bsf.h 44.8 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
W
wangguibao 已提交
16 17

#include <errno.h>
W
wangguibao 已提交
18
#include <algorithm>
H
HexToString 已提交
19
#include <cstring>
H
HexToString 已提交
20
#include <list>
H
HexToString 已提交
21
#include <set>
W
wangguibao 已提交
22
#include <vector>
W
wangguibao 已提交
23 24 25 26

#ifdef BCLOUD
#include "base/atomicops.h"
#else
W
wangguibao 已提交
27
#include "butil/atomicops.h"
W
wangguibao 已提交
28 29
#endif

G
guru4elephant 已提交
30
#include "core/predictor/common/inner_common.h"
W
wangguibao 已提交
31

W
wangguibao 已提交
32
#include "boost/function.hpp"
W
wangguibao 已提交
33

34 35 36
#include "core/predictor/framework/memory.h"
#include "paddle_inference_api.h"

W
wangguibao 已提交
37 38 39 40
namespace im {
namespace bsf {

static const size_t DEFAULT_BATCH_SIZE = 100;
B
bjjwwang 已提交
41 42
typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
typedef baidu::paddle_serving::predictor::MempoolRegion MempoolRegion;
W
wangguibao 已提交
43

44 45 46 47 48 49 50 51 52
// InItemT is paddle::PaddleTensor
// InVectorT std::vector<paddle::PaddleTensor>
// InVectorT means different feedvar, but not batch.
// Batch is already inside the  paddle::PaddleTensor.

// size_t `rem` records how many batch have not been put in BatchTasks.
// `rem` don`t need to be atomic, cause the operation `put` is synchronous.
// actually, the reason is that lock have been added outside the operation
// `put`.
H
HexToString 已提交
53 54
template <typename TaskT>
class BatchTasks;
H
HexToString 已提交
55 56 57

template <typename InItemT, typename OutItemT>
class TaskManager;
58 59
// size_t `index` records how many batch have been processing completed.
// `index` need to be atomic, cause the operation 'notify' is asynchronous.
W
wangguibao 已提交
60
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
61
struct Task {
62 63
  typedef std::vector<InItemT> InVectorT;
  typedef std::vector<OutItemT> OutVectorT;
W
wangguibao 已提交
64 65 66
  typedef InItemT InType;
  typedef OutItemT OutType;
  typedef Task<InItemT, OutItemT> TaskT;
H
HexToString 已提交
67
  typedef std::vector<size_t> ShapeVector;
68
  typedef std::vector<ShapeVector> VectorOfShapeVector;
B
bjjwwang 已提交
69
  typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
W
wangguibao 已提交
70

W
wangguibao 已提交
71
  pid_t owner_tid;
72 73
  const InVectorT* inVectorT_ptr;
  OutVectorT* outVectorT_ptr;
W
wangguibao 已提交
74
  size_t rem;
H
HexToString 已提交
75 76 77 78 79
  size_t total_feed_batch;
  std::set<size_t> set_feed_lod_index;
  std::set<size_t> set_feed_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;
  std::set<size_t> set_fetch_nobatch_index;
W
wangguibao 已提交
80
  butil::atomic<size_t> index;
H
HexToString 已提交
81
  size_t taskmeta_num;
B
bjjwwang 已提交
82
  size_t total_taskmeta_num;
H
HexToString 已提交
83 84 85 86
  THREAD_MUTEX_T task_mut;
  bool fetch_init;
  // taskmeta_num * set_feed_lod_index.size()
  std::vector<OutVectorT> outLodTensorVector;
B
bjjwwang 已提交
87
  MempoolRegion* memoryPtr;
H
HexToString 已提交
88 89 90
  TaskManager<InItemT, OutItemT>* task_manager_ptr;
  THREAD_MUTEX_T* thread_mutex_ptr;
  THREAD_COND_T* thread_cond_ptr;
W
wangguibao 已提交
91 92 93

  Task() {
    owner_tid = -1;
94 95
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
H
HexToString 已提交
96 97 98
    thread_mutex_ptr = NULL;
    thread_cond_ptr = NULL;
    task_manager_ptr = NULL;
H
HexToString 已提交
99 100 101 102
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
W
wangguibao 已提交
103
    rem = -1;
H
HexToString 已提交
104 105
    total_feed_batch = 0;
    taskmeta_num = 0;
W
wangguibao 已提交
106
    index.store(0, butil::memory_order_relaxed);
H
HexToString 已提交
107 108
    THREAD_MUTEX_INIT(&task_mut, NULL);
    fetch_init = false;
B
bjjwwang 已提交
109
    total_taskmeta_num = 1;
H
HexToString 已提交
110 111 112
    outLodTensorVector.clear();
  }
  ~Task() {
H
HexToString 已提交
113 114 115
    thread_mutex_ptr = NULL;
    thread_cond_ptr = NULL;
    task_manager_ptr = NULL;
H
HexToString 已提交
116 117 118 119 120 121 122 123 124 125
    owner_tid = -1;
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
    rem = -1;
    total_feed_batch = 0;
    taskmeta_num = 0;
B
bjjwwang 已提交
126
    total_taskmeta_num = 1;
H
HexToString 已提交
127
    index.store(0, butil::memory_order_relaxed);
H
HexToString 已提交
128
    THREAD_MUTEX_DESTROY(&task_mut);
H
HexToString 已提交
129 130 131 132
    fetch_init = false;
    outLodTensorVector.clear();
  }

H
HexToString 已提交
133 134 135 136
  void clear() {
    thread_mutex_ptr = NULL;
    thread_cond_ptr = NULL;
    task_manager_ptr = NULL;
H
HexToString 已提交
137 138 139 140 141 142 143 144 145 146
    owner_tid = -1;
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
    rem = -1;
    total_feed_batch = 0;
    taskmeta_num = 0;
B
bjjwwang 已提交
147
    total_taskmeta_num = 1;
H
HexToString 已提交
148 149 150
    index.store(0, butil::memory_order_relaxed);
    THREAD_MUTEX_INIT(&task_mut, NULL);
    fetch_init = false;
H
HexToString 已提交
151
    outLodTensorVector.clear();
W
wangguibao 已提交
152
  }
153

H
HexToString 已提交
154
  bool check_feedvar_valid(size_t feedvar_index) {
155 156 157 158 159 160 161 162 163 164 165 166 167
    if (feedvar_index < 0 || inVectorT_ptr->size() <= feedvar_index) {
      LOG(ERROR) << "feedvar doesnt exsit or feedvar_index error";
      return 0;
    }

    if ((*inVectorT_ptr)[feedvar_index].shape.size() <= 0) {
      LOG(ERROR) << "feedvar[" << feedvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
168 169 170 171 172 173 174 175
  bool combine_task_valid(Task* other_task) {
    // TODO(HexToString): auto-padding
    // 除最外层的shape外,内层shape应一致才能合并。
    // 否则跳出循环,放入下一个batchTask中。
    // 以此保证batch.append_task(task)中的task的内层shape相同。
    if (other_task->feedvar_shape_nobatch() != feedvar_shape_nobatch()) {
      return false;
    }
176

H
HexToString 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    // 对于Shape[0] = 1 而!=batch的情况,因为合并时,取其中一个的值
    // 所以要求该feedvar必须相等,才能合并。
    // 目前没有PaddleTensor和PaddleBuff没有重载==,所以只能比较内存.
    for (size_t feedvar_index = 0;
         feedvar_index < set_feed_nobatch_index.size();
         ++feedvar_index) {
      int result =
          std::memcmp((*inVectorT_ptr)[feedvar_index].data.data(),
                      (*(other_task->inVectorT_ptr))[feedvar_index].data.data(),
                      (*inVectorT_ptr)[feedvar_index].data.length());
      if (result != 0) return false;
    }
    return true;
  }

  size_t feedvar_batch_size(size_t feedvar_index) {
193 194 195
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
196 197 198 199 200 201 202 203 204
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
        (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
      return (*inVectorT_ptr)[feedvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
205 206 207
    return (*inVectorT_ptr)[feedvar_index].shape[0];
  }

H
HexToString 已提交
208
  size_t feedvar_element_bytesize(size_t feedvar_index) {
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
    int dtype = (*inVectorT_ptr)[feedvar_index].dtype;
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
230
  size_t feedvar_element_num(size_t feedvar_index) {
231 232 233
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
234
    size_t element_num = 1;
235 236
    if ((*inVectorT_ptr)[feedvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
H
HexToString 已提交
237 238
      // [10,1] = [10], so if shape[1] doesn`t exist.
      // should return 1.
239 240 241
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
242
    for (size_t i = 1; i < (*inVectorT_ptr)[feedvar_index].shape.size(); ++i) {
243 244 245 246 247
      element_num *= (*inVectorT_ptr)[feedvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
248
  size_t feedvar_bytesize(size_t feedvar_index) {
249 250 251 252
    return feedvar_element_num(feedvar_index) *
           feedvar_element_bytesize(feedvar_index);
  }

H
HexToString 已提交
253
  ShapeVector feedvar_shape_nobatch(size_t feedvar_index) {
254 255 256 257 258 259 260 261
    if (!check_feedvar_valid(feedvar_index)) {
      return ShapeVector();
    }
    return ShapeVector{(*inVectorT_ptr)[feedvar_index].shape.begin() + 1,
                       (*inVectorT_ptr)[feedvar_index].shape.end()};
  }

  VectorOfShapeVector feedvar_shape_nobatch() {
H
HexToString 已提交
262 263 264 265 266
    VectorOfShapeVector vector_of_feedvar_shape_nobatch;
    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
         ++feedvar_index) {
      vector_of_feedvar_shape_nobatch.push_back(
          feedvar_shape_nobatch(feedvar_index));
267 268 269 270
    }
    return vector_of_feedvar_shape_nobatch;
  }

H
HexToString 已提交
271 272 273 274 275 276 277 278 279 280
  // For each feedvar, batch should be 1 or batch_size.
  // if feedvar-1: batch_size = 1 (always not batch).
  // feedvar-2: batch_size = n,  batch = n.
  // this function is not thread safe. only called when task is creating.
  bool task_init() {
    total_feed_batch = feedvar_batch_size(0);
    // which means error.
    if (total_feed_batch <= 0) return false;

    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
281
         ++feedvar_index) {
H
HexToString 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中feedvar-1: 带batch,且batch =1,shape[0] = 1
      // feedvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_feed_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (feedvar_batch_size(feedvar_index) != total_feed_batch) {
        // which means error.
        if (feedvar_batch_size(feedvar_index) != 1 && total_feed_batch != 1) {
          return false;
        } else {
          // which means feedvar shape[0] = 1.
          // shape[0] does not change with batch
          set_feed_nobatch_index.insert(feedvar_index);
          total_feed_batch =
              std::max(feedvar_batch_size(feedvar_index), total_feed_batch);
        }
      }
      // 将lod feedvar index加入到vector中。
      if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
          (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
        set_feed_lod_index.insert(feedvar_index);
304 305
      }
    }
H
HexToString 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    return true;
  }

  size_t batch_size() { return total_feed_batch; }

  // start_batch range is 0~batch_size, end_batch range is 1~batch_size
  // start_batch should not be included, end_batch > start_batch
  // return is (start_batch, end_batch] = [start_batch+1,end_batch]
  // for not lod, shape0_index = [(start_batch+1)-1,end_batch-1] =
  // [start_batch,end_batch-1] = [start_batch,end_batch)
  // for lod, shape0_index = [lod[start_batch],lod[end_batch]-1] =
  // [lod[start_batch],lod[end_batch])
  // for nobatch, shape0_index = [0,1)
  // 对于调用者,拿到shape0_index后,for(size_t myindex =shape0_index[0];
  // myindex <shape0_index[1];myindex++)即可.

  // 原始lod= [0,3,4,6] 取的batch为(start_batch = 1,end_batch =
  // 3],即取batch=2,3.
  // 此时lod=[3,4,6],处理后得到[1,3]
  // 这样处理后,合并lod比较方便,直接加上上一个lod的结尾的值即可。
  std::vector<std::vector<size_t>> get_feature_by_batch(size_t feedvar_index,
                                                        size_t start_batch,
                                                        size_t end_batch) {
    std::vector<std::vector<size_t>> feature_vector;
    // feature_vector是双层vector,这么设计是由于一个遍历即可处理所有的特征。
    // feature_vector[0]是由shape0_index的范围值组成的vector,包含两个元素最小和最大值。
    // feature_vector[1]是由lod组成的vector,包含指定batch的lod信息.
    // feature_vector[2]是由单个元素的组成的vector,元素值为1表示是nobatch的feedvar。

    // if 为 nobatch feedvar情况。
    // else if 为带lod的feedvar情况。
    // else为不带lod 普通feedvar情况。
    if (set_feed_nobatch_index.size() > 0 &&
        set_feed_nobatch_index.find(feedvar_index) !=
            set_feed_nobatch_index.end()) {
      feature_vector = {{0, 1}, {}, {1}};
    } else if (set_feed_lod_index.size() > 0 &&
               set_feed_lod_index.find(feedvar_index) !=
                   set_feed_lod_index.end()) {
      std::vector<size_t> feed_lod_vector(end_batch - start_batch);
      for (size_t lod_index = start_batch + 1, vector_index = 0;
           lod_index < end_batch + 1;
           ++lod_index, ++vector_index) {
        feed_lod_vector[vector_index] =
            (*inVectorT_ptr)[feedvar_index].lod[0][lod_index] -
            (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
352
      }
H
HexToString 已提交
353 354 355 356 357 358
      size_t shape0_start = (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
      size_t shape0_end = (*inVectorT_ptr)[feedvar_index].lod[0][end_batch];
      feature_vector = {{shape0_start, shape0_end}, feed_lod_vector};
      // feature_vector.push_back(feed_lod_vector);
    } else {
      feature_vector = {{start_batch, end_batch}};
359
    }
H
HexToString 已提交
360
    return feature_vector;
361 362
  }

H
HexToString 已提交
363 364 365
  bool combine_taskmeta() {
    // 只有含有lod类型的fetch输出,且task被拆分为多个taskmeta的情况
    // 才需要将数据从outLodTensorVector搬运到outVectorT_ptr
B
bjjwwang 已提交
366
    if (vector_fetch_lod_index.size() > 0 && total_taskmeta_num > 1) {
H
HexToString 已提交
367 368 369
      for (size_t index = 0; index < vector_fetch_lod_index.size(); ++index) {
        size_t data_length = 0;
        size_t lod_length = 0;
H
HexToString 已提交
370
        size_t total_shape0 = 0;
H
HexToString 已提交
371 372
        size_t feedvar_index = vector_fetch_lod_index[index];
        // 由于PaddleTensor的resize实现,是每次都会清空,所以必须先统计总长度。
B
bjjwwang 已提交
373
        for (size_t taskmeta_index = 0; taskmeta_index < total_taskmeta_num;
H
HexToString 已提交
374
             ++taskmeta_index) {
H
HexToString 已提交
375 376 377
          data_length +=
              outLodTensorVector[taskmeta_index][index].data.length();
          lod_length += outLodTensorVector[taskmeta_index][index].lod[0].size();
H
HexToString 已提交
378
          total_shape0 += outLodTensorVector[taskmeta_index][index].shape[0];
H
HexToString 已提交
379 380 381
        }
        // 一次性扩容PaddleTensor中的data和lod
        paddle::PaddleTensor& fetchVarTensor = (*outVectorT_ptr)[feedvar_index];
B
bjjwwang 已提交
382
        fetchVarTensor.shape[0] = total_shape0;
H
HexToString 已提交
383 384
        void* databuf_data =
            MempoolWrapper::instance().malloc(data_length, memoryPtr);
B
bjjwwang 已提交
385 386
        paddle::PaddleBuf paddleBuf(databuf_data, data_length);
        fetchVarTensor.data = paddleBuf;
H
HexToString 已提交
387 388

        // fetchVarTensor.data.Resize(data_length);
H
HexToString 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401
        // task中的lod补0
        if (fetchVarTensor.lod.size() <= 0) {
          fetchVarTensor.lod.push_back({0});
        } else if (fetchVarTensor.lod[0].size() <= 0) {
          fetchVarTensor.lod[0].push_back(0);
        }
        fetchVarTensor.lod[0].resize(lod_length + 1, 0);

        //
        size_t data_length_offset = 0;
        size_t lod_length_offset = 0;
        size_t once_data_length = 0;
        size_t once_lod_length = 0;
B
bjjwwang 已提交
402
        for (size_t taskmeta_index = 0; taskmeta_index < total_taskmeta_num;
H
HexToString 已提交
403
             ++taskmeta_index) {
H
HexToString 已提交
404
          // process data
H
HexToString 已提交
405 406 407 408 409 410
          void* dst_ptr = fetchVarTensor.data.data() + data_length_offset;
          void* source_ptr =
              outLodTensorVector[taskmeta_index][index].data.data();
          once_data_length =
              outLodTensorVector[taskmeta_index][index].data.length();
          memcpy(dst_ptr, source_ptr, once_data_length);
B
bjjwwang 已提交
411
          data_length_offset += once_data_length;
H
HexToString 已提交
412
          // process lod
B
bjjwwang 已提交
413
          size_t last_lod_value = fetchVarTensor.lod[0][lod_length_offset];
H
HexToString 已提交
414 415 416 417 418 419 420
          once_lod_length =
              outLodTensorVector[taskmeta_index][index].lod[0].size();
          for (size_t once_index = 0; once_index < once_lod_length;
               ++once_index) {
            fetchVarTensor.lod[0][lod_length_offset + 1] =
                last_lod_value +
                outLodTensorVector[taskmeta_index][index].lod[0][once_index];
B
bjjwwang 已提交
421
            lod_length_offset++;
H
HexToString 已提交
422 423 424
          }
        }
      }
425
    }
H
HexToString 已提交
426
    return true;
427
  }
H
HexToString 已提交
428

H
HexToString 已提交
429 430
  bool task_fetch_init(BatchTasks<TaskT>& batchTask);
  bool task_fetch_create(BatchTasks<TaskT>& batchTask);
W
wangguibao 已提交
431 432
};

433 434 435 436 437 438 439 440 441 442 443 444
// `Several Task` or `part of batch in Task` can be a TaskMeta.
// Task is the original Request from User.
// For example, the batch of Task is 30. There are 4 Requests.
// The batch of BatchTasks is 100, which means we can deal 100 batch 1 time.
// TaskMeta-1:{task-1,0,30} TaskMeta-2:{task-2,0,30} TaskMeta-3:{task-3,0,30}
// but the last Task will be divided to 2 TaskMeta.
// TaskMeta-4:{task-4,0,10} TaskMeta-5:{task-4,10,30}.
// TaskMeta-1 ~ TaskMeta-4 will be inside BatchTasks-1.
// TaskMeta-5 will be inside BatchTasks-2.

// TaskMeta is necessary.
// cause we need know the the corresponding relationship between
H
HexToString 已提交
445
// `_batch_out`(which is in BatchTasks) and `outVectorT_ptr`(which is in Task).
446 447
// especially when 1 Task be divided into several TaskMeta and be put into
// several different BatchTasks.
H
HexToString 已提交
448 449 450 451 452

// begin、add、end means batch, not shape[0].
// if not lod, batch == shape[0]. if lod, batch != shape[0]
// for example, lod = [0,3,4,6], shape = [6,340,340]
// there is 3 batch actually, add = 3, but shape[0] = 6.
W
wangguibao 已提交
453
template <typename TaskT>
W
wangguibao 已提交
454
struct TaskMeta {
H
HexToString 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  TaskMeta(TaskT* ptr, size_t start, size_t add, size_t taskmeta_index)
      : task(ptr),
        begin(start),
        end(start + add),
        taskmeta_index(taskmeta_index) {
    feedvar_num = ptr->inVectorT_ptr->size();
    for (size_t feedvar_index = 0; feedvar_index < feedvar_num;
         ++feedvar_index) {
      std::vector<std::vector<size_t>> feature =
          ptr->get_feature_by_batch(feedvar_index, start, start + add);
      feed_shape0_range.push_back(feature[0]);
      feedvar_type.push_back(feature.size());
      if (feature.size() == 1) {
        feed_lod_vector.push_back({});
      } else if (feature.size() == 2) {
        feed_lod_vector.push_back(feature[1]);
      } else {
        feed_lod_vector.push_back({});
      }
    }
  }
W
wangguibao 已提交
476 477 478 479

  TaskT* task;
  size_t begin;
  size_t end;
H
HexToString 已提交
480 481 482 483 484
  size_t feedvar_num;
  size_t taskmeta_index;
  std::vector<std::vector<size_t>> feed_shape0_range;
  std::vector<std::vector<size_t>> feed_lod_vector;
  std::vector<size_t> feedvar_type;
W
wangguibao 已提交
485 486
};

487 488 489
// each TaskT is already include batch in itself
// BatchTasks need to combine several `small TaskMeta` into a new `big TaskT`.
// The only difference between the `big TaskT` and `small TaskT` is that
H
HexToString 已提交
490 491
// the TaskT.inVectorT_ptr->[feedvar_index].shape[0] is different
// `big TaskT`.inVectorT_ptr->[feedvar_index].shape[0] is actually batch_size .
W
wangguibao 已提交
492
template <typename TaskT>
W
wangguibao 已提交
493
class BatchTasks {
W
wangguibao 已提交
494 495 496 497
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
  typedef TaskMeta<TaskT> TaskMetaT;
H
HexToString 已提交
498 499 500 501 502
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
  typedef std::vector<size_t> LodVector;
  typedef std::vector<LodVector> PaddleTensorLod;
  friend TaskT;
W
wangguibao 已提交
503

H
HexToString 已提交
504
  explicit BatchTasks(size_t batch_size,
H
HexToString 已提交
505
                      bool overrun = false,
H
HexToString 已提交
506
                      bool allow_split_request = true)
W
wangguibao 已提交
507 508
      : _batch_size(batch_size),
        _rem_size(batch_size),
H
HexToString 已提交
509
        _overrun(overrun),
H
HexToString 已提交
510
        _allow_split_request(allow_split_request) {
W
wangguibao 已提交
511
    _batch_in.clear();
512
    _batch_in_offset.clear();
H
HexToString 已提交
513 514 515 516
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
517
    _batch_out.clear();
518
    _batch_out_offset.clear();
H
HexToString 已提交
519
    _total_fetch_batch = 0;
520
    _taskmeta_vector.clear();
H
HexToString 已提交
521 522
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
523 524 525 526
  }

  ~BatchTasks() {
    _batch_in.clear();
527
    _batch_in_offset.clear();
H
HexToString 已提交
528 529 530 531
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
532
    _batch_out.clear();
533
    _batch_out_offset.clear();
H
HexToString 已提交
534
    _total_fetch_batch = 0;
535
    _taskmeta_vector.clear();
H
HexToString 已提交
536 537
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
538 539 540
  }

  // synchronized operation
541
  // because Upper level callers of this function have already locked.
H
HexToString 已提交
542
  // 能进到此函数的task都是同类task,在该函数之前已保证了这点。
W
wangguibao 已提交
543 544
  size_t append_task(TaskT* task) {
    size_t add = std::min(task->rem, _rem_size);
H
HexToString 已提交
545
    // when _overrun == true, it means always take a whole task as TaskMeta
H
HexToString 已提交
546 547
    // we can temporary breakthrough the limit of BatchTask`s capacity
    // BatchTask`s capacity is _batch_size or _rem_size
H
HexToString 已提交
548
    if (_overrun) {
W
wangguibao 已提交
549
      add = task->rem;
W
wangguibao 已提交
550
    }
551
    int start_index = task->batch_size() - task->rem;
H
HexToString 已提交
552
    TaskMetaT tm(task, start_index, add, task->taskmeta_num);
B
bjjwwang 已提交
553 554
    task->rem -= add;
    _rem_size -= add;
H
HexToString 已提交
555 556 557
    if (task->taskmeta_num == 0) {
      task->total_taskmeta_num =
          1 + (task->rem + _batch_size - 1) / _batch_size;
B
bjjwwang 已提交
558
    }
H
HexToString 已提交
559
    task->taskmeta_num += 1;
560
    _taskmeta_vector.push_back(tm);
H
HexToString 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    if (_batch_in_offset.size() == 0) {
      _batch_in_offset.resize(tm.feedvar_num, 0);
    }
    if (_total_shape0_batch_in.size() == 0) {
      _total_shape0_batch_in.resize(tm.feedvar_num, 0);
    }
    if (_batch_in_lod.size() == 0) {
      PaddleTensorLod null_lod;
      _batch_in_lod.resize(tm.feedvar_num, null_lod);
    }
    _total_feed_batch += add;
    for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
         ++feedvar_index) {
      if (tm.feedvar_type[feedvar_index] == 1) {
        // 普通的非lod feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      } else if (tm.feedvar_type[feedvar_index] == 2) {
        // lod类型的feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
        // 在Lod最前面加0
        if (_batch_in_lod[feedvar_index].size() <= 0) {
          _batch_in_lod[feedvar_index].push_back({0});
        } else if (_batch_in_lod[feedvar_index][0].size() <= 0) {
          _batch_in_lod[feedvar_index][0].push_back(0);
        }
        // 将lod加上前一组lod的结尾最大值,组合Lod
        size_t last_lod_value = _batch_in_lod[feedvar_index][0].back();
        for (size_t lod_index = 0;
             lod_index < tm.feed_lod_vector[feedvar_index].size();
             ++lod_index) {
          _batch_in_lod[feedvar_index][0].push_back(
              last_lod_value + tm.feed_lod_vector[feedvar_index][lod_index]);
        }
      } else {
        // tm.feedvar_type[feedvar_index] == 3
        // nobatch类型的feedvar.
        // 此时不累加,且值应为1
        _total_shape0_batch_in[feedvar_index] =
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      }
    }
W
wangguibao 已提交
609 610 611
    return _rem_size;
  }

612 613
  static bool check_valid(const typename TaskT::InVectorT& in,
                          const typename TaskT::OutVectorT& out,
W
wangguibao 已提交
614 615 616 617 618 619 620
                          bool align) {
    (void)in;
    (void)out;
    (void)align;
    return true;
  }

621 622 623 624 625 626 627 628
  // this should be modified totally.
  // maybe we don`t need to do this inside the BatchTasks.
  // we can do the copy work outside the BatchTasks.
  // cause maybe next time we don`t need to do the extra copy.
  // directly copy the every Task into the Predictor.

  // batch.merge_tasks() is thread-safe function
  // cause batch is a local variable and Task is just read, not written.
H
HexToString 已提交
629

W
wangguibao 已提交
630
  void merge_tasks() {
631 632 633 634 635 636
    if (_taskmeta_vector.size() <= 0) {
      return;
    }
    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskMetaT& tm = _taskmeta_vector[ti];

H
HexToString 已提交
637 638
      for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
           ++feedvar_index) {
639
        const paddle::PaddleTensor& feedVarTensor =
H
HexToString 已提交
640 641
            (*tm.task->inVectorT_ptr)[feedvar_index];
        size_t feedvar_bytesize = tm.task->feedvar_bytesize(feedvar_index);
642 643

        if (ti == 0) {
H
HexToString 已提交
644
          // Create the entire tensor at once
645 646 647 648 649 650
          // for now, we assume that every task feedvar_bytesize is the same.
          // which means we dont support auto embedding.
          // but for different feedvar, it is different.
          paddle::PaddleTensor paddleTensor;
          paddleTensor.dtype = feedVarTensor.dtype;
          paddleTensor.name = feedVarTensor.name;
H
HexToString 已提交
651
          paddleTensor.lod = _batch_in_lod[feedvar_index];
652
          paddleTensor.shape = feedVarTensor.shape;
H
HexToString 已提交
653
          paddleTensor.shape[0] = _total_shape0_batch_in[feedvar_index];
H
HexToString 已提交
654 655
          size_t databuf_size =
              feedvar_bytesize * _total_shape0_batch_in[feedvar_index];
B
bjjwwang 已提交
656 657 658
          void* databuf_data = MempoolWrapper::instance().malloc(databuf_size);
          paddle::PaddleBuf paddleBuf(databuf_data, databuf_size);
          paddleTensor.data = paddleBuf;
659 660 661
          _batch_in.push_back(paddleTensor);
        }

H
HexToString 已提交
662 663
        void* dst_ptr = _batch_in[feedvar_index].data.data() +
                        _batch_in_offset[feedvar_index];
664
        void* source_ptr =
H
HexToString 已提交
665 666 667 668 669
            feedVarTensor.data.data() +
            feedvar_bytesize * tm.feed_shape0_range[feedvar_index][0];
        size_t length =
            feedvar_bytesize * (tm.feed_shape0_range[feedvar_index][1] -
                                tm.feed_shape0_range[feedvar_index][0]);
670
        memcpy(dst_ptr, source_ptr, length);
H
HexToString 已提交
671 672 673
        // nobatch类型的feedvar,不叠加.
        if (tm.feedvar_type[feedvar_index] != 3)
          _batch_in_offset[feedvar_index] += length;
W
wangguibao 已提交
674
      }
W
wangguibao 已提交
675
    }
W
wangguibao 已提交
676
  }
W
wangguibao 已提交
677

H
HexToString 已提交
678
  bool check_fetchvar_valid(size_t fetchvar_index) {
679 680 681 682 683 684 685 686 687 688 689 690 691
    if (fetchvar_index < 0 || _batch_out.size() <= fetchvar_index) {
      LOG(ERROR) << "fetchvar doesnt exsit or fetchvar_index error";
      return 0;
    }

    if (_batch_out[fetchvar_index].shape.size() <= 0) {
      LOG(ERROR) << "fetchvar[" << fetchvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
692
  size_t fetchvar_element_bytesize(size_t fetchvar_index) {
693 694 695
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
696
    size_t dtype = _batch_out[fetchvar_index].dtype;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
714
  size_t fetchvar_element_num(size_t fetchvar_index) {
715 716 717
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
718
    size_t element_num = 1;
719 720 721 722 723
    if (_batch_out[fetchvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
724
    for (size_t i = 1; i < _batch_out[fetchvar_index].shape.size(); ++i) {
725 726 727 728 729
      element_num *= _batch_out[fetchvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
730
  size_t fetchvar_bytesize(size_t fetchvar_index) {
731 732 733 734
    return fetchvar_element_num(fetchvar_index) *
           fetchvar_element_bytesize(fetchvar_index);
  }

H
HexToString 已提交
735 736 737
  size_t fetchvar_batch_size(size_t fetchvar_index) {
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
738
    }
H
HexToString 已提交
739 740 741 742 743 744 745 746 747 748
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if (_batch_out[fetchvar_index].lod.size() > 0 &&
        _batch_out[fetchvar_index].lod[0].size() > 0) {
      return _batch_out[fetchvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
    return _batch_out[fetchvar_index].shape[0];
749 750
  }

H
HexToString 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764
  size_t fetchvar_batch_size() { return _total_fetch_batch; }

  bool deal_batch_out() {
    _total_fetch_batch = fetchvar_batch_size(0);
    if (_total_fetch_batch <= 0) return false;
    for (size_t fetchvar_index = 0; fetchvar_index < _batch_out.size();
         ++fetchvar_index) {
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中fetchvar-1: 带batch,且batch =1,shape[0] = 1
      // fetchvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_fetch_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (fetchvar_batch_size(fetchvar_index) != _total_fetch_batch) {
H
HexToString 已提交
765
        if (fetchvar_batch_size(fetchvar_index) <= 0) {
B
bjjwwang 已提交
766
          // which means error.
H
HexToString 已提交
767
          return false;
H
HexToString 已提交
768
        } else if (fetchvar_batch_size(fetchvar_index) == 1) {
H
HexToString 已提交
769 770 771 772 773
          // which means fetchvar shape[0] = 1.
          // shape[0] does not change with batch
          set_fetch_nobatch_index.insert(fetchvar_index);
          _total_fetch_batch =
              std::max(fetchvar_batch_size(fetchvar_index), _total_fetch_batch);
H
HexToString 已提交
774 775 776 777 778 779
        } else if (_total_fetch_batch == 1) {
          // 这时意味着,之前的fetchvar shape[0] 全部都= 1
          // 当前的fetchvar shape[0] > 1
          // 所以,之前的都是no_batch
          for (size_t temp_index = fetchvar_index - 1; temp_index >= 0;
               --temp_index) {
B
bjjwwang 已提交
780 781 782 783
            set_fetch_nobatch_index.insert(fetchvar_index);
          }
          _total_fetch_batch =
              std::max(fetchvar_batch_size(fetchvar_index), _total_fetch_batch);
H
HexToString 已提交
784
        } else {
B
bjjwwang 已提交
785 786
          // which means error.
          return false;
H
HexToString 已提交
787 788 789 790 791 792 793
        }
      }
      // 将lod fetchvar index加入到vector中。
      if (_batch_out[fetchvar_index].lod.size() > 0 &&
          _batch_out[fetchvar_index].lod[0].size() > 0) {
        vector_fetch_lod_index.push_back(fetchvar_index);
      }
794
    }
H
HexToString 已提交
795
    return true;
796 797
  }

W
wangguibao 已提交
798
  void notify_tasks() {
799 800 801 802
    if (_taskmeta_vector.size() <= 0) {
      LOG(ERROR) << "_taskmeta_vector.size() <=0, error.";
      return;
    }
H
HexToString 已提交
803 804 805 806 807
    // 根据_batch_out,求出输出的整体batch
    // 并将lod类型和nobatch类型的fetchvar的index记录到set中,方便后续查看。
    deal_batch_out();
    // 若输出的batch不是1,且不与输入batch对应,则错误
    if (_total_feed_batch != _total_fetch_batch && _total_fetch_batch != 1) {
808
      LOG(ERROR) << "_batch_out`s batch != _batch_in`s batch, error.";
W
wangguibao 已提交
809
      return;
W
wangguibao 已提交
810 811
    }

H
HexToString 已提交
812
    size_t fetchvar_num = _batch_out.size();
813 814 815 816 817 818 819 820
    if (_batch_out_offset.size() == 0) {
      _batch_out_offset.resize(fetchvar_num, 0);
    }

    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskT* task = _taskmeta_vector[ti].task;
      size_t begin = _taskmeta_vector[ti].begin;
      size_t end = _taskmeta_vector[ti].end;
W
wangguibao 已提交
821
      size_t add = end - begin;
H
HexToString 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
      size_t taskmeta_index = _taskmeta_vector[ti].taskmeta_index;
      // 对task中的outVectorT_ptr进行初始化
      // 如果是lod输出+多个taskmeta,此时对outLodTensorVector也需要初始化
      if (!task->task_fetch_init(*this)) {
        LOG(ERROR) << " task_fetch_init error.";
        return;
      }
      size_t fetch_lod_index = 0;

      for (size_t fetchvar_index = 0; fetchvar_index < fetchvar_num;
           ++fetchvar_index) {
        size_t fetchvar_bytesize_index = fetchvar_bytesize(fetchvar_index);
        if (set_fetch_nobatch_index.size() > 0 &&
            set_fetch_nobatch_index.find(fetchvar_index) !=
                set_fetch_nobatch_index.end()) {
          // nobatch fetchvar情况
          // 无论输入是多少batch,该index的fetchvar始终就shape[0] = 1
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr = fetchVarTensor.data.data();
          size_t length = fetchvar_bytesize_index * 1;
          void* source_ptr = _batch_out[fetchvar_index].data.data();
          memcpy(dst_ptr, source_ptr, length);
        } else if (vector_fetch_lod_index.size() > 0 &&
                   std::find(vector_fetch_lod_index.begin(),
                             vector_fetch_lod_index.end(),
                             fetchvar_index) != vector_fetch_lod_index.end()) {
          // lod fetchvar情况,此时无法确定总的shape[0]
          // 根据task中的task_num总数开辟task_num个临时空间
          // 每个lod型的fetchvar拷贝到对应的临时空间中
          // 最后再计算临时空间的总量,合并fetchvar和lod
          size_t last_batch = _batch_out_offset[fetchvar_index];
          size_t shape0_index_start =
              _batch_out[fetchvar_index].lod[0][last_batch];
          size_t shape0_index_end =
              _batch_out[fetchvar_index].lod[0][last_batch + add];
          size_t shape0_length = shape0_index_end - shape0_index_start;
          // task被拆分为多个taskmeta时,不能直接拷入task->outVectorT_ptr
          // 此时,先拷入task->outLodTensorVector[taskmeta_index]
          // 当task所有的taskmeta都完成时,再按照顺序进行拷贝回task->outVectorT_ptr。
B
bjjwwang 已提交
862
          if (task->total_taskmeta_num > 1) {
H
HexToString 已提交
863 864 865
            paddle::PaddleTensor& fetchVarTensor =
                task->outLodTensorVector[taskmeta_index][fetch_lod_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
H
HexToString 已提交
866
            fetchVarTensor.shape[0] = shape0_length;
B
bjjwwang 已提交
867
            fetch_lod_index++;
B
bjjwwang 已提交
868

H
HexToString 已提交
869 870
            void* databuf_data =
                MempoolWrapper::instance().malloc(length, task->memoryPtr);
B
bjjwwang 已提交
871 872
            paddle::PaddleBuf paddleBuf(databuf_data, length);
            fetchVarTensor.data = paddleBuf;
H
HexToString 已提交
873
            // fetchVarTensor.data.Resize(length);
H
HexToString 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);
            // 由于是拆分的各个lod,不要补0,在最后合并给Task中的outVectorT_ptr时再补。
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({});
            }
            fetchVarTensor.lod[0].resize(add, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 0;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          } else {
            // task未被拆分为多个taskmeta,故只有某个线程中的taskmeta会操作task不存在多线程竞争
            // 此时resize后,直接写入task->outVectorT_ptr中即可。
            paddle::PaddleTensor& fetchVarTensor =
                (*task->outVectorT_ptr)[fetchvar_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
H
HexToString 已提交
898
            fetchVarTensor.shape[0] = shape0_length;
H
HexToString 已提交
899 900 901

            void* databuf_data =
                MempoolWrapper::instance().malloc(length, task->memoryPtr);
B
bjjwwang 已提交
902 903
            paddle::PaddleBuf paddleBuf(databuf_data, length);
            fetchVarTensor.data = paddleBuf;
H
HexToString 已提交
904 905

            // fetchVarTensor.data.Resize(length);
H
HexToString 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);

            // task中的lod补0
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({0});
            } else if (fetchVarTensor.lod[0].size() <= 0) {
              fetchVarTensor.lod[0].push_back(0);
            }
            // 将合并的lod信息对应的batch,拆分到task中。
            // 注意,此时需要去掉前面lod导致的前置积累。
            // 例如: 合lod = [0,2,5;7,10],是由两组batch=2的task合并后预测的。
            // 此时拆分,第一组时,都减去0,得到[2,5]+(由于前面已经补了0了) =
            // [0,2,5]
            // 第二组,都需要减5,得到[2,5],这样处理才对。
            fetchVarTensor.lod[0].resize(add + 1, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 1;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          }
        } else {
          // 普通fetchvar情况,此时该Task总的fetchvar_batch =
          // 输入的总的batch_size()
          // 输出的batch应与输入的batch对应相等。
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr =
              fetchVarTensor.data.data() + fetchvar_bytesize_index * begin;
          size_t length = fetchvar_bytesize_index * add;
          void* source_ptr =
              _batch_out[fetchvar_index].data.data() +
              _batch_out_offset[fetchvar_index] * fetchvar_bytesize_index;

          memcpy(dst_ptr, source_ptr, length);
W
wangguibao 已提交
948
        }
H
HexToString 已提交
949
        _batch_out_offset[fetchvar_index] += add;
W
wangguibao 已提交
950
      }
W
wangguibao 已提交
951

H
HexToString 已提交
952 953 954
      // index是局部变量,fetch_add是原子操作,成功则返回原值。
      // 只有最后一个taskmeta都完成后,该线程的index+add才能>task->batch_size()
      // 故只有一个线程能进入if{}内.不会造成多线程竞争的问题。
H
HexToString 已提交
955

W
wangguibao 已提交
956
      size_t index = task->index.fetch_add(add);
957
      if ((index + add) >= task->batch_size()) {
H
HexToString 已提交
958
        task->combine_taskmeta();
W
wangguibao 已提交
959
        char c = 0;
H
HexToString 已提交
960 961 962 963
        THREAD_MUTEX_LOCK(task->thread_mutex_ptr);
        task->task_manager_ptr->_task_ready = true;
        THREAD_COND_SIGNAL(task->thread_cond_ptr);
        THREAD_MUTEX_UNLOCK(task->thread_mutex_ptr);
W
wangguibao 已提交
964 965
        butil::return_object(task);
      }
W
wangguibao 已提交
966
    }
W
wangguibao 已提交
967
  }
W
wangguibao 已提交
968

969
  const typename TaskT::InVectorT& in() const { return _batch_in; }
W
wangguibao 已提交
970

971
  typename TaskT::OutVectorT& out() { return _batch_out; }
W
wangguibao 已提交
972

973
  size_t task_size() { return _taskmeta_vector.size(); }
W
wangguibao 已提交
974

H
HexToString 已提交
975 976
  const size_t get_rem_size() { return _rem_size; }

H
HexToString 已提交
977
  bool get_overrun() { return _overrun; }
H
HexToString 已提交
978 979 980

  bool get_allow_split_request() { return _allow_split_request; }

W
wangguibao 已提交
981
 private:
982 983
  std::vector<TaskMetaT> _taskmeta_vector;
  typename TaskT::InVectorT _batch_in;
H
HexToString 已提交
984
  std::vector<size_t> _batch_in_offset;
H
HexToString 已提交
985 986 987 988
  std::vector<size_t> _total_shape0_batch_in;
  size_t _total_feed_batch;
  std::vector<PaddleTensorLod> _batch_in_lod;

989
  typename TaskT::OutVectorT _batch_out;
H
HexToString 已提交
990
  std::vector<size_t> _batch_out_offset;
H
HexToString 已提交
991 992 993 994 995 996
  // std::vector<size_t> _total_shape0_batch_out;
  size_t _total_fetch_batch;
  // std::vector<PaddleTensorLod>  _batch_out_lod;
  std::set<size_t> set_fetch_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;

W
wangguibao 已提交
997 998
  size_t _rem_size;
  size_t _batch_size;
H
HexToString 已提交
999
  bool _overrun;
H
HexToString 已提交
1000
  bool _allow_split_request;
W
wangguibao 已提交
1001 1002
};

H
HexToString 已提交
1003
// TaskExecutor is a Thread pool.
W
wangguibao 已提交
1004
template <typename TaskT>
W
wangguibao 已提交
1005 1006
class TaskExecutor;

H
HexToString 已提交
1007
// ThreadContext is used for start a bsf Thread.
W
wangguibao 已提交
1008
template <typename TaskT>
W
wangguibao 已提交
1009
struct ThreadContext {
W
wangguibao 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  TaskExecutor<TaskT>* executor;
  void* user_thread_context;
  THREAD_T tid;
  int init_status;

  ThreadContext()
      : executor(NULL), user_thread_context(NULL), tid(-1), init_status(0) {
    // do nothing
  }

  ~ThreadContext() {
    tid = -1;
    executor = NULL;
    user_thread_context = NULL;
    init_status = 0;
  }
W
wangguibao 已提交
1026 1027
};

H
HexToString 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036
// TaskExecutor is a Thread pool.
// Each Model corresponding to a Model.
// TaskT is actually a Request preprocessed by ReaderOp.
// TaskT will be divided as TaskMeta which will be
// put into _task_queue in brpc-Thread by schedule().
// TaskHander will be returned to brpc-Thread.
// start() function will create `thread_num` bsf Threads.
// every bsf Thread check the _task_queue and take TaskMeta from it.
// when a Task`s all TaskMeta is done, TaskHander will be noticed.
W
wangguibao 已提交
1037
template <typename TaskT>
W
wangguibao 已提交
1038
class TaskExecutor {
W
wangguibao 已提交
1039 1040 1041
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
1042 1043
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
1044
  typedef std::vector<TaskT> TaskArrayT;
1045
  typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
H
HexToString 已提交
1046 1047
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
W
wangguibao 已提交
1048

W
wangguibao 已提交
1049 1050 1051 1052 1053 1054
  TaskExecutor()
      : _stop(false),
        _thread_init_fn(NULL),
        _thread_reset_fn(NULL),
        _user_thread_contexts(NULL),
        _batch_size(DEFAULT_BATCH_SIZE),
H
HexToString 已提交
1055
        _overrun(false),
W
wangguibao 已提交
1056 1057 1058 1059 1060
        _fn(NULL) {
    THREAD_MUTEX_INIT(&_mut, NULL);
    THREAD_COND_INIT(&_cond, NULL);
    _task_queue.clear();
  }
W
wangguibao 已提交
1061

W
wangguibao 已提交
1062 1063 1064 1065
  ~TaskExecutor() {
    THREAD_MUTEX_DESTROY(&_mut);
    THREAD_COND_DESTROY(&_cond);
  }
W
wangguibao 已提交
1066

H
HexToString 已提交
1067 1068 1069 1070 1071
  // cause vector.resize will use copy or move construct.
  TaskExecutor(TaskExecutor<TaskT>&& other) noexcept {
    if (this != &other) {
      TaskExecutor();
    }
W
wangguibao 已提交
1072
  }
W
wangguibao 已提交
1073

W
wangguibao 已提交
1074
  void set_batch_size(size_t batch_size) { _batch_size = batch_size; }
W
wangguibao 已提交
1075

H
HexToString 已提交
1076
  void set_overrun(bool overrun) { _overrun = overrun; }
H
HexToString 已提交
1077 1078 1079 1080

  void set_allow_split_request(bool allow_split_request) {
    _allow_split_request = allow_split_request;
  }
W
wangguibao 已提交
1081

W
wangguibao 已提交
1082 1083 1084 1085 1086
  void set_thread_init_fn(boost::function<int(void*)> init_fn,
                          void** contexts = NULL) {
    _thread_init_fn = init_fn;
    _user_thread_contexts = contexts;
  }
W
wangguibao 已提交
1087

W
wangguibao 已提交
1088 1089 1090 1091
  void set_thread_reset_fn(boost::function<int(void*)> reset_fn) {
    _thread_reset_fn = reset_fn;
  }

1092
  void set_thread_callback_fn(boost::function<void(const void*, void*)> cb) {
W
wangguibao 已提交
1093 1094
    _fn = cb;
  }
W
wangguibao 已提交
1095

W
wangguibao 已提交
1096 1097
  int start(uint32_t thread_num, uint32_t init_timeout_sec = 0);
  void stop();
W
wangguibao 已提交
1098

W
wangguibao 已提交
1099
  static void* thread_entry(void* args);
W
wangguibao 已提交
1100

W
wangguibao 已提交
1101
  int work(ThreadContext<TaskT>* context);
W
wangguibao 已提交
1102

H
HexToString 已提交
1103 1104 1105 1106 1107 1108
  int schedule(const void*,
               void*,
               MempoolRegion* memoryPtr,
               THREAD_MUTEX_T* thread_mutex_ptr,
               THREAD_COND_T* thread_cond_ptr,
               TaskManager<InType, OutType>* task_manager_ptr);
W
wangguibao 已提交
1109

H
HexToString 已提交
1110
  bool move_task_to_batch(BatchTasks<TaskT>& batchTask);  // NOLINT
W
wangguibao 已提交
1111

H
HexToString 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
 private:
  TaskExecutor(TaskExecutor<TaskT> const& other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> const& other) = delete;
  /*
  TaskExecutor(TaskExecutor<TaskT> && other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> && other) = delete;
  */

W
wangguibao 已提交
1122
  bool _stop;
W
wangguibao 已提交
1123

W
wangguibao 已提交
1124 1125 1126
  // can't use boost::mutex, because some stupid macro
  THREAD_MUTEX_T _mut;
  THREAD_COND_T _cond;
W
wangguibao 已提交
1127

H
HexToString 已提交
1128
  std::list<TaskT*> _task_queue;
W
wangguibao 已提交
1129

W
wangguibao 已提交
1130 1131 1132
  boost::function<int(void*)> _thread_init_fn;
  boost::function<int(void*)> _thread_reset_fn;
  void** _user_thread_contexts;
W
wangguibao 已提交
1133

W
wangguibao 已提交
1134
  std::vector<ThreadContext<TaskT>*> _thread_contexts;
W
wangguibao 已提交
1135

W
wangguibao 已提交
1136
  size_t _batch_size;
H
HexToString 已提交
1137
  bool _overrun;
H
HexToString 已提交
1138
  bool _allow_split_request;
W
wangguibao 已提交
1139

1140
  boost::function<void(const void*, void*)> _fn;
W
wangguibao 已提交
1141 1142
};

H
HexToString 已提交
1143 1144 1145
// TaskExecutorVector is a SingleTon class.
// Each Model corresponding to a TaskExecutor.
// So we need several TaskExecutor when there are more than 1 Model.
H
HexToString 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
template <typename TaskT>
class TaskExecutorVector {
 public:
  static TaskExecutorVector<TaskT>& instance() {
    static TaskExecutorVector<TaskT> singleton;
    return singleton;
  }

  void resize(int size) { _vector_executor.resize(size); }

H
HexToString 已提交
1156 1157 1158 1159
  TaskExecutor<TaskT>& operator[](int task_index) {
    if (_vector_executor.size() <= task_index || task_index <= -1) {
      LOG(ERROR) << "_vector_executor.size() <= task_index or <= -1";
      throw "_vector_executor.size() <= task_index or <= -1";
H
HexToString 已提交
1160
    }
H
HexToString 已提交
1161
    return _vector_executor[task_index];
H
HexToString 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
  }

 private:
  TaskExecutorVector() = default;
  TaskExecutorVector(const TaskExecutorVector<TaskT>& other) = delete;
  TaskExecutorVector& operator=(const TaskExecutorVector<TaskT>& other) =
      delete;
  TaskExecutorVector(TaskExecutorVector<TaskT>&& other) = delete;
  TaskExecutorVector& operator=(TaskExecutorVector<TaskT>&& other) = delete;
  std::vector<TaskExecutor<TaskT>> _vector_executor;
};

H
HexToString 已提交
1174 1175 1176 1177 1178
// TaskManager is actually a wrapper of Request in bsf.
// TaskManager`s schedule() change Request to be TaskT.
// and divided TaskT into several TaskMeta to put into the TaskExecutor`s
// task_queue.
// wait() is a while loop to receive signal when a whole Task is done.
W
wangguibao 已提交
1179
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
1180
class TaskManager {
W
wangguibao 已提交
1181 1182
 public:
  typedef Task<InItemT, OutItemT> TaskT;
1183 1184
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
1185

H
HexToString 已提交
1186
  explicit TaskManager(uint32_t model_index)  // NOLINT
H
HexToString 已提交
1187 1188
      : _model_index(model_index),
        _task_ready(false) {}
W
wangguibao 已提交
1189

W
wangguibao 已提交
1190
  ~TaskManager() { wait(); }
W
wangguibao 已提交
1191

H
HexToString 已提交
1192 1193 1194 1195 1196
  bool schedule(const void* in,
                void* out,
                MempoolRegion* memoryPtr,
                THREAD_MUTEX_T* thread_mutex_ptr,
                THREAD_COND_T* thread_cond_ptr);  // NOLINT
W
wangguibao 已提交
1197
  void wait();
W
wangguibao 已提交
1198

W
wangguibao 已提交
1199
  inline void clear() { wait(); }
H
HexToString 已提交
1200
  bool _task_ready = false;
W
wangguibao 已提交
1201

W
wangguibao 已提交
1202
 private:
H
HexToString 已提交
1203
  uint32_t _model_index;
H
HexToString 已提交
1204 1205
  THREAD_MUTEX_T* thread_mutex_ptr;
  THREAD_COND_T* thread_cond_ptr;
W
wangguibao 已提交
1206
};  // class TaskManager
W
wangguibao 已提交
1207 1208

class AutoMutex {
W
wangguibao 已提交
1209 1210 1211 1212
 public:
  explicit AutoMutex(THREAD_MUTEX_T& mut) : _mut(mut) {
    THREAD_MUTEX_LOCK(&_mut);
  }
W
wangguibao 已提交
1213

W
wangguibao 已提交
1214
  ~AutoMutex() { THREAD_MUTEX_UNLOCK(&_mut); }
W
wangguibao 已提交
1215

W
wangguibao 已提交
1216 1217
 private:
  THREAD_MUTEX_T& _mut;
W
wangguibao 已提交
1218 1219
};

W
wangguibao 已提交
1220 1221
}  // namespace bsf
}  // namespace im
W
wangguibao 已提交
1222

1223
// #include "core/predictor/framework/bsf-inl-tensor.h"
G
guru4elephant 已提交
1224
#include "core/predictor/framework/bsf-inl.h"