pyclient.py 2.2 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import grpc
import general_python_service_pb2
import general_python_service_pb2_grpc
import numpy as np


class PyClient(object):
    def __init__(self):
        self._channel = None

    def connect(self, endpoint):
        self._channel = grpc.insecure_channel(endpoint)
        self._stub = general_python_service_pb2_grpc.GeneralPythonServiceStub(
            self._channel)

    def _pack_data_for_infer(self, feed_data):
        req = general_python_service_pb2.Request()
        for name, data in feed_data.items():
            if not isinstance(data, np.ndarray):
                raise TypeError(
                    "only numpy array type is supported temporarily.")
            data2bytes = np.ndarray.tobytes(data)
            req.feed_var_names.append(name)
            req.feed_insts.append(data2bytes)
        return req

    def predict(self, feed, fetch_with_type):
        if not isinstance(feed, dict):
            raise TypeError(
                "feed must be dict type with format: {name: value}.")
        if not isinstance(fetch_with_type, dict):
            raise TypeError(
                "fetch_with_type must be dict type with format: {name : type}.")
        req = self._pack_data_for_infer(feed)
        resp = self._stub.inference(req)
        fetch_map = {}
        for idx, name in enumerate(resp.fetch_var_names):
            if name not in fetch_with_type:
                continue
            fetch_map[name] = np.frombuffer(
                resp.fetch_insts[idx], dtype=fetch_with_type[name])
        return fetch_map