web_service.py 10.2 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
B
barrierye 已提交
15

M
MRXLT 已提交
16
from flask import Flask, request, abort
M
MRXLT 已提交
17
from contextlib import closing
M
MRXLT 已提交
18
from multiprocessing import Pool, Process, Queue
M
MRXLT 已提交
19
from paddle_serving_client import Client
M
MRXLT 已提交
20
from paddle_serving_server_gpu import OpMaker, OpSeqMaker, Server
M
MRXLT 已提交
21
from paddle_serving_server_gpu.serve import start_multi_card
M
MRXLT 已提交
22
import socket
M
MRXLT 已提交
23 24
import sys
import numpy as np
M
MRXLT 已提交
25
import paddle_serving_server_gpu as serving
M
MRXLT 已提交
26

B
barriery 已提交
27
from paddle_serving_server_gpu import pipeline
B
barriery 已提交
28
from paddle_serving_server_gpu.pipeline import Op
B
barriery 已提交
29 30


31 32 33 34 35 36 37 38 39 40
def port_is_available(port):
    with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
        sock.settimeout(2)
        result = sock.connect_ex(('0.0.0.0', port))
    if result != 0:
        return True
    else:
        return False


B
barriery 已提交
41 42 43 44
class WebService(object):
    def __init__(self, name="default_service"):
        self.name = name
        # pipeline
B
barriery 已提交
45
        self._server = pipeline.PipelineServer(self.name)
M
MRXLT 已提交
46

B
barriery 已提交
47 48
        self.gpus = []  # deprecated
        self.rpc_service_list = []  # deprecated
M
MRXLT 已提交
49

B
barriery 已提交
50 51
    def get_pipeline_response(self, read_op):
        return None
B
barriery 已提交
52

B
barriery 已提交
53 54 55 56 57 58 59 60 61 62 63
    def prepare_pipeline_config(self, yaml_file):
        # build dag
        read_op = pipeline.RequestOp()
        last_op = self.get_pipeline_response(read_op)
        if not isinstance(last_op, Op):
            raise ValueError("The return value type of `get_pipeline_response` "
                             "function is not Op type, please check function "
                             "`get_pipeline_response`.")
        response_op = pipeline.ResponseOp(input_ops=[last_op])
        self._server.set_response_op(response_op)
        self._server.prepare_server(yaml_file)
B
barriery 已提交
64

B
barriery 已提交
65 66
    def run_service(self):
        self._server.run_server()
B
barriery 已提交
67 68

    def load_model_config(self, model_config):
B
barriery 已提交
69
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
70
        self.model_config = model_config
71 72 73 74 75 76 77 78 79 80 81 82 83 84
        import os
        from .proto import general_model_config_pb2 as m_config
        import google.protobuf.text_format
        if os.path.isdir(model_config):
            client_config = "{}/serving_server_conf.prototxt".format(
                model_config)
        elif os.path.isfile(path):
            client_config = model_config
        model_conf = m_config.GeneralModelConfig()
        f = open(client_config, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
        self.feed_names = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names = [var.alias_name for var in model_conf.fetch_var]
B
barriery 已提交
85 86

    def set_gpus(self, gpus):
B
barriery 已提交
87
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        self.gpus = [int(x) for x in gpus.split(",")]

    def default_rpc_service(self,
                            workdir="conf",
                            port=9292,
                            gpuid=0,
                            thread_num=2,
                            mem_optim=True,
                            ir_optim=False):
        device = "gpu"
        if gpuid == -1:
            device = "cpu"
        op_maker = serving.OpMaker()
        read_op = op_maker.create('general_reader')
        general_infer_op = op_maker.create('general_infer')
        general_response_op = op_maker.create('general_response')

        op_seq_maker = OpSeqMaker()
        op_seq_maker.add_op(read_op)
        op_seq_maker.add_op(general_infer_op)
        op_seq_maker.add_op(general_response_op)

        server = Server()
        server.set_op_sequence(op_seq_maker.get_op_sequence())
        server.set_num_threads(thread_num)
        server.set_memory_optimize(mem_optim)
        server.set_ir_optimize(ir_optim)

        server.load_model_config(self.model_config)
        if gpuid >= 0:
            server.set_gpuid(gpuid)
        server.prepare_server(workdir=workdir, port=port, device=device)
        return server

    def _launch_rpc_service(self, service_idx):
        self.rpc_service_list[service_idx].run_server()

    def port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        if result != 0:
            return True
        else:
            return False

    def prepare_server(self,
                       workdir="",
                       port=9393,
                       device="gpu",
                       gpuid=0,
                       mem_optim=True,
                       ir_optim=False):
B
barriery 已提交
141
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
142 143 144 145 146 147 148
        self.workdir = workdir
        self.port = port
        self.device = device
        self.gpuid = gpuid
        self.port_list = []
        default_port = 12000
        for i in range(1000):
149
            if port_is_available(default_port + i):
B
barriery 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
                self.port_list.append(default_port + i)
            if len(self.port_list) > len(self.gpus):
                break

        if len(self.gpus) == 0:
            # init cpu service
            self.rpc_service_list.append(
                self.default_rpc_service(
                    self.workdir,
                    self.port_list[0],
                    -1,
                    thread_num=2,
                    mem_optim=mem_optim,
                    ir_optim=ir_optim))
        else:
            for i, gpuid in enumerate(self.gpus):
                self.rpc_service_list.append(
                    self.default_rpc_service(
                        "{}_{}".format(self.workdir, i),
                        self.port_list[i],
                        gpuid,
                        thread_num=2,
                        mem_optim=mem_optim,
                        ir_optim=ir_optim))

    def _launch_web_service(self):
        gpu_num = len(self.gpus)
        self.client = Client()
        self.client.load_client_config("{}/serving_server_conf.prototxt".format(
            self.model_config))
        endpoints = ""
        if gpu_num > 0:
            for i in range(gpu_num):
                endpoints += "127.0.0.1:{},".format(self.port_list[i])
        else:
            endpoints = "127.0.0.1:{}".format(self.port_list[0])
        self.client.connect([endpoints])

    def get_prediction(self, request):
        if not request.json:
            abort(400)
        if "fetch" not in request.json:
            abort(400)
        try:
194 195
            feed, fetch, is_batch = self.preprocess(request.json["feed"],
                                                    request.json["fetch"])
B
barriery 已提交
196 197 198 199
            if isinstance(feed, dict) and "fetch" in feed:
                del feed["fetch"]
            if len(feed) == 0:
                raise ValueError("empty input")
200 201
            fetch_map = self.client.predict(
                feed=feed, fetch=fetch, batch=is_batch)
B
barriery 已提交
202 203 204 205
            result = self.postprocess(
                feed=request.json["feed"], fetch=fetch, fetch_map=fetch_map)
            result = {"result": result}
        except ValueError as err:
M
MRXLT 已提交
206
            result = {"result": str(err)}
B
barriery 已提交
207 208 209
        return result

    def run_rpc_service(self):
B
barriery 已提交
210
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address:")
        print("http://{}:{}/{}/prediction".format(localIP, self.port,
                                                  self.name))
        server_pros = []
        for i, service in enumerate(self.rpc_service_list):
            p = Process(target=self._launch_rpc_service, args=(i, ))
            server_pros.append(p)
        for p in server_pros:
            p.start()

        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            self._launch_web_service()

        service_name = "/" + self.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return self.get_prediction(request)

        self.app_instance = app_instance

    # TODO: maybe change another API name: maybe run_local_predictor?
    def run_debugger_service(self, gpu=False):
B
barriery 已提交
239
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address:")
        print("http://{}:{}/{}/prediction".format(localIP, self.port,
                                                  self.name))
        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            self._launch_local_predictor(gpu)

        service_name = "/" + self.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return self.get_prediction(request)

        self.app_instance = app_instance

    def _launch_local_predictor(self, gpu):
W
wangjiawei04 已提交
260 261
        from paddle_serving_app.local_predict import LocalPredictor
        self.client = LocalPredictor()
B
barriery 已提交
262
        self.client.load_model_config(
263
            "{}".format(self.model_config), use_gpu=True, gpu_id=self.gpus[0])
B
barriery 已提交
264 265

    def run_web_service(self):
B
barriery 已提交
266
        print("This API will be deprecated later. Please do not use it")
267
        self.app_instance.run(host="0.0.0.0", port=self.port, threaded=True)
B
barriery 已提交
268 269 270 271 272

    def get_app_instance(self):
        return self.app_instance

    def preprocess(self, feed=[], fetch=[]):
B
barriery 已提交
273
        print("This API will be deprecated later. Please do not use it")
274 275
        is_batch = True
        return feed, fetch, is_batch
B
barriery 已提交
276 277

    def postprocess(self, feed=[], fetch=[], fetch_map=None):
B
barriery 已提交
278
        print("This API will be deprecated later. Please do not use it")
B
barriery 已提交
279
        for key in fetch_map:
B
barriery 已提交
280 281
            fetch_map[key] = fetch_map[key].tolist()
        return fetch_map