infer.cpp 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "core/predictor/framework/infer.h"

namespace baidu {
namespace paddle_serving {
namespace predictor {

int ReloadableInferEngine::proc_initialize_impl(
    const configure::EngineDesc& conf, bool version) {
  _reload_tag_file = conf.reloadable_meta();
  _reload_type = conf.reloadable_type();
  _model_dir = conf.model_dir();
  _infer_thread_num = conf.runtime_thread_num();
  _infer_batch_size = conf.batch_infer_size();
H
HexToString 已提交
28
  _infer_overrun = conf.enable_overrun();
H
HexToString 已提交
29
  _allow_split_request = conf.allow_split_request();
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

  _conf = conf;

  if (!check_need_reload() || load(conf) != 0) {
    LOG(ERROR) << "Failed load model_data_path" << _model_dir;
    return -1;
  }

  if (parse_version_info(conf, version) != 0) {
    LOG(ERROR) << "Failed parse version info";
    return -1;
  }

  LOG(WARNING) << "Succ load model:" << _model_dir;
  return 0;
}

int ReloadableInferEngine::proc_initialize(const configure::EngineDesc& conf,
                                           bool version) {
  if (proc_initialize_impl(conf, version) != 0) {
    LOG(ERROR) << "Failed proc initialize impl";
    return -1;
  }

  // init bsf framework
  if (_infer_thread_num <= 0) {
    return 0;
  }

  // init bsf framework
H
HexToString 已提交
60 61 62 63 64 65 66 67 68 69
  im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index]
      .set_thread_init_fn(
          boost::bind(&InferEngine::thrd_initialize_impl, this));
  im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index]
      .set_thread_reset_fn(boost::bind(&InferEngine::thrd_clear_impl, this));
  im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index]
      .set_thread_callback_fn(
          boost::bind(&InferEngine::task_infer_impl, this, _1, _2));
  im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index].set_batch_size(
      _infer_batch_size);
H
HexToString 已提交
70 71
  im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index].set_overrun(
      _infer_overrun);
H
HexToString 已提交
72 73
  im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index]
      .set_allow_split_request(_allow_split_request);
H
HexToString 已提交
74 75
  if (im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index].start(
          _infer_thread_num) != 0) {
76 77 78 79 80 81
    LOG(ERROR) << "Failed start bsf executor, threads:" << _infer_thread_num;
    return -1;
  }

  LOG(WARNING) << "Enable batch schedule framework, thread_num:"
               << _infer_thread_num << ", batch_size:" << _infer_batch_size
H
HexToString 已提交
82
               << ", enable_overrun:" << _infer_overrun
H
HexToString 已提交
83
               << ", allow_split_request:" << _allow_split_request;
84 85 86
  return 0;
}

H
HexToString 已提交
87 88 89 90 91
// Multiple threads will enter this method of the same object
// One Model corresponds to One ReloadableInferEngine object.
// ReloadableInferEngine object is Process object.
// One ReloadableInferEngine object can have several ModelData<EngineCore>
// ModelData<EngineCore> is Thread object.
92 93 94 95 96 97 98
int ReloadableInferEngine::infer(const void* in,
                                 void* out,
                                 uint32_t batch_size) {
  if (_infer_thread_num <= 0) {
    return infer_impl(in, out, batch_size);
  }

H
HexToString 已提交
99 100
  im::bsf::TaskManager<paddle::PaddleTensor, paddle::PaddleTensor> task_manager(
      _model_index);
101 102

  task_manager.schedule(in, out);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  task_manager.wait();
  return 0;
}

int ReloadableInferEngine::thrd_initialize() {
  if (_infer_thread_num > 0) {
    return 0;
  }
  return thrd_initialize_impl();
}

int ReloadableInferEngine::thrd_clear() {
  if (_infer_thread_num > 0) {
    return 0;
  }
  return thrd_clear_impl();
}

int ReloadableInferEngine::proc_finalize() {
  if (proc_finalize_impl() != 0) {
    LOG(ERROR) << "Failed proc finalize impl";
    return -1;
  }

  if (_infer_thread_num > 0) {
H
HexToString 已提交
128
    im::bsf::TaskExecutorVector<TaskT>::instance()[_model_index].stop();
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  }
  return 0;
}

int ReloadableInferEngine::reload() {
  if (check_need_reload()) {
    LOG(WARNING) << "begin reload model[" << _model_dir << "].";
    return load(_conf);
  }
  return 0;
}

int ReloadableInferEngine::parse_version_info(
    const configure::EngineDesc& config, bool version) {
  _version = uint64_t(-1);
  return 0;
}

bool ReloadableInferEngine::check_need_reload() {
  if (_reload_type == "timestamp_ne") {
    return check_timestamp_ne();
  } else if (_reload_type == "timestamp_gt") {
    return check_timestamp_gt();
  } else if (_reload_type == "md5sum") {
    return check_md5sum();
  } else if (_reload_type == "revision") {
    return check_revision();
  } else if (_reload_type == "none") {
    return false;
  }

  LOG(ERROR) << "Not support reload type: " << _reload_type;
  return false;
}

bool ReloadableInferEngine::check_timestamp_ne() {
  struct stat st;
  if (stat(_reload_tag_file.c_str(), &st) != 0) {
    LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
    return false;
  }

  if ((st.st_mode & S_IFREG) && st.st_mtime != _last_record.timestamp) {
    _last_record.timestamp = st.st_mtime;
    return true;
  }

  return false;
}

bool ReloadableInferEngine::check_timestamp_gt() {
  struct stat st;
  if (stat(_reload_tag_file.c_str(), &st) != 0) {
    LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
    return false;
  }

  if ((st.st_mode & S_IFREG) && st.st_mtime > _last_record.timestamp) {
    _last_record.timestamp = st.st_mtime;
    return true;
  }

  return false;
}

int VersionedInferEngine::proc_initialize(const configure::EngineDesc& conf) {
  if (proc_initialize(conf, false) != 0) {
    LOG(ERROR) << "Failed proc intialize engine: " << conf.name().c_str();
    return -1;
  }

  LOG(WARNING) << "Succ proc initialize engine: " << conf.name().c_str();
  return 0;
}

int VersionedInferEngine::proc_initialize(const configure::EngineDesc& conf,
                                          bool version) {
  std::string engine_type = conf.type();
  InferEngine* engine =
      StaticInferFactory::instance().generate_object(engine_type);
H
HexToString 已提交
209
  engine->set_model_index(_model_index);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  if (!engine) {
    LOG(ERROR) << "Failed generate engine with type:" << engine_type;
    return -1;
  }
#ifndef BCLOUD
  VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
  int tmp = FLAGS_logtostderr;
  if (engine->proc_initialize(conf, version) != 0) {
    LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
    return -1;
  }
  VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
  FLAGS_logtostderr = tmp;
#else
  if (engine->proc_initialize(conf, version) != 0) {
    LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
    return -1;
  }
#endif
  auto r = _versions.insert(std::make_pair(engine->version(), engine));
  if (!r.second) {
    LOG(ERROR) << "Failed insert item: " << engine->version()
               << ", type: " << engine_type;
    return -1;
  }
  LOG(WARNING) << "Succ proc initialize version engine: " << engine->version();
  return 0;
}

int VersionedInferEngine::proc_finalize() {
  for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
    if (iter->second->proc_finalize() != 0) {
      LOG(ERROR) << "Failed proc finalize version engine: " << iter->first;
    }
    LOG(WARNING) << "Succ proc finalize version engine: " << iter->first;
  }
  return 0;
}

int VersionedInferEngine::thrd_initialize() {
  for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
    if (iter->second->thrd_initialize() != 0) {
      LOG(ERROR) << "Failed thrd initialize version engine: " << iter->first;
      return -1;
    }
    LOG(WARNING) << "Succ thrd initialize version engine: " << iter->first;
  }
  return 0;
}

int VersionedInferEngine::thrd_clear() {
  for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
    if (iter->second->thrd_clear() != 0) {
      LOG(ERROR) << "Failed thrd clear version engine: " << iter->first;
      return -1;
    }
  }
  return 0;
}

int VersionedInferEngine::thrd_finalize() {
  for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
    if (iter->second->thrd_finalize() != 0) {
      LOG(ERROR) << "Failed thrd finalize version engine: " << iter->first;
      return -1;
    }
    LOG(WARNING) << "Succ thrd finalize version engine: " << iter->first;
  }
  return 0;
}

int VersionedInferEngine::reload() {
  for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
    if (iter->second->reload() != 0) {
      LOG(ERROR) << "Failed reload version engine: " << iter->first;
      return -1;
    }
    LOG(WARNING) << "Succ reload version engine: " << iter->first;
  }
  return 0;
}

uint64_t VersionedInferEngine::version() const {
  InferEngine* engine = default_engine();
  if (engine) {
    return engine->version();
  } else {
    return uint64_t(-1);
  }
}

// inference interface
InferEngine* VersionedInferEngine::default_engine() const {
  if (_versions.size() != 1) {
    LOG(ERROR) << "Ambiguous default engine version:" << _versions.size();
    return NULL;
  }

  return _versions.begin()->second;
}

int VersionedInferEngine::infer(const void* in,
                                void* out,
                                uint32_t batch_size) {
  InferEngine* engine = default_engine();
  if (!engine) {
    LOG(WARNING) << "fail to get default engine";
    return -1;
  }
  return engine->infer(in, out, batch_size);
}

// versioned inference interface
int VersionedInferEngine::infer(const void* in,
                                void* out,
                                uint32_t batch_size,
                                uint64_t version) {
  auto iter = _versions.find(version);
  if (iter == _versions.end()) {
    LOG(ERROR) << "Not found version engine: " << version;
    return -1;
  }

  return iter->second->infer(in, out, batch_size);
}

template <typename T>
T* VersionedInferEngine::get_core() {
  InferEngine* engine = default_engine();
  if (!engine) {
    LOG(WARNING) << "fail to get core";
    return NULL;
  }
  auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(engine);
  if (db_engine) {
    return db_engine->get_core();
  }
  LOG(WARNING) << "fail to get core";
  return NULL;
}

template <typename T>
T* VersionedInferEngine::get_core(uint64_t version) {
  auto iter = _versions.find(version);
  if (iter == _versions.end()) {
    LOG(ERROR) << "Not found version engine: " << version;
    return NULL;
  }

  auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(iter->second);
  if (db_engine) {
    return db_engine->get_core();
  }
  LOG(WARNING) << "fail to get core for " << version;
  return NULL;
}

int VersionedInferEngine::proc_initialize_impl(
    const configure::EngineDesc& conf, bool) {
  return -1;
}

int VersionedInferEngine::thrd_initialize_impl() { return -1; }
int VersionedInferEngine::thrd_finalize_impl() { return -1; }
int VersionedInferEngine::thrd_clear_impl() { return -1; }
int VersionedInferEngine::proc_finalize_impl() { return -1; }
int VersionedInferEngine::infer_impl(const void* in,
                                     void* out,
                                     uint32_t batch_size) {
  return -1;
}
381 382
int VersionedInferEngine::task_infer_impl(const void* in,
                                          void* out) {  // NOLINT
383 384 385
  return -1;
}

H
HexToString 已提交
386 387 388
int InferManager::proc_initialize(const char* path,
                                  const char* file,
                                  std::shared_ptr<int> engine_index_ptr) {
389 390 391 392 393
  ModelToolkitConf model_toolkit_conf;
  if (configure::read_proto_conf(path, file, &model_toolkit_conf) != 0) {
    LOG(ERROR) << "failed load infer config, path: " << path << "/" << file;
    return -1;
  }
H
HexToString 已提交
394
  uint32_t engine_num = model_toolkit_conf.engines_size();
H
HexToString 已提交
395 396
  im::bsf::TaskExecutorVector<TaskT>::instance().resize(*engine_index_ptr +
                                                        engine_num);
H
HexToString 已提交
397
  for (uint32_t ei = 0; ei < engine_num; ++ei) {
398 399 400 401
    LOG(INFO) << "model_toolkit_conf.engines(" << ei
              << ").name: " << model_toolkit_conf.engines(ei).name();
    std::string engine_name = model_toolkit_conf.engines(ei).name();
    VersionedInferEngine* engine = new (std::nothrow) VersionedInferEngine();
H
HexToString 已提交
402 403 404
    int temp_engine_index_ptr = *engine_index_ptr;
    engine->set_model_index(temp_engine_index_ptr);
    *engine_index_ptr = temp_engine_index_ptr + 1;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    if (!engine) {
      LOG(ERROR) << "Failed generate versioned engine: " << engine_name;
      return -1;
    }
    if (engine->proc_initialize(model_toolkit_conf.engines(ei)) != 0) {
      LOG(ERROR) << "Failed initialize version engine, name:" << engine_name;
      return -1;
    }
    auto r = _map.insert(std::make_pair(engine_name, engine));
    if (!r.second) {
      LOG(ERROR) << "Failed insert item: " << engine_name;
      return -1;
    }
    LOG(WARNING) << "Succ proc initialize engine: " << engine_name;
  }
  return 0;
}

int InferManager::thrd_initialize() {
  for (auto it = _map.begin(); it != _map.end(); ++it) {
    if (it->second->thrd_initialize() != 0) {
      LOG(ERROR) << "Failed thrd initialize engine, name: " << it->first;
      return -1;
    }
    LOG(WARNING) << "Succ thrd initialize engine, name: " << it->first;
  }
  return 0;
}

int InferManager::thrd_clear() {
  for (auto it = _map.begin(); it != _map.end(); ++it) {
    if (it->second->thrd_clear() != 0) {
      LOG(ERROR) << "Failed thrd clear engine, name: " << it->first;
      return -1;
    }
  }
  return 0;
}

int InferManager::reload() {
  for (auto it = _map.begin(); it != _map.end(); ++it) {
    if (it->second->reload() != 0) {
      LOG(ERROR) << "Failed reload engine, name: " << it->first;
      return -1;
    }
  }
  return 0;
}

int InferManager::thrd_finalize() {
  for (auto it = _map.begin(); it != _map.end(); ++it) {
    if (it->second->thrd_finalize() != 0) {
      LOG(ERROR) << "Failed thrd finalize engine, name: " << it->first;
      return -1;
    }
    LOG(WARNING) << "Succ thrd finalize engine, name: " << it->first;
  }
  return 0;
}

int InferManager::proc_finalize() {
  for (auto it = _map.begin(); it != _map.end(); ++it) {
    if (it->second->proc_finalize() != 0) {
      LOG(ERROR) << "Failed proc finalize engine, name: " << it->first;
      return -1;
    }
    LOG(WARNING) << "Succ proc finalize engine, name: " << it->first;
  }
  _map.clear();
  return 0;
}

// Inference interface
int InferManager::infer(const char* model_name,
                        const void* in,
                        void* out,
                        uint32_t batch_size) {
  auto it = _map.find(model_name);
  if (it == _map.end()) {
    LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
    return -1;
  }
  return it->second->infer(in, out, batch_size);
}

template <typename T>
T* InferManager::get_core(const char* model_name) {
  auto it = _map.find(model_name);
  if (it == _map.end()) {
    LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
    return NULL;
  }
  auto infer_engine =
      dynamic_cast<DBReloadableInferEngine<T>*>(it->second->default_engine());
  if (infer_engine) {
    return infer_engine->get_core();
  }
  LOG(WARNING) << "fail to get core for " << model_name;
  return NULL;
}

// Versioned inference interface
int InferManager::infer(const char* model_name,
                        const void* in,
                        void* out,
                        uint32_t batch_size,
                        uint64_t version) {
  auto it = _map.find(model_name);
  if (it == _map.end()) {
    LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
    return -1;
  }
  return it->second->infer(in, out, batch_size, version);
}

template <typename T>
T* InferManager::get_core(const char* model_name, uint64_t version) {
  auto it = _map.find(model_name);
  if (it == _map.end()) {
    LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
    return NULL;
  }
  return it->second->get_core<T>(version);
}

int InferManager::query_version(const std::string& model, uint64_t& version) {
  auto it = _map.find(model);
  if (it == _map.end()) {
    LOG(WARNING) << "Cannot find engine in map, model name:" << model;
    return -1;
  }
  auto infer_engine = it->second->default_engine();
  if (!infer_engine) {
    LOG(WARNING) << "Cannot get default engine for model:" << model;
    return -1;
  }
  version = infer_engine->version();
  LOG(INFO) << "Succ get version: " << version << " for model: " << model;
  return 0;
}

}  // namespace predictor
}  // namespace paddle_serving
}  // namespace baidu