client.py 20.6 KB
Newer Older
Z
zhangjun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

import paddle_serving_client
import os
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import numpy as np
import requests
import json
import base64
import time
import sys

sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))

H
HexToString 已提交
31 32 33 34
#param 'type'(which is in feed_var or fetch_var) = 0 means dataType is int64
#param 'type'(which is in feed_var or fetch_var) = 1 means dataType is float32
#param 'type'(which is in feed_var or fetch_var) = 2 means dataType is int32
#param 'type'(which is in feed_var or fetch_var) = 3 means dataType is string(also called bytes in proto)
Z
zhangjun 已提交
35 36 37
int64_type = 0
float32_type = 1
int32_type = 2
38
bytes_type = 3
H
HexToString 已提交
39
#int_type,float_type,string_type are the set of each subdivision classes.
Z
zhangjun 已提交
40 41
int_type = set([int64_type, int32_type])
float_type = set([float32_type])
H
HexToString 已提交
42
string_type = set([bytes_type])
Z
zhangjun 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78


class _NOPProfiler(object):
    def record(self, name):
        pass

    def print_profile(self):
        pass


class _TimeProfiler(object):
    def __init__(self):
        self.pid = os.getpid()
        self.print_head = 'PROFILE\tpid:{}\t'.format(self.pid)
        self.time_record = [self.print_head]

    def record(self, name):
        self.time_record.append('{}:{} '.format(
            name, int(round(time.time() * 1000000))))

    def print_profile(self):
        self.time_record.append('\n')
        sys.stderr.write(''.join(self.time_record))
        self.time_record = [self.print_head]


_is_profile = int(os.environ.get('FLAGS_profile_client', 0))
_Profiler = _TimeProfiler if _is_profile else _NOPProfiler


class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
H
HexToString 已提交
79
        self.rpc_timeout_ms = 200000
Z
zhangjun 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        self.load_balance_strategy = "la"

    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)

    def set_load_banlance_strategy(self, strategy):
        self.load_balance_strategy = strategy

    def gen_desc(self, rpc_timeout_ms):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)

        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = rpc_timeout_ms
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"

        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

        return self.sdk_desc


class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
        self.feed_shapes_ = {}
        self.feed_types_ = {}
        self.feed_names_to_idx_ = {}
        self.pid = os.getpid()
        self.predictor_sdk_ = None
        self.producers = []
        self.consumer = None
        self.profile_ = _Profiler()
        self.all_numpy_input = True
        self.has_numpy_input = False
H
HexToString 已提交
142
        self.rpc_timeout_ms = 200000
Z
zhangjun 已提交
143 144 145
        from .serving_client import PredictorRes
        self.predictorres_constructor = PredictorRes

146 147 148 149 150 151 152 153 154
    def load_client_config(self, model_config_path_list):
        if isinstance(model_config_path_list, str):
            model_config_path_list = [model_config_path_list]
        elif isinstance(model_config_path_list, list):
            pass

        file_path_list = []
        for single_model_config in model_config_path_list:
            if os.path.isdir(single_model_config):
H
fix bug  
HexToString 已提交
155
                file_path_list.append("{}/serving_client_conf.prototxt".format(
156 157 158
                    single_model_config))
            elif os.path.isfile(single_model_config):
                file_path_list.append(single_model_config)
Z
zhangjun 已提交
159 160
        from .serving_client import PredictorClient
        model_conf = m_config.GeneralModelConfig()
161
        f = open(file_path_list[0], 'r')
Z
zhangjun 已提交
162 163 164 165 166 167 168 169
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
        self.client_handle_ = PredictorClient()
170
        self.client_handle_.init(file_path_list)
Z
zhangjun 已提交
171 172 173 174 175 176
        if "FLAGS_max_body_size" not in os.environ:
            os.environ["FLAGS_max_body_size"] = str(512 * 1024 * 1024)
        read_env_flags = ["profile_client", "profile_server", "max_body_size"]
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
H
HexToString 已提交
177
        self.feed_names_to_idx_ = {}  #this is not useful
Z
zhangjun 已提交
178
        self.lod_tensor_set = set()
H
HexToString 已提交
179
        self.feed_tensor_len = {}  #this is only used for shape check
Z
zhangjun 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193
        self.key = None

        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape

            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
194 195 196 197 198 199 200 201
        if len(file_path_list) > 1:
            model_conf = m_config.GeneralModelConfig()
            f = open(file_path_list[-1], 'r')
            model_conf = google.protobuf.text_format.Merge(
                str(f.read()), model_conf)
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
Z
zhangjun 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
        return

    def add_variant(self, tag, cluster, variant_weight):
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

    def set_rpc_timeout_ms(self, rpc_timeout):
        if not isinstance(rpc_timeout, int):
            raise ValueError("rpc_timeout must be int type.")
        else:
            self.rpc_timeout_ms = rpc_timeout

    def use_key(self, key_filename):
        with open(key_filename, "rb") as f:
            self.key = f.read()

    def get_serving_port(self, endpoints):
        if self.key is not None:
            req = json.dumps({"key": base64.b64encode(self.key).decode()})
        else:
            req = json.dumps({})
        r = requests.post("http://" + endpoints[0], req)
        result = r.json()
        print(result)
        if "endpoint_list" not in result:
            raise ValueError("server not ready")
        else:
            endpoints = [
                endpoints[0].split(":")[0] + ":" +
                str(result["endpoint_list"][0])
            ]
            return endpoints

    def connect(self, endpoints=None, encryption=False):
        # check whether current endpoint is available
        # init from client config
        # create predictor here
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise ValueError(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if encryption:
                endpoints = self.get_serving_port(endpoints)
            if self.predictor_sdk_ is None:
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
                                 100)
            else:
                print(
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
                    format(endpoints))
        sdk_desc = self.predictor_sdk_.gen_desc(self.rpc_timeout_ms)
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
        if isinstance(feed[key],
                      list) and len(feed[key]) != self.feed_tensor_len[key]:
            raise ValueError("The shape of feed tensor {} not match.".format(
                key))
        if type(feed[key]).__module__ == np.__name__ and np.size(feed[
                key]) != self.feed_tensor_len[key]:
            #raise SystemExit("The shape of feed tensor {} not match.".format(
            #    key))
            pass

    def predict(self,
                feed=None,
                fetch=None,
                batch=False,
                need_variant_tag=False,
                log_id=0):
        self.profile_.record('py_prepro_0')

292 293
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")
Z
zhangjun 已提交
294 295 296 297 298 299 300

        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
301
            raise ValueError("Fetch only accepts string and list of string")
Z
zhangjun 已提交
302 303 304 305 306

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
H
HexToString 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320
            # feed = [dict]
            if len(feed) == 1 and isinstance(feed[0], dict):
                feed_batch = feed
            else:
                # if input is a list and the number of feed_var is 1.
                # create a temp_dict { key = feed_var_name, value = list}
                # put the temp_dict into the feed_batch.
                if len(self.feed_names_) != 1:
                    raise ValueError(
                        "input is a list, but we got 0 or 2+ feed_var, don`t know how to divide the feed list"
                    )
                temp_dict = {}
                temp_dict[self.feed_names_[0]] = feed
                feed_batch.append(temp_dict)
Z
zhangjun 已提交
321 322 323
        else:
            raise ValueError("Feed only accepts dict and list of dict")

H
HexToString 已提交
324 325 326 327 328
        # batch_size must be 1, cause batch is already in Tensor.
        if len(feed_batch) != 1:
            raise ValueError("len of feed_batch can only be 1.")

        int_slot = []
Z
zhangjun 已提交
329 330 331
        int_feed_names = []
        int_shape = []
        int_lod_slot_batch = []
H
HexToString 已提交
332 333

        float_slot = []
334
        float_feed_names = []
Z
zhangjun 已提交
335 336
        float_lod_slot_batch = []
        float_shape = []
H
HexToString 已提交
337 338

        string_slot = []
339 340 341
        string_feed_names = []
        string_lod_slot_batch = []
        string_shape = []
Z
zhangjun 已提交
342 343 344 345 346 347
        fetch_names = []

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

H
HexToString 已提交
348 349
        feed_dict = feed_batch[0]
        for key in feed_dict:
H
HexToString 已提交
350 351 352 353 354
            if ".lod" not in key and key not in self.feed_names_:
                raise ValueError("Wrong feed name: {}.".format(key))
            if ".lod" in key:
                continue

H
HexToString 已提交
355
            self.shape_check(feed_dict, key)
H
HexToString 已提交
356 357 358 359
            if self.feed_types_[key] in int_type:
                int_feed_names.append(key)
                shape_lst = []
                if batch == False:
H
HexToString 已提交
360
                    feed_dict[key] = np.expand_dims(feed_dict[key], 0).repeat(
H
HexToString 已提交
361
                        1, axis=0)
H
HexToString 已提交
362 363
                if isinstance(feed_dict[key], np.ndarray):
                    shape_lst.extend(list(feed_dict[key].shape))
H
HexToString 已提交
364 365 366
                    int_shape.append(shape_lst)
                else:
                    int_shape.append(self.feed_shapes_[key])
H
HexToString 已提交
367 368
                if "{}.lod".format(key) in feed_dict:
                    int_lod_slot_batch.append(feed_dict["{}.lod".format(key)])
H
HexToString 已提交
369 370 371
                else:
                    int_lod_slot_batch.append([])

H
HexToString 已提交
372 373
                if isinstance(feed_dict[key], np.ndarray):
                    int_slot.append(np.ascontiguousarray(feed_dict[key]))
374
                    self.has_numpy_input = True
H
HexToString 已提交
375
                else:
H
HexToString 已提交
376
                    int_slot.append(np.ascontiguousarray(feed_dict[key]))
H
HexToString 已提交
377 378 379 380 381 382
                    self.all_numpy_input = False

            elif self.feed_types_[key] in float_type:
                float_feed_names.append(key)
                shape_lst = []
                if batch == False:
H
HexToString 已提交
383
                    feed_dict[key] = np.expand_dims(feed_dict[key], 0).repeat(
H
HexToString 已提交
384
                        1, axis=0)
H
HexToString 已提交
385 386
                if isinstance(feed_dict[key], np.ndarray):
                    shape_lst.extend(list(feed_dict[key].shape))
H
HexToString 已提交
387 388 389
                    float_shape.append(shape_lst)
                else:
                    float_shape.append(self.feed_shapes_[key])
H
HexToString 已提交
390 391
                if "{}.lod".format(key) in feed_dict:
                    float_lod_slot_batch.append(feed_dict["{}.lod".format(key)])
H
HexToString 已提交
392 393 394
                else:
                    float_lod_slot_batch.append([])

H
HexToString 已提交
395 396
                if isinstance(feed_dict[key], np.ndarray):
                    float_slot.append(np.ascontiguousarray(feed_dict[key]))
H
HexToString 已提交
397 398
                    self.has_numpy_input = True
                else:
H
HexToString 已提交
399
                    float_slot.append(np.ascontiguousarray(feed_dict[key]))
H
HexToString 已提交
400 401 402 403 404
                    self.all_numpy_input = False
            #if input is string, feed is not numpy.
            elif self.feed_types_[key] in string_type:
                string_feed_names.append(key)
                string_shape.append(self.feed_shapes_[key])
H
HexToString 已提交
405 406 407
                if "{}.lod".format(key) in feed_dict:
                    string_lod_slot_batch.append(feed_dict["{}.lod".format(
                        key)])
H
HexToString 已提交
408 409
                else:
                    string_lod_slot_batch.append([])
H
HexToString 已提交
410
                string_slot.append(feed_dict[key])
H
HexToString 已提交
411
                self.has_numpy_input = True
Z
zhangjun 已提交
412 413 414 415 416 417 418

        self.profile_.record('py_prepro_1')
        self.profile_.record('py_client_infer_0')

        result_batch_handle = self.predictorres_constructor()
        if self.all_numpy_input:
            res = self.client_handle_.numpy_predict(
H
HexToString 已提交
419 420 421 422 423
                float_slot, float_feed_names, float_shape, float_lod_slot_batch,
                int_slot, int_feed_names, int_shape, int_lod_slot_batch,
                string_slot, string_feed_names, string_shape,
                string_lod_slot_batch, fetch_names, result_batch_handle,
                self.pid, log_id)
Z
zhangjun 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        elif self.has_numpy_input == False:
            raise ValueError(
                "Please make sure all of your inputs are numpy array")
        else:
            raise ValueError(
                "Please make sure the inputs are all in list type or all in numpy.array type"
            )

        self.profile_.record('py_client_infer_1')
        self.profile_.record('py_postpro_0')

        if res == -1:
            return None

        multi_result_map = []
        model_engine_names = result_batch_handle.get_engine_names()
        for mi, engine_name in enumerate(model_engine_names):
            result_map = {}
            # result map needs to be a numpy array
            for i, name in enumerate(fetch_names):
                if self.fetch_names_to_type_[name] == int64_type:
                    # result_map[name] will be py::array(numpy array)
                    result_map[name] = result_batch_handle.get_int64_by_name(
                        mi, name)
                    shape = result_batch_handle.get_shape(mi, name)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
                elif self.fetch_names_to_type_[name] == float32_type:
                    result_map[name] = result_batch_handle.get_float_by_name(
                        mi, name)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
                elif self.fetch_names_to_type_[name] == int32_type:
                    # result_map[name] will be py::array(numpy array)
                    result_map[name] = result_batch_handle.get_int32_by_name(
                        mi, name)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
            multi_result_map.append(result_map)
        ret = None
        if len(model_engine_names) == 1:
            # If only one model result is returned, the format of ret is result_map
            ret = multi_result_map[0]
        else:
            # If multiple model results are returned, the format of ret is {name: result_map}
            ret = {
                engine_name: multi_result_map[mi]
                for mi, engine_name in enumerate(model_engine_names)
            }

        self.profile_.record('py_postpro_1')
        self.profile_.print_profile()

        # When using the A/B test, the tag of variant needs to be returned
        return ret if not need_variant_tag else [
            ret, result_batch_handle.variant_tag()
        ]

    def release(self):
        self.client_handle_.destroy_predictor()
        self.client_handle_ = None