bert_service_op.cpp 7.0 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "demo-serving/op/bert_service_op.h"
#include <cstdio>
#include <string>
#include "predictor/framework/infer.h"
#include "predictor/framework/memory.h"
namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::bert_service::BertResInstance;
using baidu::paddle_serving::predictor::bert_service::Response;
using baidu::paddle_serving::predictor::bert_service::BertReqInstance;
using baidu::paddle_serving::predictor::bert_service::Request;
using baidu::paddle_serving::predictor::bert_service::Embedding_values;

X
xulongteng 已提交
31
extern int64_t MAX_SEQ_LEN = 128;
M
MRXLT 已提交
32 33
const bool POOLING = true;
const int LAYER_NUM = 12;
X
xulongteng 已提交
34
extern int EMB_SIZE = 768;
M
MRXLT 已提交
35 36

int BertServiceOp::inference() {
X
fix bug  
xulongteng 已提交
37 38 39
  timeval op_start;
  gettimeofday(&op_start, NULL);

M
MRXLT 已提交
40 41 42 43 44 45 46 47 48 49 50
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  TensorVector *in = butil::get_object<TensorVector>();
  Response *res = mutable_data<Response>();

  uint32_t batch_size = req->instances_size();
  if (batch_size <= 0) {
    LOG(WARNING) << "No instances need to inference!";
    return 0;
  }

X
xulongteng 已提交
51
  MAX_SEQ_LEN = req->instances(0).max_seq_len();
X
xulongteng 已提交
52
  EMB_SIZE = req->instances(0).emb_size();
X
xulongteng 已提交
53

M
MRXLT 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  paddle::PaddleTensor src_ids;
  paddle::PaddleTensor pos_ids;
  paddle::PaddleTensor seg_ids;
  paddle::PaddleTensor input_masks;
  src_ids.name = std::string("src_ids");
  pos_ids.name = std::string("pos_ids");
  seg_ids.name = std::string("sent_ids");
  input_masks.name = std::string("input_mask");

  src_ids.dtype = paddle::PaddleDType::INT64;
  src_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  src_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  pos_ids.dtype = paddle::PaddleDType::INT64;
  pos_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  pos_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  seg_ids.dtype = paddle::PaddleDType::INT64;
  seg_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  seg_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  input_masks.dtype = paddle::PaddleDType::FLOAT32;
  input_masks.shape = {batch_size, MAX_SEQ_LEN, 1};
  input_masks.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(float));

  std::vector<std::vector<size_t>> lod_set;
  lod_set.resize(1);
  for (uint32_t i = 0; i < batch_size; i++) {
    lod_set[0].push_back(i * MAX_SEQ_LEN);
  }
X
xulongteng 已提交
84 85 86 87
  // src_ids.lod = lod_set;
  // pos_ids.lod = lod_set;
  // seg_ids.lod = lod_set;
  // input_masks.lod = lod_set;
M
MRXLT 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100

  uint32_t index = 0;
  for (uint32_t i = 0; i < batch_size; i++) {
    int64_t *src_data = static_cast<int64_t *>(src_ids.data.data()) + index;
    int64_t *pos_data = static_cast<int64_t *>(pos_ids.data.data()) + index;
    int64_t *seg_data = static_cast<int64_t *>(seg_ids.data.data()) + index;
    float *input_masks_data =
        static_cast<float *>(input_masks.data.data()) + index;

    const BertReqInstance &req_instance = req->instances(i);

    memcpy(src_data,
           req_instance.token_ids().data(),
X
xulongteng 已提交
101
           sizeof(int64_t) * MAX_SEQ_LEN);
X
xulongteng 已提交
102
#if 1
M
MRXLT 已提交
103 104
    memcpy(pos_data,
           req_instance.position_ids().data(),
X
xulongteng 已提交
105
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
106 107
    memcpy(seg_data,
           req_instance.sentence_type_ids().data(),
X
xulongteng 已提交
108
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
109 110
    memcpy(input_masks_data,
           req_instance.input_masks().data(),
X
xulongteng 已提交
111
           sizeof(float) * MAX_SEQ_LEN);
X
xulongteng 已提交
112
#endif
X
xulongteng 已提交
113
    index += MAX_SEQ_LEN;
M
MRXLT 已提交
114 115 116 117 118 119 120 121 122 123 124 125
  }

  in->push_back(src_ids);
  in->push_back(pos_ids);
  in->push_back(seg_ids);
  in->push_back(input_masks);

  TensorVector *out = butil::get_object<TensorVector>();
  if (!out) {
    LOG(ERROR) << "Failed get tls output object";
    return -1;
  }
X
xulongteng 已提交
126

X
fix bug  
xulongteng 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#if 0  // print request
  std::ostringstream oss;
  for (int j = 0; j < 3; j++) {
    int64_t* example = reinterpret_cast<int64_t*>(*in)[j].data.data();
    for (uint32_t i = 0; i < MAX_SEQ_LEN; i++) {
        oss << *(example + i) << " ";
    }
    oss << ";";
  }
  float* example = reinterpret_cast<float*>(*in)[3].data.data();
  for (int i = 0; i < MAX_SEQ_LEN; i++) {
    oss << *(example + i) << " ";
  }
  LOG(INFO) << "msg: " << oss.str();
#endif
  timeval infer_start;
  gettimeofday(&infer_start, NULL);
M
MRXLT 已提交
144 145 146 147 148
  if (predictor::InferManager::instance().infer(
          BERT_MODEL_NAME, in, out, batch_size)) {
    LOG(ERROR) << "Failed do infer in fluid model: " << BERT_MODEL_NAME;
    return -1;
  }
X
fix bug  
xulongteng 已提交
149 150 151 152 153
  timeval infer_end;
  gettimeofday(&infer_end, NULL);
  uint64_t infer_time =
      (infer_end.tv_sec * 1000 + infer_end.tv_usec / 1000 -
       (infer_start.tv_sec * 1000 + infer_start.tv_usec / 1000));
X
xulongteng 已提交
154
#if 0
M
MRXLT 已提交
155 156 157 158
    LOG(INFO) << "batch_size : " << out->at(0).shape[0]
        << " seq_len : " << out->at(0).shape[1]
        << " emb_size : " << out->at(0).shape[2];

X
fix bug  
xulongteng 已提交
159
    float *out_data = reinterpret_cast<float *>(out->at(0).data.data());
M
MRXLT 已提交
160 161 162 163 164 165 166 167 168 169
    for (uint32_t bi = 0; bi < batch_size; bi++) {
      BertResInstance *res_instance = res->add_instances();
      for (uint32_t si = 0; si < MAX_SEQ_LEN; si++) {
        Embedding_values *emb_instance = res_instance->add_instances();
        for (uint32_t ei = 0; ei < EMB_SIZE; ei++) {
          uint32_t index = bi * MAX_SEQ_LEN * EMB_SIZE + si * EMB_SIZE + ei;
          emb_instance->add_values(out_data[index]);
        }
      }
    }
X
xulongteng 已提交
170
#else
X
xulongteng 已提交
171 172
  LOG(INFO) << "batch_size : " << out->at(0).shape[0]
            << " emb_size : " << out->at(0).shape[1];
X
fix bug  
xulongteng 已提交
173
  float *out_data = reinterpret_cast<float *>(out->at(0).data.data());
X
xulongteng 已提交
174 175 176 177 178 179 180 181 182 183
  for (uint32_t bi = 0; bi < batch_size; bi++) {
    BertResInstance *res_instance = res->add_instances();
    for (uint32_t si = 0; si < 1; si++) {
      Embedding_values *emb_instance = res_instance->add_instances();
      for (uint32_t ei = 0; ei < EMB_SIZE; ei++) {
        uint32_t index = bi * EMB_SIZE + ei;
        emb_instance->add_values(out_data[index]);
      }
    }
  }
X
xulongteng 已提交
184

X
fix bug  
xulongteng 已提交
185 186 187 188 189 190 191
  timeval op_end;
  gettimeofday(&op_end, NULL);
  uint64_t op_time = (op_end.tv_sec * 1000 + op_end.tv_usec / 1000 -
                      (op_start.tv_sec * 1000 + op_start.tv_usec / 1000));

  res->set_op_time(op_time);
  res->set_infer_time(infer_time);
X
xulongteng 已提交
192
#endif
X
xulongteng 已提交
193 194 195 196 197
  for (size_t i = 0; i < in->size(); ++i) {
    (*in)[i].shape.clear();
  }
  in->clear();
  butil::return_object<TensorVector>(in);
M
MRXLT 已提交
198

X
xulongteng 已提交
199 200 201 202 203
  for (size_t i = 0; i < out->size(); ++i) {
    (*out)[i].shape.clear();
  }
  out->clear();
  butil::return_object<TensorVector>(out);
X
fix bug  
xulongteng 已提交
204

M
MRXLT 已提交
205 206 207 208 209 210 211 212
  return 0;
}

DEFINE_OP(BertServiceOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu