infer.h 27.6 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
W
wangguibao 已提交
16
#include <sys/stat.h>
W
wangguibao 已提交
17
#include <sys/types.h>
W
wangguibao 已提交
18
#include <unistd.h>
W
wangguibao 已提交
19
#include <string>
M
MRXLT 已提交
20
#include <utility>
W
wangguibao 已提交
21
#include <vector>
G
guru4elephant 已提交
22 23 24 25
#include "core/predictor/common/inner_common.h"
#include "core/predictor/framework/bsf.h"
#include "core/predictor/framework/factory.h"
#include "core/predictor/framework/infer_data.h"
W
wangguibao 已提交
26 27 28 29 30

namespace baidu {
namespace paddle_serving {
namespace predictor {

W
wangguibao 已提交
31 32
using configure::ModelToolkitConf;

33 34 35 36 37
class InferEngineCreationParams {
 public:
  InferEngineCreationParams() {
    _path = "";
    _enable_memory_optimization = false;
M
MRXLT 已提交
38
    _enable_ir_optimization = false;
39 40
    _static_optimization = false;
    _force_update_static_cache = false;
M
MRXLT 已提交
41
    _use_trt = false;
42 43 44 45 46 47 48 49
  }

  void set_path(const std::string& path) { _path = path; }

  void set_enable_memory_optimization(bool enable_memory_optimization) {
    _enable_memory_optimization = enable_memory_optimization;
  }

M
MRXLT 已提交
50 51 52 53
  void set_enable_ir_optimization(bool enable_ir_optimization) {
    _enable_ir_optimization = enable_ir_optimization;
  }

M
MRXLT 已提交
54 55
  void set_use_trt(bool use_trt) { _use_trt = use_trt; }

56 57 58 59
  bool enable_memory_optimization() const {
    return _enable_memory_optimization;
  }

M
MRXLT 已提交
60 61
  bool enable_ir_optimization() const { return _enable_ir_optimization; }

M
MRXLT 已提交
62 63
  bool use_trt() const { return _use_trt; }

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  void set_static_optimization(bool static_optimization = false) {
    _static_optimization = static_optimization;
  }

  void set_force_update_static_cache(bool force_update_static_cache = false) {
    _force_update_static_cache = force_update_static_cache;
  }

  bool static_optimization() const { return _static_optimization; }

  bool force_update_static_cache() const { return _force_update_static_cache; }

  std::string get_path() const { return _path; }

  void dump() const {
    LOG(INFO) << "InferEngineCreationParams: "
              << "model_path = " << _path << ", "
              << "enable_memory_optimization = " << _enable_memory_optimization
              << ", "
M
MRXLT 已提交
83
              << "enable_ir_optimization = " << _enable_ir_optimization << ", "
84 85 86 87 88 89 90
              << "static_optimization = " << _static_optimization << ", "
              << "force_update_static_cache = " << _force_update_static_cache;
  }

 private:
  std::string _path;
  bool _enable_memory_optimization;
M
MRXLT 已提交
91
  bool _enable_ir_optimization;
92 93
  bool _static_optimization;
  bool _force_update_static_cache;
M
MRXLT 已提交
94
  bool _use_trt;
95 96
};

W
wangguibao 已提交
97
class InferEngine {
W
wangguibao 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
 public:
  virtual ~InferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    return proc_initialize_impl(conf, version);
  }
  virtual int proc_finalize() { return proc_finalize_impl(); }
  virtual int thrd_initialize() { return thrd_initialize_impl(); }
  virtual int thrd_clear() { return thrd_clear_impl(); }
  virtual int thrd_finalize() { return thrd_finalize_impl(); }
  virtual int infer(const void* in, void* out, uint32_t batch_size = -1) {
    return infer_impl1(in, out, batch_size);
  }

  virtual int reload() = 0;

  virtual uint64_t version() const = 0;

  // begin: framework inner call
  virtual int proc_initialize_impl(const configure::EngineDesc& conf,
                                   bool version) = 0;
  virtual int thrd_initialize_impl() = 0;
  virtual int thrd_finalize_impl() = 0;
  virtual int thrd_clear_impl() = 0;
  virtual int proc_finalize_impl() = 0;
  virtual int infer_impl1(const void* in,
                          void* out,
                          uint32_t batch_size = -1) = 0;
  virtual int infer_impl2(const BatchTensor& in,
                          BatchTensor& out) = 0;  // NOLINT
  // end: framework inner call
};

class ReloadableInferEngine : public InferEngine {
 public:
  virtual ~ReloadableInferEngine() {}
W
wangguibao 已提交
134

W
wangguibao 已提交
135 136 137 138 139
  union last_check_status {
    time_t last_timestamp;
    uint64_t last_md5sum;
    uint64_t last_revision;
  };
W
wangguibao 已提交
140

W
wangguibao 已提交
141 142
  typedef im::bsf::Task<Tensor, Tensor> TaskT;

143
  virtual int load(const InferEngineCreationParams& params) = 0;
W
wangguibao 已提交
144 145 146 147 148 149 150 151

  int proc_initialize_impl(const configure::EngineDesc& conf, bool version) {
    _reload_tag_file = conf.reloadable_meta();
    _reload_mode_tag = conf.reloadable_type();
    _model_data_path = conf.model_data_path();
    _infer_thread_num = conf.runtime_thread_num();
    _infer_batch_size = conf.batch_infer_size();
    _infer_batch_align = conf.enable_batch_align();
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    bool enable_memory_optimization = false;
    if (conf.has_enable_memory_optimization()) {
      enable_memory_optimization = conf.enable_memory_optimization();
    }

    bool static_optimization = false;
    if (conf.has_static_optimization()) {
      static_optimization = conf.static_optimization();
    }

    bool force_update_static_cache = false;
    if (conf.has_force_update_static_cache()) {
      force_update_static_cache = conf.force_update_static_cache();
    }

M
MRXLT 已提交
168 169 170 171 172
    if (conf.has_enable_ir_optimization()) {
      _infer_engine_params.set_enable_ir_optimization(
          conf.enable_ir_optimization());
    }

173 174 175 176 177 178 179 180
    _infer_engine_params.set_path(_model_data_path);
    if (enable_memory_optimization) {
      _infer_engine_params.set_enable_memory_optimization(true);
      _infer_engine_params.set_static_optimization(static_optimization);
      _infer_engine_params.set_force_update_static_cache(
          force_update_static_cache);
    }

M
MRXLT 已提交
181 182 183 184
    if (conf.has_use_trt()) {
      _infer_engine_params.set_use_trt(conf.use_trt());
    }

185
    if (!check_need_reload() || load(_infer_engine_params) != 0) {
W
wangguibao 已提交
186 187
      LOG(ERROR) << "Failed load model_data_path" << _model_data_path;
      return -1;
W
wangguibao 已提交
188
    }
W
wangguibao 已提交
189 190 191 192

    if (parse_version_info(conf, version) != 0) {
      LOG(ERROR) << "Failed parse version info";
      return -1;
W
wangguibao 已提交
193
    }
W
wangguibao 已提交
194 195 196 197 198 199 200 201 202

    LOG(WARNING) << "Succ load model_data_path" << _model_data_path;
    return 0;
  }

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    if (proc_initialize_impl(conf, version) != 0) {
      LOG(ERROR) << "Failed proc initialize impl";
      return -1;
W
wangguibao 已提交
203
    }
W
wangguibao 已提交
204 205 206 207

    // init bsf framework
    if (_infer_thread_num <= 0) {
      return 0;
W
wangguibao 已提交
208
    }
W
wangguibao 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222

    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_init_fn(
        boost::bind(&InferEngine::thrd_initialize_impl, this));
    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_reset_fn(
        boost::bind(&InferEngine::thrd_clear_impl, this));
    im::bsf::TaskExecutor<TaskT>::instance()->set_thread_callback_fn(
        boost::bind(&InferEngine::infer_impl2, this, _1, _2));
    im::bsf::TaskExecutor<TaskT>::instance()->set_batch_size(_infer_batch_size);
    im::bsf::TaskExecutor<TaskT>::instance()->set_batch_align(
        _infer_batch_align);
    if (im::bsf::TaskExecutor<TaskT>::instance()->start(_infer_thread_num) !=
        0) {
      LOG(ERROR) << "Failed start bsf executor, threads:" << _infer_thread_num;
      return -1;
W
wangguibao 已提交
223 224
    }

W
wangguibao 已提交
225 226 227
    LOG(WARNING) << "Enable batch schedule framework, thread_num:"
                 << _infer_thread_num << ", batch_size:" << _infer_batch_size
                 << ", enable_batch_align:" << _infer_batch_align;
W
wangguibao 已提交
228

W
wangguibao 已提交
229 230
    return 0;
  }
W
wangguibao 已提交
231

W
wangguibao 已提交
232 233 234 235
  int infer(const void* in, void* out, uint32_t batch_size = -1) {
    if (_infer_thread_num <= 0) {
      return infer_impl1(in, out, batch_size);
    }
W
wangguibao 已提交
236

W
wangguibao 已提交
237 238 239 240 241 242
    im::bsf::TaskManager<Tensor, Tensor> task_manager;
    task_manager.schedule(*(reinterpret_cast<const BatchTensor*>(in)),
                          *(reinterpret_cast<BatchTensor*>(out)));
    task_manager.wait();
    return 0;
  }
W
wangguibao 已提交
243

W
wangguibao 已提交
244 245 246 247
  int thrd_initialize() {
    if (_infer_thread_num > 0) {
      return 0;
    }
W
wangguibao 已提交
248

W
wangguibao 已提交
249 250
    return thrd_initialize_impl();
  }
W
wangguibao 已提交
251

W
wangguibao 已提交
252 253 254 255
  int thrd_clear() {
    if (_infer_thread_num > 0) {
      return 0;
    }
W
wangguibao 已提交
256

W
wangguibao 已提交
257 258
    return thrd_clear_impl();
  }
W
wangguibao 已提交
259

W
wangguibao 已提交
260 261 262 263 264
  int proc_finalize() {
    if (proc_finalize_impl() != 0) {
      LOG(ERROR) << "Failed proc finalize impl";
      return -1;
    }
W
wangguibao 已提交
265

W
wangguibao 已提交
266 267
    if (_infer_thread_num > 0) {
      im::bsf::TaskExecutor<TaskT>::instance()->stop();
W
wangguibao 已提交
268 269
    }

W
wangguibao 已提交
270 271
    return 0;
  }
W
wangguibao 已提交
272

W
wangguibao 已提交
273 274 275
  int reload() {
    if (check_need_reload()) {
      LOG(WARNING) << "begin reload model[" << _model_data_path << "].";
276
      return load(_infer_engine_params);
W
wangguibao 已提交
277 278 279 280 281 282 283
    }
    return 0;
  }

  uint64_t version() const { return _version; }

  uint32_t thread_num() const { return _infer_thread_num; }
W
wangguibao 已提交
284

W
wangguibao 已提交
285 286 287 288 289
 private:
  int parse_version_info(const configure::EngineDesc& config, bool version) {
    _version = uint64_t(-1);
    return 0;
  }
W
wangguibao 已提交
290

W
wangguibao 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  bool check_need_reload() {
    if (_reload_mode_tag == "timestamp_ne") {
      return check_timestamp_ne();
    } else if (_reload_mode_tag == "timestamp_gt") {
      return check_timestamp_gt();
    } else if (_reload_mode_tag == "md5sum") {
      return check_md5sum();
    } else if (_reload_mode_tag == "revision") {
      return check_revision();
    } else if (_reload_mode_tag == "none") {
      return false;
    } else {
      LOG(ERROR) << "Not support check type: " << _reload_mode_tag;
      return false;
    }
  }

  bool check_timestamp_ne() {
    struct stat st;
    if (stat(_reload_tag_file.c_str(), &st) != 0) {
      LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
      return false;
    }
W
wangguibao 已提交
314

W
wangguibao 已提交
315 316 317
    if ((st.st_mode & S_IFREG) && st.st_mtime != _last_status.last_timestamp) {
      _last_status.last_timestamp = st.st_mtime;
      return true;
W
wangguibao 已提交
318 319
    }

W
wangguibao 已提交
320 321
    return false;
  }
W
wangguibao 已提交
322

W
wangguibao 已提交
323 324 325 326 327 328
  bool check_timestamp_gt() {
    struct stat st;
    if (stat(_reload_tag_file.c_str(), &st) != 0) {
      LOG(ERROR) << "Failed stat config file:" << _reload_tag_file;
      return false;
    }
W
wangguibao 已提交
329

W
wangguibao 已提交
330 331 332
    if ((st.st_mode & S_IFREG) && st.st_mtime > _last_status.last_timestamp) {
      _last_status.last_timestamp = st.st_mtime;
      return true;
W
wangguibao 已提交
333 334
    }

W
wangguibao 已提交
335 336 337 338 339 340 341 342 343
    return false;
  }

  bool check_md5sum() { return false; }

  bool check_revision() { return false; }

 protected:
  std::string _model_data_path;
344
  InferEngineCreationParams _infer_engine_params;
W
wangguibao 已提交
345 346 347 348 349 350 351 352 353 354

 private:
  std::string _reload_tag_file;
  std::string _reload_mode_tag;
  last_check_status _last_status;
  uint32_t _infer_thread_num;
  uint32_t _infer_batch_size;
  bool _infer_batch_align;
  uint64_t _version;
};
W
wangguibao 已提交
355

W
wangguibao 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
template <typename EngineCore>
struct ModelData {
  ModelData() : current_idx(1) {
    cores[0] = NULL;
    cores[1] = NULL;
  }

  ~ModelData() {
    delete cores[0];
    delete cores[1];
  }

  EngineCore* cores[2];
  uint32_t current_idx;
};

template <typename EngineCore>
class DBReloadableInferEngine : public ReloadableInferEngine {
 public:
  virtual ~DBReloadableInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    THREAD_KEY_CREATE(&_skey, NULL);
    THREAD_MUTEX_INIT(&_mutex, NULL);
    return ReloadableInferEngine::proc_initialize(conf, version);
  }

383
  virtual int load(const InferEngineCreationParams& params) {
W
wangguibao 已提交
384 385
    if (_reload_vec.empty()) {
      return 0;
W
wangguibao 已提交
386 387
    }

W
wangguibao 已提交
388
    for (uint32_t ti = 0; ti < _reload_vec.size(); ++ti) {
389
      if (load_data(_reload_vec[ti], params) != 0) {
W
wangguibao 已提交
390 391 392 393 394
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
    }

395
    LOG(WARNING) << "Succ load engine, path: " << params.get_path();
W
wangguibao 已提交
396

W
wangguibao 已提交
397 398
    return 0;
  }
W
wangguibao 已提交
399

400 401
  int load_data(ModelData<EngineCore>* md,
                const InferEngineCreationParams& params) {
W
wangguibao 已提交
402 403 404
    uint32_t next_idx = (md->current_idx + 1) % 2;
    if (md->cores[next_idx]) {
      delete md->cores[next_idx];
W
wangguibao 已提交
405 406
    }

W
wangguibao 已提交
407
    md->cores[next_idx] = new (std::nothrow) EngineCore;
408 409 410 411

    params.dump();
    if (!md->cores[next_idx] || md->cores[next_idx]->create(params) != 0) {
      LOG(ERROR) << "Failed create model, path: " << params.get_path();
W
wangguibao 已提交
412
      return -1;
W
wangguibao 已提交
413
    }
W
wangguibao 已提交
414 415 416
    md->current_idx = next_idx;
    return 0;
  }
W
wangguibao 已提交
417

W
wangguibao 已提交
418 419 420 421 422
  virtual int thrd_initialize_impl() {
    // memory pool to be inited in non-serving-threads
    if (MempoolWrapper::instance().thread_initialize() != 0) {
      LOG(ERROR) << "Failed thread initialize mempool";
      return -1;
W
wangguibao 已提交
423 424
    }

W
wangguibao 已提交
425
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
426 427 428
    if (!md || load_data(md, _infer_engine_params) != 0) {
      LOG(ERROR) << "Failed create thread data from "
                 << _infer_engine_params.get_path();
W
wangguibao 已提交
429
      return -1;
W
wangguibao 已提交
430 431
    }

W
wangguibao 已提交
432 433 434 435 436 437 438 439 440 441 442
    THREAD_SETSPECIFIC(_skey, md);
    im::bsf::AutoMutex lock(_mutex);
    _reload_vec.push_back(md);
    return 0;
  }

  int thrd_clear_impl() {
    // for non-serving-threads
    if (MempoolWrapper::instance().thread_clear() != 0) {
      LOG(ERROR) << "Failed thread clear mempool";
      return -1;
W
wangguibao 已提交
443
    }
W
wangguibao 已提交
444 445 446 447
    return 0;
  }

  int thrd_finalize_impl() { return 0; }
W
wangguibao 已提交
448

W
wangguibao 已提交
449 450 451 452 453
  int proc_finalize_impl() {
    THREAD_KEY_DELETE(_skey);
    THREAD_MUTEX_DESTROY(&_mutex);
    return 0;
  }
W
wangguibao 已提交
454

W
wangguibao 已提交
455 456 457 458 459 460
  EngineCore* get_core() {
    ModelData<EngineCore>* md =
        (ModelData<EngineCore>*)THREAD_GETSPECIFIC(_skey);
    if (!md) {
      LOG(ERROR) << "Failed get thread specific data";
      return NULL;
W
wangguibao 已提交
461
    }
W
wangguibao 已提交
462 463
    return md->cores[md->current_idx];
  }
W
wangguibao 已提交
464

W
wangguibao 已提交
465 466 467 468
 protected:
  THREAD_KEY_T _skey;
  THREAD_MUTEX_T _mutex;
  std::vector<ModelData<EngineCore>*> _reload_vec;
W
wangguibao 已提交
469

W
wangguibao 已提交
470 471
 private:
};
W
wangguibao 已提交
472

W
wangguibao 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
// 多个EngineCore共用同一份模型数据
template <typename EngineCore>
class CloneDBReloadableInferEngine
    : public DBReloadableInferEngine<EngineCore> {
 public:
  virtual ~CloneDBReloadableInferEngine() {}

  virtual int proc_initialize(const configure::EngineDesc& conf, bool version) {
    _pd = new (std::nothrow) ModelData<EngineCore>;
    if (!_pd) {
      LOG(ERROR) << "Failed to allocate for ProcData";
      return -1;
    }
    return DBReloadableInferEngine<EngineCore>::proc_initialize(conf, version);
  }

489
  virtual int load(const InferEngineCreationParams& params) {
W
wangguibao 已提交
490 491
    // 加载进程级模型数据
    if (!_pd ||
492 493
        DBReloadableInferEngine<EngineCore>::load_data(_pd, params) != 0) {
      LOG(ERROR) << "Failed to create common model from [" << params.get_path()
W
wangguibao 已提交
494 495 496 497
                 << "].";
      return -1;
    }
    LOG(WARNING) << "Succ load common model[" << _pd->cores[_pd->current_idx]
498
                 << "], path[" << params.get_path() << "].";
W
wangguibao 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511

    if (DBReloadableInferEngine<EngineCore>::_reload_vec.empty()) {
      return 0;
    }

    for (uint32_t ti = 0;
         ti < DBReloadableInferEngine<EngineCore>::_reload_vec.size();
         ++ti) {
      if (load_data(DBReloadableInferEngine<EngineCore>::_reload_vec[ti],
                    _pd->cores[_pd->current_idx]) != 0) {
        LOG(ERROR) << "Failed reload engine model: " << ti;
        return -1;
      }
W
wangguibao 已提交
512 513
    }

514
    LOG(WARNING) << "Succ load clone model, path[" << params.get_path() << "]";
W
wangguibao 已提交
515

W
wangguibao 已提交
516 517
    return 0;
  }
W
wangguibao 已提交
518

W
wangguibao 已提交
519 520 521 522 523
  // 加载线程级对象,多个线程级对象共用pd_core的模型数据
  int load_data(ModelData<EngineCore>* td, EngineCore* pd_core) {
    uint32_t next_idx = (td->current_idx + 1) % 2;
    if (td->cores[next_idx]) {
      delete td->cores[next_idx];
W
wangguibao 已提交
524 525
    }

W
wangguibao 已提交
526 527 528 529 530 531
    td->cores[next_idx] = new (std::nothrow) EngineCore;
    if (!td->cores[next_idx] ||
        td->cores[next_idx]->clone(pd_core->get()) != 0) {
      LOG(ERROR) << "Failed clone model from pd_core[ " << pd_core << "], idx["
                 << next_idx << "]";
      return -1;
W
wangguibao 已提交
532
    }
W
wangguibao 已提交
533 534 535 536 537 538
    td->current_idx = next_idx;
    LOG(WARNING) << "td_core[" << td->cores[td->current_idx]
                 << "] clone model from pd_core[" << pd_core
                 << "] succ, cur_idx[" << td->current_idx << "].";
    return 0;
  }
W
wangguibao 已提交
539

W
wangguibao 已提交
540 541 542 543 544
  virtual int thrd_initialize_impl() {
    // memory pool to be inited in non-serving-threads
    if (MempoolWrapper::instance().thread_initialize() != 0) {
      LOG(ERROR) << "Failed thread initialize mempool";
      return -1;
W
wangguibao 已提交
545 546
    }

W
wangguibao 已提交
547 548 549 550 551 552 553 554 555 556 557 558
    ModelData<EngineCore>* md = new (std::nothrow) ModelData<EngineCore>;
    if (!md || load_data(md, _pd->cores[_pd->current_idx]) != 0) {
      LOG(ERROR) << "Failed clone thread data, origin_core["
                 << _pd->cores[_pd->current_idx] << "].";
      return -1;
    }

    THREAD_SETSPECIFIC(DBReloadableInferEngine<EngineCore>::_skey, md);
    im::bsf::AutoMutex lock(DBReloadableInferEngine<EngineCore>::_mutex);
    DBReloadableInferEngine<EngineCore>::_reload_vec.push_back(md);
    return 0;
  }
W
wangguibao 已提交
559

W
wangguibao 已提交
560 561 562
 protected:
  ModelData<EngineCore>*
      _pd;  // 进程级EngineCore,多个线程级EngineCore共用该对象的模型数据
W
wangguibao 已提交
563 564
};

W
wangguibao 已提交
565
template <typename FluidFamilyCore>
M
MRXLT 已提交
566 567 568
// class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore>
// {
class FluidInferEngine : public DBReloadableInferEngine<FluidFamilyCore> {
W
wangguibao 已提交
569 570 571
 public:
  FluidInferEngine() {}
  ~FluidInferEngine() {}
W
wangguibao 已提交
572

W
wangguibao 已提交
573 574 575 576 577 578
  int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) {
    FluidFamilyCore* core =
        DBReloadableInferEngine<FluidFamilyCore>::get_core();
    if (!core || !core->get()) {
      LOG(ERROR) << "Failed get fluid core in infer_impl()";
      return -1;
W
wangguibao 已提交
579 580
    }

W
wangguibao 已提交
581 582 583 584 585 586
    if (!core->Run(in, out)) {
      LOG(ERROR) << "Failed run fluid family core";
      return -1;
    }
    return 0;
  }
W
wangguibao 已提交
587

W
wangguibao 已提交
588 589 590
  int infer_impl2(const BatchTensor& in, BatchTensor& out) {  // NOLINT
    return infer_impl1(&in, &out);
  }
W
wangguibao 已提交
591 592
};

W
wangguibao 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
typedef FactoryPool<InferEngine> StaticInferFactory;

class VersionedInferEngine : public InferEngine {
 public:
  VersionedInferEngine() { _versions.clear(); }
  ~VersionedInferEngine() {}

  int proc_initialize(const configure::EngineDesc& conf) {
    if (proc_initialize(conf, false) != 0) {
      LOG(ERROR) << "Failed proc intialize engine: " << conf.name().c_str();
      return -1;
    }

    LOG(WARNING) << "Succ proc initialize engine: " << conf.name().c_str();
    return 0;
  }

  int proc_initialize(const configure::EngineDesc& conf, bool version) {
    std::string engine_type = conf.type();
    InferEngine* engine =
        StaticInferFactory::instance().generate_object(engine_type);
    if (!engine) {
      LOG(ERROR) << "Failed generate engine with type:" << engine_type;
      return -1;
    }
618
#ifndef BCLOUD
M
MRXLT 已提交
619
    VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
M
MRXLT 已提交
620
    int tmp = FLAGS_logtostderr;
W
wangguibao 已提交
621 622 623 624
    if (engine->proc_initialize(conf, version) != 0) {
      LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
      return -1;
    }
M
MRXLT 已提交
625
    VLOG(2) << "FLGS_logtostderr " << FLAGS_logtostderr;
M
MRXLT 已提交
626
    FLAGS_logtostderr = tmp;
627 628 629 630 631 632
#else
    if (engine->proc_initialize(conf, version) != 0) {
      LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
      return -1;
    }
#endif
W
wangguibao 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    auto r = _versions.insert(std::make_pair(engine->version(), engine));
    if (!r.second) {
      LOG(ERROR) << "Failed insert item: " << engine->version()
                 << ", type: " << engine_type;
      return -1;
    }
    LOG(WARNING) << "Succ proc initialize version engine: "
                 << engine->version();
    return 0;
  }

  int proc_finalize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->proc_finalize() != 0) {
        LOG(ERROR) << "Failed proc finalize version engine: " << iter->first;
      }
      LOG(WARNING) << "Succ proc finalize version engine: " << iter->first;
    }
    return 0;
  }

  int thrd_initialize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_initialize() != 0) {
        LOG(ERROR) << "Failed thrd initialize version engine: " << iter->first;
W
wangguibao 已提交
658
        return -1;
W
wangguibao 已提交
659 660
      }
      LOG(WARNING) << "Succ thrd initialize version engine: " << iter->first;
W
wangguibao 已提交
661
    }
W
wangguibao 已提交
662 663
    return 0;
  }
W
wangguibao 已提交
664

W
wangguibao 已提交
665 666 667 668
  int thrd_clear() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_clear() != 0) {
        LOG(ERROR) << "Failed thrd clear version engine: " << iter->first;
W
wangguibao 已提交
669
        return -1;
W
wangguibao 已提交
670
      }
W
wangguibao 已提交
671
    }
W
wangguibao 已提交
672 673
    return 0;
  }
W
wangguibao 已提交
674

W
wangguibao 已提交
675 676 677 678 679 680 681
  int thrd_finalize() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->thrd_finalize() != 0) {
        LOG(ERROR) << "Failed thrd finalize version engine: " << iter->first;
        return -1;
      }
      LOG(WARNING) << "Succ thrd finalize version engine: " << iter->first;
W
wangguibao 已提交
682
    }
W
wangguibao 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    return 0;
  }

  int reload() {
    for (auto iter = _versions.begin(); iter != _versions.end(); ++iter) {
      if (iter->second->reload() != 0) {
        LOG(ERROR) << "Failed reload version engine: " << iter->first;
        return -1;
      }
      LOG(WARNING) << "Succ reload version engine: " << iter->first;
    }
    return 0;
  }

  uint64_t version() const {
    InferEngine* engine = default_engine();
    if (engine) {
      return engine->version();
    } else {
      return uint64_t(-1);
    }
  }

  // inference interface
  InferEngine* default_engine() const {
    if (_versions.size() != 1) {
      LOG(ERROR) << "Ambiguous default engine version:" << _versions.size();
      return NULL;
    }

    return _versions.begin()->second;
  }

  int infer(const void* in, void* out, uint32_t batch_size) {
    InferEngine* engine = default_engine();
    if (!engine) {
      LOG(WARNING) << "fail to get default engine";
      return -1;
    }
    return engine->infer(in, out, batch_size);
  }

  template <typename T>
  T* get_core() {
    InferEngine* engine = default_engine();
    if (!engine) {
      LOG(WARNING) << "fail to get core";
      return NULL;
    }
    auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(engine);
    if (db_engine) {
      return db_engine->get_core();
    }
    LOG(WARNING) << "fail to get core";
    return NULL;
  }

  // versioned inference interface
  int infer(const void* in, void* out, uint32_t batch_size, uint64_t version) {
    auto iter = _versions.find(version);
    if (iter == _versions.end()) {
      LOG(ERROR) << "Not found version engine: " << version;
      return -1;
    }

    return iter->second->infer(in, out, batch_size);
  }

  template <typename T>
  T* get_core(uint64_t version) {
    auto iter = _versions.find(version);
    if (iter == _versions.end()) {
      LOG(ERROR) << "Not found version engine: " << version;
      return NULL;
    }

    auto db_engine = dynamic_cast<DBReloadableInferEngine<T>*>(iter->second);
    if (db_engine) {
      return db_engine->get_core();
    }
    LOG(WARNING) << "fail to get core for " << version;
    return NULL;
  }

  // --
  int proc_initialize_impl(const configure::EngineDesc& conf, bool) {
    return -1;
  }
  int thrd_initialize_impl() { return -1; }
  int thrd_finalize_impl() { return -1; }
  int thrd_clear_impl() { return -1; }
  int proc_finalize_impl() { return -1; }
  int infer_impl1(const void* in, void* out, uint32_t batch_size = -1) {
    return -1;
  }
  int infer_impl2(const BatchTensor& in, BatchTensor& out) {  // NOLINT
    return -1;
  }  // NOLINT

 private:
  boost::unordered_map<uint64_t, InferEngine*> _versions;
W
wangguibao 已提交
784 785
};

W
wangguibao 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
class InferManager {
 public:
  static InferManager& instance() {
    static InferManager ins;
    return ins;
  }

  int proc_initialize(const char* path, const char* file) {
    ModelToolkitConf model_toolkit_conf;
    if (configure::read_proto_conf(path, file, &model_toolkit_conf) != 0) {
      LOG(ERROR) << "failed load infer config, path: " << path << "/" << file;
      return -1;
    }
    size_t engine_num = model_toolkit_conf.engines_size();
    for (size_t ei = 0; ei < engine_num; ++ei) {
B
barrierye 已提交
801 802
      LOG(INFO) << "model_toolkit_conf.engines(" << ei
                << ").name: " << model_toolkit_conf.engines(ei).name();
W
wangguibao 已提交
803 804 805 806 807 808 809 810
      std::string engine_name = model_toolkit_conf.engines(ei).name();
      VersionedInferEngine* engine = new (std::nothrow) VersionedInferEngine();
      if (!engine) {
        LOG(ERROR) << "Failed generate versioned engine: " << engine_name;
        return -1;
      }
      if (engine->proc_initialize(model_toolkit_conf.engines(ei)) != 0) {
        LOG(ERROR) << "Failed initialize version engine, name:" << engine_name;
W
wangguibao 已提交
811
        return -1;
W
wangguibao 已提交
812 813 814 815 816 817 818
      }
      auto r = _map.insert(std::make_pair(engine_name, engine));
      if (!r.second) {
        LOG(ERROR) << "Failed insert item: " << engine_name;
        return -1;
      }
      LOG(WARNING) << "Succ proc initialize engine: " << engine_name;
W
wangguibao 已提交
819
    }
W
wangguibao 已提交
820 821 822 823 824 825 826
    return 0;
  }

  int thrd_initialize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_initialize() != 0) {
        LOG(ERROR) << "Failed thrd initialize engine, name: " << it->first;
W
wangguibao 已提交
827
        return -1;
W
wangguibao 已提交
828 829
      }
      LOG(WARNING) << "Succ thrd initialize engine, name: " << it->first;
W
wangguibao 已提交
830
    }
W
wangguibao 已提交
831 832
    return 0;
  }
W
wangguibao 已提交
833

W
wangguibao 已提交
834 835 836 837 838 839 840 841 842
  int thrd_clear() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_clear() != 0) {
        LOG(ERROR) << "Failed thrd clear engine, name: " << it->first;
        return -1;
      }
    }
    return 0;
  }
W
wangguibao 已提交
843

W
wangguibao 已提交
844 845 846 847 848 849 850 851 852
  int reload() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->reload() != 0) {
        LOG(ERROR) << "Failed reload engine, name: " << it->first;
        return -1;
      }
    }
    return 0;
  }
W
wangguibao 已提交
853

W
wangguibao 已提交
854 855 856 857 858 859 860 861 862 863
  int thrd_finalize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->thrd_finalize() != 0) {
        LOG(ERROR) << "Failed thrd finalize engine, name: " << it->first;
        return -1;
      }
      LOG(WARNING) << "Succ thrd finalize engine, name: " << it->first;
    }
    return 0;
  }
W
wangguibao 已提交
864

W
wangguibao 已提交
865 866 867 868 869 870 871 872
  int proc_finalize() {
    for (auto it = _map.begin(); it != _map.end(); ++it) {
      if (it->second->proc_finalize() != 0) {
        LOG(ERROR) << "Failed proc finalize engine, name: " << it->first;
        return -1;
      }
      LOG(WARNING) << "Succ proc finalize engine, name: " << it->first;
    }
W
wangguibao 已提交
873
    _map.clear();
W
wangguibao 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    return 0;
  }

  // Inference interface
  int infer(const char* model_name,
            const void* in,
            void* out,
            uint32_t batch_size = -1) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return -1;
    }
    return it->second->infer(in, out, batch_size);
  }

  template <typename T>
  T* get_core(const char* model_name) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return NULL;
    }
    auto infer_engine =
        dynamic_cast<DBReloadableInferEngine<T>*>(it->second->default_engine());
    if (infer_engine) {
      return infer_engine->get_core();
    }
    LOG(WARNING) << "fail to get core for " << model_name;
    return NULL;
  }

  // Versioned inference interface
  int infer(const char* model_name,
            const void* in,
            void* out,
            uint32_t batch_size,
            uint64_t version) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return -1;
    }
    return it->second->infer(in, out, batch_size, version);
  }

  template <typename T>
  T* get_core(const char* model_name, uint64_t version) {
    auto it = _map.find(model_name);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model_name;
      return NULL;
    }
    return it->second->get_core<T>(version);
  }

  int query_version(const std::string& model, uint64_t& version) {  // NOLINT
    auto it = _map.find(model);
    if (it == _map.end()) {
      LOG(WARNING) << "Cannot find engine in map, model name:" << model;
      return -1;
    }
    auto infer_engine = it->second->default_engine();
    if (!infer_engine) {
      LOG(WARNING) << "Cannot get default engine for model:" << model;
      return -1;
    }
    version = infer_engine->version();
    LOG(INFO) << "Succ get version: " << version << " for model: " << model;
    return 0;
  }

 private:
  boost::unordered_map<std::string, VersionedInferEngine*> _map;
};
W
wangguibao 已提交
949

W
wangguibao 已提交
950 951 952
}  // namespace predictor
}  // namespace paddle_serving
}  // namespace baidu