv的第三方库并编译GeneralDetectionOp
        # 故此处做特殊处理,当不满足下述情况时,所添加的op默认为GeneralInferOp
H
HexToString 已提交
222
        # 以后可能考虑不用python脚本来生成配置
H
HexToString 已提交
223
        if len(model) == 2 and idx == 0 and single_model == "ocr_det_model":
224 225 226 227 228
            infer_op_name = "general_detection"
        else:
            infer_op_name = "general_infer"
        general_infer_op = op_maker.create(infer_op_name)
        op_seq_maker.add_op(general_infer_op)
H
HexToString 已提交
229

230
    general_response_op = op_maker.create('general_response')
G
guru4elephant 已提交
231 232
    op_seq_maker.add_op(general_response_op)

H
HexToString 已提交
233
    server = serving.Server()
G
guru4elephant 已提交
234
    server.set_op_sequence(op_seq_maker.get_op_sequence())
G
guru4elephant 已提交
235
    server.set_num_threads(thread_num)
Z
zhangjun 已提交
236
    server.use_mkl(use_mkl)
237 238
    server.set_precision(args.precision)
    server.set_use_calib(args.use_calib)
M
MRXLT 已提交
239
    server.set_memory_optimize(mem_optim)
M
MRXLT 已提交
240
    server.set_ir_optimize(ir_optim)
M
MRXLT 已提交
241
    server.set_max_body_size(max_body_size)
242 243

    if args.use_trt and device == "gpu":
Z
zhangjun 已提交
244
        server.set_trt()
245 246 247 248 249 250 251 252 253 254
        server.set_ir_optimize(True)

    if args.gpu_multi_stream and device == "gpu":
        server.set_gpu_multi_stream()

    if args.op_num:
        server.set_op_num(args.op_num)

    if args.op_max_batch:
        server.set_op_max_batch(args.op_max_batch)
Z
zhangjun 已提交
255 256 257 258 259 260 261 262

    if args.use_lite:
        server.set_lite()

    server.set_device(device)
    if args.use_xpu:
        server.set_xpu()

263 264 265 266
    if args.product_name != None:
        server.set_product_name(args.product_name)
    if args.container_id != None:
        server.set_container_id(args.container_id)
G
guru4elephant 已提交
267

H
HexToString 已提交
268 269
    if gpu_mode == True:
        server.set_gpuid(args.gpu_ids)
G
guru4elephant 已提交
270
    server.load_model_config(model)
Z
zhangjun 已提交
271 272 273 274 275
    server.prepare_server(
        workdir=workdir,
        port=port,
        device=device,
        use_encryption_model=args.use_encryption_model)
G
guru4elephant 已提交
276 277
    server.run_server()

W
wangjiawei04 已提交
278

Z
zhangjun 已提交
279
def start_multi_card(args, serving_port=None):  # pylint: disable=doc-string-missing
H
HexToString 已提交
280

Z
zhangjun 已提交
281 282
    if serving_port == None:
        serving_port = args.port
283

Z
zhangjun 已提交
284
    if args.use_lite:
Z
update  
zhangjun 已提交
285
        print("run using paddle-lite.")
286
        start_gpu_card_model(False, serving_port, args)
Z
zhangjun 已提交
287
    else:
H
HexToString 已提交
288
        start_gpu_card_model(is_gpu_mode(args.gpu_ids), serving_port, args)
Z
zhangjun 已提交
289 290


H
HexToString 已提交
291 292 293 294 295 296 297 298
class MainService(BaseHTTPRequestHandler):
    def get_available_port(self):
        default_port = 12000
        for i in range(1000):
            if port_is_available(default_port + i):
                return default_port + i

    def start_serving(self):
Z
zhangjun 已提交
299
        start_multi_card(args, serving_port)
H
HexToString 已提交
300 301 302 303 304

    def get_key(self, post_data):
        if "key" not in post_data:
            return False
        else:
H
HexToString 已提交
305
            key = base64.b64decode(post_data["key"].encode())
H
HexToString 已提交
306 307
            for single_model_config in args.model:
                if os.path.isfile(single_model_config):
H
HexToString 已提交
308 309
                    raise ValueError(
                        "The input of --model should be a dir not file.")
H
HexToString 已提交
310 311
                with open(single_model_config + "/key", "wb") as f:
                    f.write(key)
H
HexToString 已提交
312 313 314 315 316 317
            return True

    def check_key(self, post_data):
        if "key" not in post_data:
            return False
        else:
H
HexToString 已提交
318
            key = base64.b64decode(post_data["key"].encode())
H
HexToString 已提交
319 320
            for single_model_config in args.model:
                if os.path.isfile(single_model_config):
H
HexToString 已提交
321 322
                    raise ValueError(
                        "The input of --model should be a dir not file.")
H
HexToString 已提交
323 324 325 326 327
                with open(single_model_config + "/key", "rb") as f:
                    cur_key = f.read()
                if key != cur_key:
                    return False
            return True
H
HexToString 已提交
328 329

    def start(self, post_data):
H
HexToString 已提交
330
        post_data = json.loads(post_data.decode('utf-8'))
H
HexToString 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        global p_flag
        if not p_flag:
            if args.use_encryption_model:
                print("waiting key for model")
                if not self.get_key(post_data):
                    print("not found key in request")
                    return False
            global serving_port
            global p
            serving_port = self.get_available_port()
            p = Process(target=self.start_serving)
            p.start()
            time.sleep(3)
            if p.is_alive():
                p_flag = True
            else:
                return False
        else:
            if p.is_alive():
                if not self.check_key(post_data):
                    return False
            else:
                return False
        return True

    def do_POST(self):
        content_length = int(self.headers['Content-Length'])
        post_data = self.rfile.read(content_length)
        if self.start(post_data):
            response = {"endpoint_list": [serving_port]}
        else:
            response = {"message": "start serving failed"}
        self.send_response(200)
        self.send_header('Content-type', 'application/json')
        self.end_headers()
H
HexToString 已提交
366
        self.wfile.write(json.dumps(response).encode())
B
barrierye 已提交
367

W
wangjiawei04 已提交
368

M
MRXLT 已提交
369
if __name__ == "__main__":
H
HexToString 已提交
370 371 372
    # args.device is not used at all.
    # just keep the interface.
    # so --device should not be recommended at the HomePage.
373
    args = serve_args()
H
HexToString 已提交
374 375 376 377 378 379
    for single_model_config in args.model:
        if os.path.isdir(single_model_config):
            pass
        elif os.path.isfile(single_model_config):
            raise ValueError("The input of --model should be a dir not file.")

H
HexToString 已提交
380 381 382 383 384 385 386 387 388
    if args.use_encryption_model:
        p_flag = False
        p = None
        serving_port = 0
        server = HTTPServer(('0.0.0.0', int(args.port)), MainService)
        print(
            'Starting encryption server, waiting for key from client, use <Ctrl-C> to stop'
        )
        server.serve_forever()
G
guru4elephant 已提交
389
    else:
H
HexToString 已提交
390
        start_multi_card(args)