web_service.py 13.6 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
B
barrierye 已提交
15

M
MRXLT 已提交
16
from flask import Flask, request, abort
M
MRXLT 已提交
17
from contextlib import closing
M
MRXLT 已提交
18
from multiprocessing import Pool, Process, Queue
M
MRXLT 已提交
19
from paddle_serving_client import Client
M
MRXLT 已提交
20
from paddle_serving_server_gpu import OpMaker, OpSeqMaker, Server
M
MRXLT 已提交
21
from paddle_serving_server_gpu.serve import start_multi_card
M
MRXLT 已提交
22
import socket
M
MRXLT 已提交
23 24
import sys
import numpy as np
M
MRXLT 已提交
25
import paddle_serving_server_gpu as serving
M
MRXLT 已提交
26

B
barriery 已提交
27 28
from paddle_serving_server_gpu import pipeline
from paddle_serving_server_gpu.pipeline.util import AvailablePortGenerator
M
MRXLT 已提交
29

B
barriery 已提交
30 31 32 33 34

class DefaultPipelineServer(object):
    def __init__(self, available_port_generator):
        self.server = pipeline.PipelineServer()
        self.available_port_generator = available_port_generator
M
MRXLT 已提交
35

B
barriery 已提交
36 37
    def create_internel_op_class(self, f_preprocess, f_postprocess):
        class InternelOp(pipeline.Op):
B
barriery 已提交
38 39
            # f_preprocess and f_postprocess use variables
            # in closures, so init_op function is not necessary.
B
barriery 已提交
40 41 42 43
            def preprocess(self, input_dicts):
                (_, input_dict), = input_dicts.items()
                preped_data = f_preprocess(input_dict)
                return preped_data
M
MRXLT 已提交
44

B
barriery 已提交
45 46 47 48
            def postprocess(self, input_dicts, fetch_dict):
                (_, input_dict), = input_dicts.items()
                postped_data = f_postprocess(input_dict, fetch_dict)
                return postped_data
M
MRXLT 已提交
49

B
barriery 已提交
50
        self.internel_op_class = InternelOp
51

B
barriery 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    def create_local_rpc_service_handler(self, model_config, workdir,
                                         thread_num, devices, mem_optim,
                                         ir_optim):
        self.local_rpc_service_handler = pipeline.LocalRpcServiceHandler(
            model_config=model_config,
            workdir=workdir,
            thread_num=thread_num,
            devices=devices,
            mem_optim=mem_optim,
            ir_optim=ir_optim,
            available_port_generator=self.available_port_generator)

    def init_pipeline_server(self,
                             internel_op_name,
                             internel_op_fetch_list=[],
                             internel_op_concurrency=4,
                             internel_op_timeout=-1,
                             internel_op_retry=1,
                             internel_op_batch_size=1,
                             internel_op_auto_batching_timeout=None):
B
barriery 已提交
72
        read_op = pipeline.RequestOp()
B
barriery 已提交
73
        internel_op = self.internel_op_class(
B
barriery 已提交
74 75
            name=internel_op_name,
            input_ops=[read_op],
B
barriery 已提交
76
            fetch_list=internel_op_fetch_list,
B
barriery 已提交
77
            local_rpc_service_handler=self.local_rpc_service_handler,
B
barriery 已提交
78 79 80 81 82 83 84
            concurrency=internel_op_concurrency,
            timeout=internel_op_timeout,
            retry=internel_op_retry,
            batch_size=internel_op_batch_size,
            auto_batching_timeout=internel_op_auto_batching_timeout)
        response_op = pipeline.ResponseOp(input_ops=[internel_op])
        self.server.set_response_op(response_op)
85

B
barriery 已提交
86 87 88 89 90 91 92 93 94 95
    def prepare_pipeline_server(self,
                                rpc_port,
                                http_port,
                                worker_num,
                                build_dag_each_worker=False,
                                is_thread_op=False,
                                client_type="brpc",
                                retry=1,
                                use_profile=False,
                                tracer_interval_s=-1):
B
barriery 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        default_server_conf = {
            "port": rpc_port,
            "worker_num": worker_num,
            "build_dag_each_worker": build_dag_each_worker,
            "grpc_gateway_port": http_port,
            "dag": {
                "is_thread_op": is_thread_op,
                "client_type": client_type,
                "retry": retry,
                "use_profile": use_profile,
                "tracer": {
                    "interval_s": tracer_interval_s,
                }
            }
        }
        self.server.prepare_server(yml_dict=default_server_conf)
112

B
barriery 已提交
113 114
    def start_pipeline_server(self):
        self.server.start_local_rpc_service()
B
barriery 已提交
115
        self.server.run_server()
116 117


B
barriery 已提交
118
class DefaultPipelineWebService(object):
B
barriery 已提交
119 120 121 122
    def __init__(self, name="default"):
        self.name = name
        self.port = None
        self.model_config = None
B
barriery 已提交
123
        self.gpus = ""
B
barriery 已提交
124 125 126
        self.available_port_generator = AvailablePortGenerator(12000)
        self.default_pipeline_server = DefaultPipelineServer(
            self.available_port_generator)
127

B
barriery 已提交
128 129 130 131
    def load_model_config(self, model_config):
        self.model_config = model_config

    def set_gpus(self, gpus):
B
barriery 已提交
132
        self.gpus = gpus
M
MRXLT 已提交
133

B
barriery 已提交
134
    def prepare_server(self,
B
barriery 已提交
135
                       workdir="workdir",
B
barriery 已提交
136
                       port=9393,
B
barriery 已提交
137 138
                       thread_num=2,
                       grpc_worker_num=4,
B
barriery 已提交
139 140 141
                       mem_optim=True,
                       ir_optim=False):
        if not self.available_port_generator.port_is_available(port):
B
barriery 已提交
142 143
            raise SystemExit("Failed to prepare server: prot({}) is not"
                             " available".format(port))
B
barriery 已提交
144 145
        self.port = port

B
barriery 已提交
146 147 148 149
        self.default_pipeline_server.create_internel_op_class(self.preprocess,
                                                              self.postprocess)
        self.default_pipeline_server.create_local_rpc_service_handler(
            model_config=self.model_config,
B
barriery 已提交
150
            workdir=workdir,
B
barriery 已提交
151 152
            thread_num=thread_num,
            devices=self.gpus,
B
barriery 已提交
153 154
            mem_optim=mem_optim,
            ir_optim=ir_optim)
B
barriery 已提交
155 156 157
        self.default_pipeline_server.init_pipeline_server(
            internel_op_name=self.name)
        self.default_pipeline_server.prepare_pipeline_server(
B
barriery 已提交
158 159
            rpc_port=self.available_port_generator.next(),
            http_port=self.port,
B
barriery 已提交
160
            worker_num=grpc_worker_num)
B
barriery 已提交
161 162 163 164 165 166

    def run_service(self):
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address: http://{}:{}/prediction"
              .format(localIP, self.port))
B
barriery 已提交
167
        self.default_pipeline_server.start_pipeline_server()
M
MRXLT 已提交
168

B
barriery 已提交
169 170
    def preprocess(self, feed_dict):
        return feed_dict
M
MRXLT 已提交
171

B
barriery 已提交
172 173
    def postprocess(self, feed_dict, fetch_dict):
        return fetch_dict
B
barriery 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374


class WebService(object):
    def __init__(self, name="default_service"):
        self.name = name
        self.gpus = []
        self.rpc_service_list = []

    def load_model_config(self, model_config):
        self.model_config = model_config

    def set_gpus(self, gpus):
        self.gpus = [int(x) for x in gpus.split(",")]

    def default_rpc_service(self,
                            workdir="conf",
                            port=9292,
                            gpuid=0,
                            thread_num=2,
                            mem_optim=True,
                            ir_optim=False):
        device = "gpu"
        if gpuid == -1:
            device = "cpu"
        op_maker = serving.OpMaker()
        read_op = op_maker.create('general_reader')
        general_infer_op = op_maker.create('general_infer')
        general_response_op = op_maker.create('general_response')

        op_seq_maker = OpSeqMaker()
        op_seq_maker.add_op(read_op)
        op_seq_maker.add_op(general_infer_op)
        op_seq_maker.add_op(general_response_op)

        server = Server()
        server.set_op_sequence(op_seq_maker.get_op_sequence())
        server.set_num_threads(thread_num)
        server.set_memory_optimize(mem_optim)
        server.set_ir_optimize(ir_optim)

        server.load_model_config(self.model_config)
        if gpuid >= 0:
            server.set_gpuid(gpuid)
        server.prepare_server(workdir=workdir, port=port, device=device)
        return server

    def _launch_rpc_service(self, service_idx):
        self.rpc_service_list[service_idx].run_server()

    def port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        if result != 0:
            return True
        else:
            return False

    def prepare_server(self,
                       workdir="",
                       port=9393,
                       device="gpu",
                       gpuid=0,
                       mem_optim=True,
                       ir_optim=False):
        self.workdir = workdir
        self.port = port
        self.device = device
        self.gpuid = gpuid
        self.port_list = []
        default_port = 12000
        for i in range(1000):
            if self.port_is_available(default_port + i):
                self.port_list.append(default_port + i)
            if len(self.port_list) > len(self.gpus):
                break

        if len(self.gpus) == 0:
            # init cpu service
            self.rpc_service_list.append(
                self.default_rpc_service(
                    self.workdir,
                    self.port_list[0],
                    -1,
                    thread_num=2,
                    mem_optim=mem_optim,
                    ir_optim=ir_optim))
        else:
            for i, gpuid in enumerate(self.gpus):
                self.rpc_service_list.append(
                    self.default_rpc_service(
                        "{}_{}".format(self.workdir, i),
                        self.port_list[i],
                        gpuid,
                        thread_num=2,
                        mem_optim=mem_optim,
                        ir_optim=ir_optim))

    def _launch_web_service(self):
        gpu_num = len(self.gpus)
        self.client = Client()
        self.client.load_client_config("{}/serving_server_conf.prototxt".format(
            self.model_config))
        endpoints = ""
        if gpu_num > 0:
            for i in range(gpu_num):
                endpoints += "127.0.0.1:{},".format(self.port_list[i])
        else:
            endpoints = "127.0.0.1:{}".format(self.port_list[0])
        self.client.connect([endpoints])

    def get_prediction(self, request):
        if not request.json:
            abort(400)
        if "fetch" not in request.json:
            abort(400)
        try:
            feed, fetch = self.preprocess(request.json["feed"],
                                          request.json["fetch"])
            if isinstance(feed, dict) and "fetch" in feed:
                del feed["fetch"]
            if len(feed) == 0:
                raise ValueError("empty input")
            fetch_map = self.client.predict(feed=feed, fetch=fetch)
            result = self.postprocess(
                feed=request.json["feed"], fetch=fetch, fetch_map=fetch_map)
            result = {"result": result}
        except ValueError as err:
            result = {"result": err}
        return result

    def run_rpc_service(self):
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address:")
        print("http://{}:{}/{}/prediction".format(localIP, self.port,
                                                  self.name))
        server_pros = []
        for i, service in enumerate(self.rpc_service_list):
            p = Process(target=self._launch_rpc_service, args=(i, ))
            server_pros.append(p)
        for p in server_pros:
            p.start()

        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            self._launch_web_service()

        service_name = "/" + self.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return self.get_prediction(request)

        self.app_instance = app_instance

    # TODO: maybe change another API name: maybe run_local_predictor?
    def run_debugger_service(self, gpu=False):
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address:")
        print("http://{}:{}/{}/prediction".format(localIP, self.port,
                                                  self.name))
        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            self._launch_local_predictor(gpu)

        service_name = "/" + self.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return self.get_prediction(request)

        self.app_instance = app_instance

    def _launch_local_predictor(self, gpu):
        from paddle_serving_app.local_predict import Debugger
        self.client = Debugger()
        self.client.load_model_config(
            "{}".format(self.model_config), gpu=gpu, profile=False)

    def run_web_service(self):
        self.app_instance.run(host="0.0.0.0",
                              port=self.port,
                              threaded=False,
                              processes=4)

    def get_app_instance(self):
        return self.app_instance

    def preprocess(self, feed=[], fetch=[]):
        return feed, fetch

    def postprocess(self, feed=[], fetch=[], fetch_map=None):
        for key in fetch_map.iterkeys():
            fetch_map[key] = fetch_map[key].tolist()
        return fetch_map