local_service_handler.py 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

B
barriery 已提交
15
import os
16
import logging
B
barriery 已提交
17
import multiprocessing
18
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode
Z
zhangjun 已提交
19 20
#from paddle_serving_server import OpMaker, OpSeqMaker
#from paddle_serving_server import Server as GpuServer
21
#from paddle_serving_server import Server as CpuServer
B
barriery 已提交
22
from . import util
23
#from paddle_serving_app.local_predict import LocalPredictor
24 25

_LOGGER = logging.getLogger(__name__)
B
barriery 已提交
26
_workdir_name_gen = util.NameGenerator("workdir_")
27 28


W
fix bug  
wangjiawei04 已提交
29
class LocalServiceHandler(object):
30 31 32 33 34 35 36
    """
    LocalServiceHandler is the processor of the local service, contains
    three client types, brpc, grpc and local_predictor.If you use the 
    brpc or grpc, serveing startup ability is provided.If you use
    local_predictor, local predict ability is provided by paddle_serving_app.
    """

37
    def __init__(self,
B
barriery 已提交
38
                 model_config,
W
wangjiawei04 已提交
39
                 client_type='local_predictor',
B
barriery 已提交
40
                 workdir="",
41
                 thread_num=2,
42
                 device_type=-1,
43
                 devices="",
44
                 fetch_names=None,
45 46
                 mem_optim=True,
                 ir_optim=False,
47
                 available_port_generator=None,
48
                 use_profile=False,
T
TeslaZhao 已提交
49 50 51 52
                 precision="fp32",
                 use_mkldnn=False,
                 mkldnn_cache_capacity=0,
                 mkldnn_op_list=None,
F
felixhjh 已提交
53 54 55
                 mkldnn_bf16_op_list=None,
                 min_subgraph_size=3,
                 dynamic_shape_info={}):
56 57 58 59 60 61 62 63
        """
        Initialization of localservicehandler

        Args:
           model_config: model config path
           client_type: brpc, grpc and local_predictor[default]
           workdir: work directory
           thread_num: number of threads, concurrent quantity.
64 65
           device_type: support multiple devices. -1=Not set, determined by
               `devices`. 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
66 67 68 69 70 71 72
           devices: gpu id list[gpu], "" default[cpu]
           fetch_names: get fetch names out of LocalServiceHandler in 
               local_predictor mode. fetch_names_ is compatible for Client().
           mem_optim: use memory/graphics memory optimization, True default.
           ir_optim: use calculation chart optimization, False default.
           available_port_generator: generate available ports
           use_profile: use profiling, False default.
73
           precision: inference precesion, e.g. "fp32", "fp16", "int8"
T
TeslaZhao 已提交
74 75 76 77
           use_mkldnn: use mkldnn, default False.
           mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
           mkldnn_op_list: OP list optimized by mkldnn, None default.
           mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
78 79 80 81

        Returns:
           None
        """
82
        if available_port_generator is None:
B
barriery 已提交
83
            available_port_generator = util.GetAvailablePortGenerator()
84

B
barriery 已提交
85
        self._model_config = model_config
86
        self._port_list = []
87 88 89 90 91
        self._device_name = "cpu"
        self._use_gpu = False
        self._use_trt = False
        self._use_lite = False
        self._use_xpu = False
92
        self._use_ascend_cl = False
T
TeslaZhao 已提交
93 94 95 96
        self._use_mkldnn = False
        self._mkldnn_cache_capacity = 0
        self._mkldnn_op_list = None
        self._mkldnn_bf16_op_list = None
F
felixhjh 已提交
97 98
        self.min_subgraph_size = 3
        self.dynamic_shape_info = {}
99 100 101 102 103 104 105

        if device_type == -1:
            # device_type is not set, determined by `devices`, 
            if devices == "":
                # CPU
                self._device_name = "cpu"
                devices = [-1]
Z
zhangjun 已提交
106
            else:
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                # GPU
                self._device_name = "gpu"
                self._use_gpu = True
                devices = [int(x) for x in devices.split(",")]

        elif device_type == 0:
            # CPU
            self._device_name = "cpu"
            devices = [-1]
        elif device_type == 1:
            # GPU
            self._device_name = "gpu"
            self._use_gpu = True
            devices = [int(x) for x in devices.split(",")]
        elif device_type == 2:
            # Nvidia Tensor RT
            self._device_name = "gpu"
            self._use_gpu = True
125
            devices = [int(x) for x in devices.split(",")]
126
            self._use_trt = True
F
felixhjh 已提交
127 128
            self.min_subgraph_size = min_subgraph_size
            self.dynamic_shape_info = dynamic_shape_info
129 130 131 132 133 134 135 136 137 138 139
        elif device_type == 3:
            # ARM CPU
            self._device_name = "arm"
            devices = [-1]
            self._use_lite = True
        elif device_type == 4:
            # Kunlun XPU
            self._device_name = "arm"
            devices = [int(x) for x in devices.split(",")]
            self._use_lite = True
            self._use_xpu = True
140 141 142 143 144 145
        elif device_type == 5:
            # Ascend 310 ARM CPU
            self._device_name = "arm"
            devices = [int(x) for x in devices.split(",")]
            self._use_lite = True
            self._use_ascend_cl = True
S
ShiningZhang 已提交
146 147 148 149 150
        elif device_type == 6:
            # Ascend 910 ARM CPU
            self._device_name = "arm"
            devices = [int(x) for x in devices.split(",")]
            self._use_ascend_cl = True
151 152 153 154 155 156
        else:
            _LOGGER.error(
                "LocalServiceHandler initialization fail. device_type={}"
                .format(device_type))

        if client_type == "brpc" or client_type == "grpc":
157 158
            for _ in devices:
                self._port_list.append(available_port_generator.next())
159 160 161
            _LOGGER.info("Create ports for devices:{}. Port:{}"
                         .format(devices, self._port_list))

162
        self._client_type = client_type
163 164 165 166 167
        self._workdir = workdir
        self._devices = devices
        self._thread_num = thread_num
        self._mem_optim = mem_optim
        self._ir_optim = ir_optim
168
        self._local_predictor_client = None
169 170
        self._rpc_service_list = []
        self._server_pros = []
171
        self._use_profile = use_profile
172
        self._fetch_names = fetch_names
173
        self._precision = precision
T
TeslaZhao 已提交
174 175 176 177
        self._use_mkldnn = use_mkldnn
        self._mkldnn_cache_capacity = mkldnn_cache_capacity
        self._mkldnn_op_list = mkldnn_op_list
        self._mkldnn_bf16_op_list = mkldnn_bf16_op_list
178 179 180 181 182

        _LOGGER.info(
            "Models({}) will be launched by device {}. use_gpu:{}, "
            "use_trt:{}, use_lite:{}, use_xpu:{}, device_type:{}, devices:{}, "
            "mem_optim:{}, ir_optim:{}, use_profile:{}, thread_num:{}, "
T
TeslaZhao 已提交
183 184
            "client_type:{}, fetch_names:{}, precision:{}, use_mkldnn:{}, "
            "mkldnn_cache_capacity:{}, mkldnn_op_list:{}, "
F
felixhjh 已提交
185
            "mkldnn_bf16_op_list:{}, use_ascend_cl:{}, min_subgraph_size:{}".format(
186
                model_config, self._device_name, self._use_gpu, self._use_trt,
T
TeslaZhao 已提交
187 188 189 190
                self._use_lite, self._use_xpu, device_type, self._devices,
                self._mem_optim, self._ir_optim, self._use_profile,
                self._thread_num, self._client_type, self._fetch_names,
                self._precision, self._use_mkldnn, self._mkldnn_cache_capacity,
191
                self._mkldnn_op_list, self._mkldnn_bf16_op_list,
F
felixhjh 已提交
192
                self._use_ascend_cl, self.min_subgraph_size))
193 194

    def get_fetch_list(self):
195
        return self._fetch_names
196 197 198 199

    def get_port_list(self):
        return self._port_list

200
    def get_client(self, concurrency_idx):
201 202 203
        """
        Function get_client is only used for local predictor case, creates one
        LocalPredictor object, and initializes the paddle predictor by function
204
        load_model_config.The concurrency_idx is used to select running devices.  
205 206

        Args:
207
            concurrency_idx: process/thread index
208 209 210 211

        Returns:
            _local_predictor_client
        """
212 213 214 215 216 217 218 219

        #checking the legality of concurrency_idx.
        device_num = len(self._devices)
        if device_num <= 0:
            _LOGGER.error("device_num must be not greater than 0. devices({})".
                          format(self._devices))
            raise ValueError("The number of self._devices error")

T
TeslaZhao 已提交
220
        if concurrency_idx < 0:
221 222 223 224 225 226
            _LOGGER.error("concurrency_idx({}) must be one positive number".
                          format(concurrency_idx))
            concurrency_idx = 0
        elif concurrency_idx >= device_num:
            concurrency_idx = concurrency_idx % device_num

T
TeslaZhao 已提交
227 228
        _LOGGER.info("GET_CLIENT : concurrency_idx={}, device_num={}".format(
            concurrency_idx, device_num))
229 230 231
        from paddle_serving_app.local_predict import LocalPredictor
        if self._local_predictor_client is None:
            self._local_predictor_client = LocalPredictor()
T
TeslaZhao 已提交
232
            # load model config and init predictor
233 234
            self._local_predictor_client.load_model_config(
                model_path=self._model_config,
235
                use_gpu=self._use_gpu,
236
                gpu_id=self._devices[concurrency_idx],
237 238 239 240
                use_profile=self._use_profile,
                thread_num=self._thread_num,
                mem_optim=self._mem_optim,
                ir_optim=self._ir_optim,
Z
zhangjun 已提交
241
                use_trt=self._use_trt,
242
                use_lite=self._use_lite,
243
                use_xpu=self._use_xpu,
T
TeslaZhao 已提交
244 245 246 247
                precision=self._precision,
                use_mkldnn=self._use_mkldnn,
                mkldnn_cache_capacity=self._mkldnn_cache_capacity,
                mkldnn_op_list=self._mkldnn_op_list,
248
                mkldnn_bf16_op_list=self._mkldnn_bf16_op_list,
F
felixhjh 已提交
249 250 251
                use_ascend_cl=self._use_ascend_cl,
                min_subgraph_size=self.min_subgraph_size,
                dynamic_shape_info=self.dynamic_shape_info)
252
        return self._local_predictor_client
W
wangjiawei04 已提交
253

B
barriery 已提交
254 255
    def get_client_config(self):
        return os.path.join(self._model_config, "serving_server_conf.prototxt")
256 257

    def _prepare_one_server(self, workdir, port, gpuid, thread_num, mem_optim,
258
                            ir_optim, precision):
259
        """
260
        According to self._device_name, generating one Cpu/Gpu/Arm Server, and
261 262 263 264 265 266 267 268 269
        setting the model config amd startup params.

        Args:
            workdir: work directory
            port: network port
            gpuid: gpu id
            thread_num: thread num
            mem_optim: use memory/graphics memory optimization
            ir_optim: use calculation chart optimization
270
            precision: inference precison, e.g."fp32", "fp16", "int8"
271 272 273 274

        Returns:
            server: CpuServer/GpuServer
        """
275
        if self._device_name == "cpu":
276 277 278 279 280 281 282 283 284 285 286 287 288
            from paddle_serving_server import OpMaker, OpSeqMaker, Server
            op_maker = OpMaker()
            read_op = op_maker.create('general_reader')
            general_infer_op = op_maker.create('general_infer')
            general_response_op = op_maker.create('general_response')

            op_seq_maker = OpSeqMaker()
            op_seq_maker.add_op(read_op)
            op_seq_maker.add_op(general_infer_op)
            op_seq_maker.add_op(general_response_op)

            server = Server()
        else:
Z
zhangjun 已提交
289
            #gpu or arm
Z
zhangjun 已提交
290
            from paddle_serving_server import OpMaker, OpSeqMaker, Server
291 292 293 294 295 296 297 298 299 300 301 302 303
            op_maker = OpMaker()
            read_op = op_maker.create('general_reader')
            general_infer_op = op_maker.create('general_infer')
            general_response_op = op_maker.create('general_response')

            op_seq_maker = OpSeqMaker()
            op_seq_maker.add_op(read_op)
            op_seq_maker.add_op(general_infer_op)
            op_seq_maker.add_op(general_response_op)

            server = Server()
            if gpuid >= 0:
                server.set_gpuid(gpuid)
Z
zhangjun 已提交
304
            # TODO: support arm or arm + xpu later
Z
fix bug  
zhangjun 已提交
305
            server.set_device(self._device_name)
S
ShiningZhang 已提交
306 307 308 309
            if self._use_xpu:
                server.set_xpu()
            if self._use_lite:
                server.set_lite()
310 311
            if self._use_ascend_cl:
                server.set_ascend_cl()
312

313 314 315 316
        server.set_op_sequence(op_seq_maker.get_op_sequence())
        server.set_num_threads(thread_num)
        server.set_memory_optimize(mem_optim)
        server.set_ir_optimize(ir_optim)
317
        server.set_precision(precision)
318 319

        server.load_model_config(self._model_config)
320
        server.prepare_server(
321 322 323
            workdir=workdir, port=port, device=self._device_name)
        if self._fetch_names is None:
            self._fetch_names = server.get_fetch_list()
324 325 326
        return server

    def _start_one_server(self, service_idx):
327 328 329 330 331 332 333 334 335
        """
        Start one server
     
        Args:
            service_idx: server index
 
        Returns:
            None
        """
336 337 338
        self._rpc_service_list[service_idx].run_server()

    def prepare_server(self):
339 340 341
        """
        Prepare all servers to be started, and append them into list. 
        """
342
        for i, device_id in enumerate(self._devices):
B
barriery 已提交
343
            if self._workdir != "":
344 345 346 347 348 349 350 351 352 353
                workdir = "{}_{}".format(self._workdir, i)
            else:
                workdir = _workdir_name_gen.next()
            self._rpc_service_list.append(
                self._prepare_one_server(
                    workdir,
                    self._port_list[i],
                    device_id,
                    thread_num=self._thread_num,
                    mem_optim=self._mem_optim,
354 355
                    ir_optim=self._ir_optim,
                    precision=self._precision))
356 357

    def start_server(self):
358 359 360
        """
        Start multiple processes and start one server in each process
        """
361
        for i, _ in enumerate(self._rpc_service_list):
B
barriery 已提交
362 363 364
            p = multiprocessing.Process(
                target=self._start_one_server, args=(i, ))
            p.daemon = True
365 366 367
            self._server_pros.append(p)
        for p in self._server_pros:
            p.start()