operator.py 83.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18
import threading
import multiprocessing
H
HexToString 已提交
19
from paddle_serving_client import Client
20 21 22
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
29
from io import BytesIO
B
barrierye 已提交
30 31 32 33 34 35
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
36

37
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify
T
TeslaZhao 已提交
38 39
check_feed_dict = ParamVerify.check_feed_dict
check_fetch_list = ParamVerify.check_fetch_list
B
barrierye 已提交
40
from .proto import pipeline_service_pb2
T
TeslaZhao 已提交
41
from .channel import (ThreadChannel, ProcessChannel, ChannelData,
42
                      ChannelDataType, ChannelStopError, ChannelTimeoutError)
T
TeslaZhao 已提交
43
from .error_catch import ProductErrCode
44
from .error_catch import CustomExceptionCode as ChannelDataErrcode
B
barrierye 已提交
45
from .util import NameGenerator
B
barriery 已提交
46
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
47
from . import local_service_handler
48
from .pipeline_client import PipelineClient as PPClient
H
huangjianhui 已提交
49
from paddle_serving_server.util import kill_stop_process_by_pid
50

51
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
52 53
_op_name_gen = NameGenerator("Op")

54 55 56 57 58 59 60 61 62 63 64 65 66 67
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = {
    0: "int64",  # VarType.INT64
    1: "float32",  # VarType.FP32
    2: "int32",  # VarType.INT32
    3: "float64",  # VarType.FP64
    4: "int16",  # VarType.int16
    5: "float16",  # VarType.FP32
    6: "uint16",  # VarType.BF16
    7: "uint8",  # VarType.UINT8
    8: "int8",  # VarType.INT8
    9: "bool",  # VarType.BOOL
    10: "complex64",  # VarType.COMPLEX64
    11: "complex128",  # VarType.COMPLEX128
68 69
    12: "string",  # load by numpy
    13: "bytes",  # load by numpy
70 71
}

D
dongdaxiang 已提交
72 73 74

class Op(object):
    def __init__(self,
B
barrierye 已提交
75
                 name=None,
D
dongdaxiang 已提交
76
                 input_ops=[],
B
barriery 已提交
77 78
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
79
                 client_config=None,
W
wangjiawei04 已提交
80
                 client_type=None,
B
barriery 已提交
81 82
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
83
                 retry=0,
B
barriery 已提交
84
                 batch_size=None,
85
                 auto_batching_timeout=None,
86 87
                 local_service_handler=None,
                 jump_to_ops=[]):
B
barriery 已提交
88
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
89
        if name is None:
B
barrierye 已提交
90
            name = _op_name_gen.next()
91
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
92
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
93
        self.set_input_ops(input_ops)
94
        self.set_jump_to_ops(jump_to_ops)
B
barrierye 已提交
95

W
wangjiawei04 已提交
96
        self._local_service_handler = local_service_handler
B
barriery 已提交
97
        self._server_endpoints = server_endpoints
B
barrierye 已提交
98
        self._fetch_names = fetch_list
B
barriery 已提交
99
        self._client_config = client_config
W
wangjiawei04 已提交
100
        self.client_type = client_type
B
barriery 已提交
101
        self._timeout = timeout
102
        self._retry = max(1, retry)
B
barriery 已提交
103 104
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout
F
felixhjh 已提交
105 106
        self._use_encryption_model = None
        self._encryption_key = ""
B
barriery 已提交
107

108 109
        self._input = None
        self._outputs = []
B
barrierye 已提交
110

B
barriery 已提交
111 112 113
        self._server_use_profile = False
        self._tracer = None

114 115 116
        # for grpc_pipeline predict mode. False, string key/val; True, tensor format.
        self._pack_tensor_format = False

B
barriery 已提交
117 118 119 120 121
        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False
T
TeslaZhao 已提交
122
        self.dynamic_shape_info = {}
F
felixhjh 已提交
123
        self.set_dynamic_shape_info()
T
TeslaZhao 已提交
124

F
felixhjh 已提交
125
    def set_dynamic_shape_info(self):
F
felixhjh 已提交
126 127 128 129 130
        """
        when opening tensorrt(configure in config.yml) and each time the input shape
        for inferring is different, using this method for configuring tensorrt
        dynamic shape to infer in each op model
        """
F
felixhjh 已提交
131
        pass
B
barriery 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144
    # for feed/fetch dict cehck
    @staticmethod
    def get_feed_fetch_list(client):
        from paddle_serving_app.local_predict import LocalPredictor
        if isinstance(client, Client):
            feed_names = client.get_feed_names()
            fetch_names = client.get_fetch_names()
        if isinstance(client, LocalPredictor):
            feed_names = client.feed_names_
            fetch_names = client.fetch_names_
        return feed_names, fetch_names

B
barriery 已提交
145
    def init_from_dict(self, conf):
146 147 148 149 150 151 152 153 154 155 156
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
        """
B
barriery 已提交
157 158 159 160 161 162 163 164
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")
F
felixhjh 已提交
165
        if self._use_encryption_model is None:
T
TeslaZhao 已提交
166 167
            print("config use_encryption model here",
                  conf.get("use_encryption_model"))
F
felixhjh 已提交
168
            self._use_encryption_model = conf.get("use_encryption_model")
T
TeslaZhao 已提交
169
            if self._encryption_key is None or self._encryption_key == "":
F
felixhjh 已提交
170
                self._encryption_key = conf.get("encryption_key")
B
barriery 已提交
171 172 173 174 175 176 177 178 179 180 181 182
        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
183
            _LOGGER.debug(
B
barriery 已提交
184 185 186 187 188 189 190
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

191 192 193
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
194
        self.device_type = -1
195 196 197
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
198
        self.precision = "fp32"
T
TeslaZhao 已提交
199 200 201 202
        self.use_mkldnn = False
        self.mkldnn_cache_capacity = 0
        self.mkldnn_op_list = None
        self.mkldnn_bf16_op_list = None
F
felixhjh 已提交
203
        self.min_subgraph_size = 3
204
        self.use_calib = False
T
TeslaZhao 已提交
205

B
barriery 已提交
206 207 208 209 210 211
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
212
                self.client_type = conf["client_type"]
213
            else:
W
wangjiawei04 已提交
214
                if self._local_service_handler is None:
B
barriery 已提交
215
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
216 217
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
218
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
219
                    self.client_type = local_service_conf.get("client_type")
220 221
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
222
                    self.device_type = local_service_conf.get("device_type")
223 224 225 226
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
227
                    self.precision = local_service_conf.get("precision")
228
                    self.use_calib = local_service_conf.get("use_calib")
T
TeslaZhao 已提交
229 230 231 232 233 234 235
                    self.use_mkldnn = local_service_conf.get("use_mkldnn")
                    self.mkldnn_cache_capacity = local_service_conf.get(
                        "mkldnn_cache_capacity")
                    self.mkldnn_op_list = local_service_conf.get(
                        "mkldnn_op_list")
                    self.mkldnn_bf16_op_list = local_service_conf.get(
                        "mkldnn_bf16_op_list")
F
felixhjh 已提交
236 237
                    self.min_subgraph_size = local_service_conf.get(
                        "min_subgraph_size")
T
TeslaZhao 已提交
238

239
                    if self.model_config is None:
B
barriery 已提交
240 241 242 243
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
244 245
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
246
                                model_config=self.model_config,
W
wangjiawei04 已提交
247
                                client_type=self.client_type,
248 249
                                workdir=self.workdir,
                                thread_num=self.thread_num,
250
                                device_type=self.device_type,
251 252
                                devices=self.devices,
                                mem_optim=self.mem_optim,
253
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
254 255 256 257 258
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_bf16_op_list,
F
felixhjh 已提交
259 260
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
261 262
                                dynamic_shape_info=self.dynamic_shape_info,
                                use_calib=self.use_calib)
W
wangjiawei04 已提交
263 264 265 266 267 268 269 270 271 272 273 274
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
275
                            service_handler = local_service_handler.LocalServiceHandler(
276
                                model_config=self.model_config,
W
wangjiawei04 已提交
277
                                client_type=self.client_type,
278 279
                                workdir=self.workdir,
                                thread_num=self.thread_num,
280
                                device_type=self.device_type,
281
                                devices=self.devices,
282 283
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
284
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
285 286 287 288 289
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_op_list,
F
felixhjh 已提交
290 291
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list,
                                min_subgraph_size=self.min_subgraph_size,
292 293
                                dynamic_shape_info=self.dynamic_shape_info,
                                use_calib=self.use_calib)
W
wangjiawei04 已提交
294 295 296 297
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
298
                else:
B
barriery 已提交
299
                    self.with_serving = True
W
wangjiawei04 已提交
300
                    self._local_service_handler.prepare_server(
B
barriery 已提交
301
                    )  # get fetch_list
W
wangjiawei04 已提交
302
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
303 304 305
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
306
                    if self._client_config is None:
W
wangjiawei04 已提交
307
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
308
                        )
B
barriery 已提交
309
                    if self._fetch_names is None:
W
wangjiawei04 已提交
310
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
311
                        )
B
barriery 已提交
312 313
        else:
            self.with_serving = True
B
barriery 已提交
314

315 316 317 318 319 320 321 322 323 324 325
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
326
                              ", ".join([op.name for op in self._input_ops
327 328 329 330
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
331

332
    def launch_local_rpc_service(self):
333 334 335 336 337 338 339 340 341
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
342
        if self._local_service_handler is None:
B
barriery 已提交
343 344
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
345
                          " service: local_service_handler is None."))
B
barriery 已提交
346
            return
W
wangjiawei04 已提交
347
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
348 349 350
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
351
        self._local_service_handler.start_server()
B
barriery 已提交
352
        _LOGGER.info("Op({}) use local rpc service at port: {}"
353 354
                     .format(self.name, port))

B
barriery 已提交
355
    def use_default_auto_batching_config(self):
356 357 358 359 360 361 362 363 364
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
365
        if self._batch_size != 1:
366 367
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
368 369
            self._batch_size = 1
        if self._auto_batching_timeout != None:
370
            _LOGGER.warning(
B
barriery 已提交
371 372
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
373
            self._auto_batching_timeout = None
B
barriery 已提交
374

B
barrierye 已提交
375
    def use_profiler(self, use_profile):
B
barrierye 已提交
376
        self._server_use_profile = use_profile
377

B
barriery 已提交
378 379 380
    def set_tracer(self, tracer):
        self._tracer = tracer

B
bjjwwang 已提交
381 382 383
    def set_use_prometheus(self, use_prometheus):
        self._use_prometheus = use_prometheus

W
wangjiawei04 已提交
384
    def init_client(self, client_config, server_endpoints):
385 386 387 388 389 390 391 392 393 394 395 396
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
397
        if self.with_serving == False:
B
barriery 已提交
398
            _LOGGER.info("Op({}) has no client (and it also do not "
399
                         "run the process function)".format(self.name))
B
barrierye 已提交
400
            return None
W
wangjiawei04 已提交
401
        if self.client_type == 'brpc':
B
barrierye 已提交
402 403
            client = Client()
            client.load_client_config(client_config)
T
TeslaZhao 已提交
404 405
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(
                client)
406 407
        elif self.client_type == 'pipeline_grpc':
            client = PPClient()
W
wangjiawei04 已提交
408 409 410 411
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
T
TeslaZhao 已提交
412 413
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(
                client)
414
        else:
B
barriery 已提交
415
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
416
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
417 418 419
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
420
        if self.client_type != "local_predictor":
F
felixhjh 已提交
421
            if self._use_encryption_model is None or self._use_encryption_model is False:
T
TeslaZhao 已提交
422
                client.connect(server_endpoints)
F
felixhjh 已提交
423
            else:
T
TeslaZhao 已提交
424 425 426 427 428
                print("connect to encryption rpc client")
                client.use_key(self._encryption_key)
                client.connect(server_endpoints, encryption=True)
        _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(
            self.right_feed_names, self.right_fetch_names))
B
barrierye 已提交
429
        return client
430 431 432 433 434

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
435 436 437 438 439 440 441 442 443 444
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
445 446 447 448 449
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
450
                _LOGGER.critical(
B
barriery 已提交
451 452
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
453
                os._exit(-1)
454
            self._input_ops.append(op)
D
dongdaxiang 已提交
455

456 457 458
    def set_pack_tensor_format(self, is_tensor_format=False):
        self._pack_tensor_format = is_tensor_format

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    def get_jump_to_ops(self):
        return self._jump_to_ops

    def set_jump_to_ops(self, ops):
        """
        Set jump to ops, then, this op can send channeldata to output channel.

        Args:
            ops: op list to be jumpped

        Returns:
            None.
        """
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]

        self._jump_to_ops = []
        for op in ops:
            if not isinstance(op, Op):
                _LOGGER.critical(
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
                os._exit(-1)
            self._jump_to_ops.append(op)

    def is_jump_op(self):
        """
        The op has _jump_to_ops members or not.

        Args:
            None

        Returns:
            True or False
        """
        return len(self._jump_to_ops) > 0

    def check_jumping(self, input_data):
        """
        Check whether to send data to jump ops.WhileOp needs to rewrite 
        this interface. this function returns False default.
     
        Args:
            input_data: input data to be preprocessed

        Returns:
            True, send data to the output channel of jump ops
            False, send data to output channel.
        """
        return False

    def get_output_channels_of_jump_ops(self):
        """
        Get output channels of jump ops

        Args:
            None

        Returns:
            list of channels
        """
        channels = []
        if self.is_jump_op() is False:
            return channels
        for op in self._jump_to_ops:
            _LOGGER.info("op:{} extend op._get_output_channels:{}".format(
                op.name, op._get_output_channels()))
            channels.extend(op._get_output_channels())

        _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format(
            channels))
        return channels

532
    def add_input_channel(self, channel):
533 534 535 536
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
537
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
538
            _LOGGER.critical(
B
barriery 已提交
539 540 541
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
542
            os._exit(-1)
543 544
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
545

546
    def clean_input_channel(self):
B
barrierye 已提交
547 548 549 550
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
551

552
    def add_output_channel(self, channel):
553 554 555 556 557 558 559 560 561 562
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
563
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
564
            _LOGGER.critical(
B
barriery 已提交
565 566
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
567
            os._exit(-1)
568 569
        channel.add_producer(self.name)
        self._outputs.append(channel)
570
        _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel))
D
dongdaxiang 已提交
571

572
    def clean_output_channels(self):
B
barrierye 已提交
573 574 575 576 577
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

578
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
579 580 581 582 583 584
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
585
            data_id: inner unique id, increase auto
586
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
587 588

        Return:
T
TeslaZhao 已提交
589
            output_data: data for process stage
T
TeslaZhao 已提交
590 591 592 593 594
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
595
        # multiple previous Op
B
barrierye 已提交
596
        if len(input_dicts) != 1:
597 598
            _LOGGER.critical(
                self._log(
B
barriery 已提交
599 600
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
601
            os._exit(-1)
D
dongdaxiang 已提交
602

B
barrierye 已提交
603
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
604
        return input_dict, False, None, ""
T
TeslaZhao 已提交
605

606
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
607 608 609 610 611
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
612 613
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
614 615 616 617

        Returns:
            call_result: predict result
        """
618 619 620 621

        call_result = None
        err_code = ChannelDataErrcode.OK.value
        err_info = ""
T
TeslaZhao 已提交
622 623

        @ErrorCatch
624
        @ParamChecker
T
TeslaZhao 已提交
625 626 627 628
        def feed_fetch_list_check_helper(
                feed_batch: lambda feed_batch: check_feed_dict(feed_batch[0], self.right_feed_names),
                fetch_list: lambda fetch_list: check_fetch_list(fetch_list, self.right_fetch_names),
                log_id):
629
            return None
T
TeslaZhao 已提交
630 631 632

        _, resp = feed_fetch_list_check_helper(
            feed_batch, self._fetch_names, log_id=typical_logid)
633 634 635 636 637
        if resp.err_no != CustomExceptionCode.OK.value:
            err_code = resp.err_no
            err_info = resp.err_msg
            call_result = None
            return call_result, err_code, err_info
T
TeslaZhao 已提交
638

W
wangjiawei04 已提交
639
        if self.client_type == "local_predictor":
640 641 642 643 644 645 646 647
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for local_predictor mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"

W
wangjiawei04 已提交
648 649
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
650
                fetch=self._fetch_names,
W
wangjiawei04 已提交
651 652
                batch=True,
                log_id=typical_logid)
653 654 655 656 657 658 659 660

        elif self.client_type == "brpc":
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for brpc mode.".format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"
W
wangjiawei04 已提交
661
            call_result = self.client.predict(
662
                feed=feed_batch[0],
W
wangjiawei04 已提交
663
                fetch=self._fetch_names,
W
wangjiawei04 已提交
664 665
                batch=True,
                log_id=typical_logid)
666 667 668 669 670 671 672 673 674 675 676 677 678 679

        elif self.client_type == "pipeline_grpc":
            err, err_info = ChannelData.check_dictdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                       npdata in process for pipeline_grpc mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict"

            call_result = self.client.predict(
                feed_dict=feed_batch[0],
                fetch=self._fetch_names,
                asyn=False,
680
                pack_tensor_format=self._pack_tensor_format,
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
                profile=False)
            if call_result is None:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. call_result is None."))
                return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error"
            if call_result.err_no != 0:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}".
                              format(call_result.err_no, call_result.err_msg)))
                return call_result, ChannelDataErrcode(
                    call_result.err_no).value, call_result.err_msg

            new_dict = {}
            err_code = ChannelDataErrcode(call_result.err_no).value
            err_info = call_result.err_msg
            for idx, key in enumerate(call_result.key):
                new_dict[key] = [call_result.value[idx]]
            call_result = new_dict

        return call_result, err_code, err_info
701

702
    def postprocess(self, input_data, fetch_data, data_id=0, log_id=0):
T
TeslaZhao 已提交
703 704 705
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
706 707
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
708
            data_id: inner unique id, increase auto
709
            log_id: logid, 0 default
T
TeslaZhao 已提交
710 711

        Returns: 
T
TeslaZhao 已提交
712
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
713 714 715 716
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
717 718 719
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
720
        return fetch_dict, None, ""
D
dongdaxiang 已提交
721

B
barrierye 已提交
722
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
736
        data_id, error_channeldata = None, None
B
barrierye 已提交
737
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
738 739 740 741
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
742
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
743
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
744 745

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
746
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
747 748 749
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
750
            if client_need_profile:
B
barrierye 已提交
751
                profile_set |= data.profile_data_set
B
barrierye 已提交
752
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
753
                profile_set, log_id)
B
barrierye 已提交
754 755 756 757 758

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
759
                                 profile_str=None,
B
barrierye 已提交
760
                                 client_need_profile=False,
B
barrierye 已提交
761
                                 profile_set=None):
T
TeslaZhao 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
776 777
        if name is None:
            name = self.name
B
barrierye 已提交
778

B
barriery 已提交
779
        # add profile into channeldata
B
barrierye 已提交
780
        if client_need_profile and profile_set is not None:
B
barriery 已提交
781 782
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
783
            data.add_profile(profile_set)
B
barrierye 已提交
784

B
barriery 已提交
785 786 787
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
788
    def start_with_process(self):
789 790 791 792 793 794 795 796 797 798
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
799 800 801
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
802
        process = []
B
barrierye 已提交
803
        for concurrency_idx in range(self.concurrency):
804 805
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
806
                args=(concurrency_idx, self._get_input_channel(),
807 808
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
809
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
810 811
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
812
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
F
felixhjh 已提交
813
                      self.get_output_channels_of_jump_ops(),
T
TeslaZhao 已提交
814
                      self.min_subgraph_size, self.dynamic_shape_info,
815
                      self.use_calib))
B
barriery 已提交
816
            p.daemon = True
817
            p.start()
W
wangjiawei04 已提交
818 819
            process.append(p)
        return process
820

W
wangjiawei04 已提交
821
    def start_with_thread(self):
822 823 824 825 826 827 828 829 830 831
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
832 833 834
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
835 836 837 838

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
839
            self.local_predictor = self._local_service_handler.get_client(0)
840

841
        threads = []
B
barrierye 已提交
842
        for concurrency_idx in range(self.concurrency):
843 844
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
845
                args=(concurrency_idx, self._get_input_channel(),
846 847
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
848
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
849 850 851
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
F
felixhjh 已提交
852
                      self.get_output_channels_of_jump_ops(),
853 854
                      self.min_subgraph_size, self.dynamic_shape_info,
                      self.use_calib))
B
barriery 已提交
855 856 857
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
858 859 860 861
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
862
    def init_op(self):
B
barrierye 已提交
863 864
        pass

T
TeslaZhao 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
879
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
880 881
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
882
        skip_process_dict = {}
T
TeslaZhao 已提交
883

884 885 886 887 888
        @ErrorCatch
        def preprocess_help(self, parsed_data, data_id, logid_dict):
            preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                parsed_data, data_id, logid_dict.get(data_id))
            return preped_data, is_skip_process, prod_errcode, prod_errinfo
T
TeslaZhao 已提交
889

890 891
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
892 893 894
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
T
TeslaZhao 已提交
895 896
            process_res, resp = preprocess_help(
                self, parsed_data, data_id=data_id, logid_dict=logid_dict)
F
felixhjh 已提交
897
            if resp.err_no == CustomExceptionCode.OK.value:
898
                preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res
T
TeslaZhao 已提交
899 900
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
901
                if prod_errcode is not None:
T
TeslaZhao 已提交
902 903 904
                    _LOGGER.error(
                        "data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".
                        format(data_id, prod_errcode, prod_errinfo))
905
                    error_channeldata = ChannelData(
T
TeslaZhao 已提交
906 907 908 909 910 911
                        error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                        error_info="",
                        prod_error_code=prod_errcode,
                        prod_error_info=prod_errinfo,
                        data_id=data_id,
                        log_id=log_id)
912
            else:
T
TeslaZhao 已提交
913

T
TeslaZhao 已提交
914
                error_channeldata = ChannelData(
T
TeslaZhao 已提交
915 916 917 918 919
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
                    data_id=data_id,
                    log_id=log_id)
                skip_process_dict[data_id] = True
T
TeslaZhao 已提交
920

921 922 923 924
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
925
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
942
        _LOGGER.debug("{} Running process".format(op_info_prefix))
943 944
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
945
        is_skip_process = False
T
TeslaZhao 已提交
946
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
947 948

        # skip process stage
T
TeslaZhao 已提交
949 950
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
986 987
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
1033

T
TeslaZhao 已提交
1034 1035
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
1036
        error_info = ""
T
TeslaZhao 已提交
1037 1038 1039 1040
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
1041 1042
                    midped_batch, error_code, error_info = self.process(
                        feed_batch, typical_logid)
T
TeslaZhao 已提交
1043 1044 1045
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
1046 1047 1048 1049
                        predict_res, error_code, error_info = self.process(
                            [feed_batch[idx]], typical_logid)
                        if error_code != ChannelDataErrcode.OK.value:
                            break
T
TeslaZhao 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
1062
                        midped_batch, error_code, error_info = func_timeout.func_timeout(
B
barriery 已提交
1063 1064 1065
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
1066
                    else:
T
TeslaZhao 已提交
1067 1068
                        midped_batch = []
                        for idx in range(len(feed_batch)):
1069
                            predict_res, error_code, error_info = func_timeout.func_timeout(
T
TeslaZhao 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
1081
                    else:
T
TeslaZhao 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
1098
            error_info = "[{}] failed to predict. {}. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format(
T
TeslaZhao 已提交
1099 1100
                self.name, error_info)

T
TeslaZhao 已提交
1101 1102 1103
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
1104
                    error_code=error_code,
T
TeslaZhao 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
1149
        else:
T
TeslaZhao 已提交
1150 1151 1152 1153 1154
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
1155 1156
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
1157
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
1172
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
1173 1174
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
1175

1176
        @ErrorCatch
T
TeslaZhao 已提交
1177 1178 1179 1180 1181
        def postprocess_help(self, parsed_data_dict, midped_data, data_id,
                             logid_dict):
            postped_data, prod_errcode, prod_errinfo = self.postprocess(
                parsed_data_dict[data_id], midped_data, data_id,
                logid_dict.get(data_id))
1182
            if not isinstance(postped_data, dict):
T
TeslaZhao 已提交
1183 1184
                raise CustomException(CustomExceptionCode.TYPE_ERROR,
                                      "postprocess should return dict", True)
1185 1186
            return postped_data, prod_errcode, prod_errinfo

B
bug fix  
barriery 已提交
1187
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
1188
            log_id = logid_dict.get(data_id)
1189
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
1190 1191
            prod_errcode, prod_errinfo = None, None

T
TeslaZhao 已提交
1192 1193 1194 1195 1196 1197
            post_res, resp = postprocess_help(
                self,
                parsed_data_dict,
                midped_data,
                data_id=data_id,
                logid_dict=logid_dict)
H
huangjianhui 已提交
1198
            if resp.err_no == CustomExceptionCode.OK.value:
1199 1200
                postped_data, prod_errcode, prod_errinfo = post_res
                if prod_errcode is not None:
T
TeslaZhao 已提交
1201
                    # product errors occured
1202
                    err_channeldata = ChannelData(
T
TeslaZhao 已提交
1203 1204 1205 1206 1207 1208
                        error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                        error_info="",
                        prod_error_code=prod_errcode,
                        prod_error_info=prod_errinfo,
                        data_id=data_id,
                        log_id=log_id)
1209
            else:
T
TeslaZhao 已提交
1210
                err_channeldata = ChannelData(
1211 1212
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
T
TeslaZhao 已提交
1213 1214 1215
                    data_id=data_id,
                    log_id=log_id)

1216 1217 1218 1219
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue

1220 1221 1222 1223
            output_data = None
            err, _ = ChannelData.check_npdata(postped_data)
            if err == 0:
                output_data = ChannelData(
T
TeslaZhao 已提交
1224 1225 1226 1227
                    ChannelDataType.CHANNEL_NPDATA.value,
                    npdata=postped_data,
                    data_id=data_id,
                    log_id=log_id)
1228 1229
            else:
                output_data = ChannelData(
T
TeslaZhao 已提交
1230 1231 1232 1233
                    ChannelDataType.DICT.value,
                    dictdata=postped_data,
                    data_id=data_id,
                    log_id=log_id)
1234
            postped_data_dict[data_id] = output_data
B
barriery 已提交
1235
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
1236
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
1237 1238

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
1239
                                 timeout, op_info_prefix):
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
1265
                        front_start_time = int(round(_time() * 1000000))
B
barriery 已提交
1266 1267 1268
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1269 1270
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1271
                                break
B
barriery 已提交
1272 1273
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1274 1275 1276
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1277
                        _LOGGER.debug(
1278 1279
                            "_auto_batching_generator get {} channeldata from op:{} input channel. time={}".
                            format(idx, op_name, front_start_time))
B
barriery 已提交
1280
                    except ChannelTimeoutError:
B
barriery 已提交
1281 1282
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1283
                        break
B
barriery 已提交
1284 1285
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1286
            yield batch
1287

1288
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1301
        parsed_data_dict = collections.OrderedDict()
1302 1303
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1304
        logid_dict = {}
B
bug fix  
barriery 已提交
1305
        for channeldata_dict in batch:
1306
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1307
                    client_need_profile, profile_set, log_id) = \
1308 1309 1310 1311 1312
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1313
                logid_dict[data_id] = log_id
1314 1315 1316
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1317 1318
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1319

T
TeslaZhao 已提交
1320
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1321

W
wangjiawei04 已提交
1322
    def _run(self, concurrency_idx, input_channel, output_channels,
1323
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
T
TeslaZhao 已提交
1324 1325 1326 1327
             device_type, devices, mem_optim, ir_optim, precision, use_mkldnn,
             mkldnn_cache_capacity, mkldnn_op_list, mkldnn_bf16_op_list,
             is_jump_op, output_channels_of_jump_ops, min_subgraph_size,
             dynamic_shape_info, use_calib):
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1345
            device_type: support multiple devices
1346 1347
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
1348
            ir_optim: use calculation chart optimization, False default.
T
TeslaZhao 已提交
1349 1350 1351 1352 1353
            precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
            use_mkldnn: use mkldnn, default False.
            mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
            mkldnn_op_list: OP list optimized by mkldnn, None default.
            mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
1354 1355
            is_jump_op: OP has jump op list or not, False default.
            output_channels_of_jump_ops: all output channels of jump ops.
1356
            use_calib: use calib mode of paddle inference, False default.
1357 1358 1359 1360

        Returns:
            None
        """
1361
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1362

1363
        # init ops
B
barriery 已提交
1364
        profiler = None
T
TeslaZhao 已提交
1365

1366
        @ErrorCatch
T
TeslaZhao 已提交
1367 1368 1369 1370 1371 1372
        def check_helper(self, is_thread_op, model_config, workdir, thread_num,
                         device_type, devices, mem_optim, ir_optim, precision,
                         use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list,
                         mkldnn_bf16_op_list, min_subgraph_size,
                         dynamic_shape_info):

1373 1374 1375 1376 1377 1378
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1379
                    device_type=device_type,
1380 1381
                    devices=devices,
                    mem_optim=mem_optim,
1382
                    ir_optim=ir_optim,
T
TeslaZhao 已提交
1383 1384 1385 1386
                    precision=precision,
                    use_mkldnn=use_mkldnn,
                    mkldnn_cache_capacity=mkldnn_cache_capacity,
                    mkldnn_op_list=mkldnn_op_list,
F
felixhjh 已提交
1387 1388
                    mkldnn_bf16_op_list=mkldnn_bf16_op_list,
                    min_subgraph_size=min_subgraph_size,
1389 1390
                    dynamic_shape_info=dynamic_shape_info,
                    use_calib=use_calib)
1391 1392 1393

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1394 1395
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1396
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1397
            profiler = self._initialize(is_thread_op, concurrency_idx)
F
felixhjh 已提交
1398
            return profiler
1399

T
TeslaZhao 已提交
1400 1401 1402 1403 1404
        profiler, resp = check_helper(
            self, is_thread_op, model_config, workdir, thread_num, device_type,
            devices, mem_optim, ir_optim, precision, use_mkldnn,
            mkldnn_cache_capacity, mkldnn_op_list, mkldnn_bf16_op_list,
            min_subgraph_size, dynamic_shape_info)
1405 1406

        if resp.err_no != CustomExceptionCode.OK.value:
B
barriery 已提交
1407
            _LOGGER.critical(
H
huangjianhui 已提交
1408
                "{} failed to init op: {}".format(op_info_prefix, resp.err_msg),
H
huangjianhui 已提交
1409
                exc_info=False)
1410

T
TeslaZhao 已提交
1411 1412
            print("{} failed to init op: {}".format(op_info_prefix,
                                                    resp.err_msg))
H
huangjianhui 已提交
1413
            kill_stop_process_by_pid("kill", os.getpgid(os.getpid()))
1414

B
barriery 已提交
1415
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1416

B
barriery 已提交
1417
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1418 1419 1420 1421
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1422
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1423

B
barriery 已提交
1424
        start, end = None, None
B
barrierye 已提交
1425
        trace_que = collections.deque()
B
barrierye 已提交
1426
        while True:
B
barriery 已提交
1427
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1428
            try:
B
barriery 已提交
1429
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1430
            except ChannelStopError:
B
barriery 已提交
1431
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1432
                self._finalize(is_thread_op)
B
barrierye 已提交
1433
                break
B
barriery 已提交
1434
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1435
            in_time = end - start
1436 1437
            _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix,
                                                        time.time()))
1438

B
barriery 已提交
1439 1440
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1441
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1442 1443
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1444
            except ChannelStopError:
B
barriery 已提交
1445
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1446
                self._finalize(is_thread_op)
B
barriery 已提交
1447
                break
1448 1449 1450
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1451 1452
            _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix,
                                                      time.time()))
1453

1454 1455 1456 1457 1458 1459
            front_cost = int(round(_time() * 1000000)) - start
            for data_id, parsed_data in parsed_data_dict.items():
                _LOGGER.debug(
                    "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format(
                        data_id, self.name, front_cost / 1000.0))

1460
            # preprecess
B
barriery 已提交
1461
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1462 1463
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1464
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1465
            prep_time = end - start
1466 1467
            _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), prep_time))
1468
            try:
T
TeslaZhao 已提交
1469
                # put error requests into output channel, skip process and postprocess stage
1470
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1471
                    self._push_to_output_channels(
B
barriery 已提交
1472 1473
                        data=err_channeldata,
                        channels=output_channels,
1474 1475 1476
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1477
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1478 1479
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1480
            if len(preped_data_dict) == 0:
1481 1482
                continue

B
barrierye 已提交
1483
            # process
B
barriery 已提交
1484
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1485
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1486
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1487
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
bjjwwang 已提交
1488
            _LOGGER.info("prometheus inf count +1")
B
barrierye 已提交
1489
            midp_time = end - start
1490 1491
            _LOGGER.debug("op:{} process_end:{}, cost:{}".format(
                op_info_prefix, time.time(), midp_time))
1492 1493
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1494
                    self._push_to_output_channels(
B
barriery 已提交
1495 1496
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1497 1498
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1499
            except ChannelStopError:
B
barriery 已提交
1500
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1501 1502 1503
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1504
                continue
1505 1506

            # postprocess
B
barriery 已提交
1507
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1508
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1509
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1510
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1511
            postp_time = end - start
1512
            after_postp_time = _time()
1513 1514
            _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), postp_time))
1515 1516
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1517
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1518
                        data=err_channeldata,
B
barriery 已提交
1519
                        channels=output_channels,
B
barriery 已提交
1520 1521
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1522
            except ChannelStopError:
B
barriery 已提交
1523
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1524 1525 1526
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1527
                continue
1528

1529
            # push data to channel (if run succ)
B
barriery 已提交
1530
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1531
            try:
B
barriery 已提交
1532
                profile_str = profiler.gen_profile_str()
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
                if self.is_jump_op() is True and self.check_jumping(
                        postped_data_dict) is True:
                    # push data to output channel of ops to be jumped 
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels_of_jump_ops,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
                else:
                    # push data to output channel.
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
B
barrierye 已提交
1568
            except ChannelStopError:
B
barriery 已提交
1569
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1570
                self._finalize(is_thread_op)
B
barrierye 已提交
1571
                break
B
barriery 已提交
1572
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1573
            out_time = end - start
1574
            after_outchannel_time = int(round(_time() * 1000000))
B
barriery 已提交
1575
            if trace_buffer is not None:
B
barrierye 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1593

W
wangjiawei04 已提交
1594
    def _initialize(self, is_thread_op, concurrency_idx):
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
T
TeslaZhao 已提交
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617
        @ErrorCatch
        def init_helper(self, is_thread_op, concurrency_idx):
            if is_thread_op:
                with self._for_init_op_lock:
                    if not self._succ_init_op:
                        # for the threaded version of Op, each thread cannot get its concurrency_idx
                        self.concurrency_idx = None
                        # init client
                        self.client = self.init_client(self._client_config,
T
TeslaZhao 已提交
1618
                                                       self._server_endpoints)
1619 1620 1621 1622 1623 1624 1625 1626
                        # user defined
                        self.init_op()
                        self._succ_init_op = True
                        self._succ_close_op = False
            else:
                self.concurrency_idx = concurrency_idx
                # init client
                self.client = self.init_client(self._client_config,
T
TeslaZhao 已提交
1627
                                               self._server_endpoints)
1628
                # user defined
T
TeslaZhao 已提交
1629 1630
                self.init_op()

1631
        init_helper(self, is_thread_op, concurrency_idx)
F
felixhjh 已提交
1632
        print("[OP Object] init success")
B
barriery 已提交
1633 1634 1635 1636 1637
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1638 1639 1640 1641 1642 1643 1644 1645
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1646 1647 1648 1649 1650

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1651
class RequestOp(Op):
1652 1653 1654 1655 1656 1657
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1658

B
barrierye 已提交
1659
    def __init__(self):
1660 1661 1662
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1663 1664
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1665
        # init op
1666
        try:
1667
            self.init_op()
1668
        except Exception as e:
B
barriery 已提交
1669
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1670
            os._exit(-1)
B
barrierye 已提交
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
    def proto_tensor_2_numpy(self, tensor):
        """
        Convert proto tensor to numpy array, The supported types are as follows:
                INT64
                FP32
		INT32
		FP64
		INT16
		FP16
		BF16
		UINT8
		INT8
		BOOL
1685
                BYTES
1686
        Unsupported type:
1687
                STRING
1688 1689 1690 1691 1692 1693 1694
                COMPLEX64
                COMPLEX128

        Args:
            tensor: one tensor in request.tensors.

        Returns:
T
TeslaZhao 已提交
1695 1696
            np_data: np.ndnumpy, the tensor data is converted to numpy.
            lod_info: np.ndnumpy, lod info of the tensor data, None default.
1697 1698 1699 1700 1701 1702
        """
        if tensor is None or tensor.elem_type is None or tensor.name is None:
            _LOGGER.error("input params of tensor is wrong. tensor: {}".format(
                tensor))
            return None

T
TeslaZhao 已提交
1703
        # Set dim shape
1704 1705 1706 1707 1708 1709 1710
        dims = []
        if tensor.shape is None:
            dims.append(1)
        else:
            for one_dim in tensor.shape:
                dims.append(one_dim)

T
TeslaZhao 已提交
1711 1712 1713 1714 1715
        # Set up 2-d lod tensor
        np_lod = None
        if len(tensor.lod) > 0:
            np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1)

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        np_data = None
        _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format(
            tensor.name, tensor.elem_type, dims))
        if tensor.elem_type == 0:
            # VarType: INT64
            np_data = np.array(tensor.int64_data).astype(int64).reshape(dims)
        elif tensor.elem_type == 1:
            # VarType: FP32
            np_data = np.array(tensor.float_data).astype(float32).reshape(dims)
        elif tensor.elem_type == 2:
            # VarType: INT32
            np_data = np.array(tensor.int_data).astype(int32).reshape(dims)
        elif tensor.elem_type == 3:
            # VarType: FP64
            np_data = np.array(tensor.float64_data).astype(float64).reshape(
                dims)
        elif tensor.elem_type == 4:
            # VarType: INT16
            np_data = np.array(tensor.int_data).astype(int16).reshape(dims)
        elif tensor.elem_type == 5:
            # VarType: FP16
            np_data = np.array(tensor.float_data).astype(float16).reshape(dims)
        elif tensor.elem_type == 6:
            # VarType: BF16
            np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims)
        elif tensor.elem_type == 7:
            # VarType: UINT8
            np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims)
        elif tensor.elem_type == 8:
            # VarType: INT8
            np_data = np.array(tensor.int_data).astype(int8).reshape(dims)
        elif tensor.elem_type == 9:
            # VarType: BOOL
            np_data = np.array(tensor.bool_data).astype(bool).reshape(dims)
1750 1751 1752 1753
        elif tensor.elem_type == 13:
            # VarType: BYTES
            byte_data = BytesIO(tensor.byte_data)
            np_data = np.load(byte_data, allow_pickle=True)
1754 1755 1756 1757 1758 1759 1760
        else:
            _LOGGER.error("Sorry, the type {} of tensor {} is not supported.".
                          format(tensor.elem_type, tensor.name))
            raise ValueError(
                "Sorry, the type {} of tensor {} is not supported.".format(
                    tensor.elem_type, tensor.name))

T
TeslaZhao 已提交
1761
        return np_data, np_lod
1762

B
barrierye 已提交
1763
    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1782

1783
        # unpack key/value string list
1784
        for idx, key in enumerate(request.key):
1785
            dict_data[key] = request.value[idx]
T
TeslaZhao 已提交
1786
        log_id = request.logid
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

        # unpack proto.tensors data.
        for one_tensor in request.tensors:
            name = one_tensor.name
            elem_type = one_tensor.elem_type

            if one_tensor.name is None:
                _LOGGER.error("Tensor name is None.")
                raise ValueError("Tensor name is None.")

            numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type)
            if numpy_dtype is None:
                _LOGGER.error(
                    "elem_type:{} is dismatch in unpack_request_package.",
                    format(elem_type))
                raise ValueError("elem_type:{} error".format(elem_type))

            if numpy_dtype == "string":
                new_string = ""
                if one_tensor.str_data is None:
                    _LOGGER.error(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                    raise ValueError(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                for one_str in one_tensor.str_data:
                    new_string += one_str

                dict_data[name] = new_string
            else:
T
TeslaZhao 已提交
1818 1819 1820 1821
                np_data, np_lod = self.proto_tensor_2_numpy(one_tensor)
                dict_data[name] = np_data
                if np_lod is not None:
                    dict_data[name + ".lod"] = np_lod
1822

1823 1824 1825 1826
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}, time:{}"
                     .format(log_id, request.clientip, request.name,
                             request.method, time.time()))
T
TeslaZhao 已提交
1827 1828

        return dict_data, log_id, None, ""
B
barrierye 已提交
1829 1830 1831


class ResponseOp(Op):
1832 1833 1834 1835 1836 1837
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1838

B
barrierye 已提交
1839
    def __init__(self, input_ops):
1840 1841 1842
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1843 1844
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
1845

B
barrierye 已提交
1846
        # init op
1847
        try:
1848
            self.init_op()
1849
        except Exception as e:
B
barriery 已提交
1850 1851
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1852
            os._exit(-1)
B
barrierye 已提交
1853

1854 1855 1856 1857 1858 1859
        # init ResponseOp
        self.is_pack_tensor = False

    def set_pack_format(self, isTensor=False):
        self.is_pack_tensor = isTensor

B
barrierye 已提交
1860
    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1861
        """
1862 1863 1864 1865 1866 1867 1868 1869
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1870
        """
B
barrierye 已提交
1871
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1872 1873 1874
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1875
            # Framework level errors
B
barrierye 已提交
1876 1877 1878 1879
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1880
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1881
                for name, var in feed.items():
1882 1883
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1884 1885 1886 1887
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1888 1889
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1890 1891
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1892 1893
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1894
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1895
                        break
1896 1897
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1898
            else:
T
TeslaZhao 已提交
1899 1900 1901
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1902
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1903
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1904
        else:
1905
            # Product level errors
T
TeslaZhao 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1918
        return resp
1919 1920 1921


class VirtualOp(Op):
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
T
TeslaZhao 已提交
1936 1937
        BUILD DAG: [A -> B -> C -> D -> F]
                     \-> E -> V1-> V2->/
1938
    """
1939 1940 1941

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1942
            name=name, input_ops=None, concurrency=concurrency)
1943 1944 1945
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1946 1947 1948 1949 1950 1951 1952 1953 1954
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1955 1956
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1957
    def _actual_pred_op_names(self, op):
1958 1959 1960 1961 1962 1963 1964 1965 1966
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1967
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1968 1969 1970 1971 1972 1973 1974
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1975
    def add_output_channel(self, channel):
1976 1977 1978 1979 1980 1981 1982 1983 1984
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1985
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1986
            _LOGGER.critical(
B
barriery 已提交
1987 1988 1989
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1990
            os._exit(-1)
1991
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1992 1993
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1994
        self._outputs.append(channel)
D
dongdaxiang 已提交
1995

1996
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1997
             is_thread_op):
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
2012
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
2013 2014 2015
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

2016 2017 2018 2019 2020 2021 2022
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
2023 2024
        while True:
            try:
2025
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
2026
            except ChannelStopError:
B
barriery 已提交
2027
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
2028
                self._finalize(is_thread_op)
B
barrierye 已提交
2029
                break
D
dongdaxiang 已提交
2030

B
barrierye 已提交
2031
            try:
2032 2033 2034 2035
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
2036
            except ChannelStopError:
B
barriery 已提交
2037
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
2038
                self._finalize(is_thread_op)
B
barrierye 已提交
2039
                break