client.py 25.2 KB
Newer Older
Z
zhangjun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

import paddle_serving_client
import os
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import numpy as np
import requests
import json
import base64
import time
import sys

sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))

H
HexToString 已提交
31 32 33
#param 'type'(which is in feed_var or fetch_var) = 0 means dataType is int64
#param 'type'(which is in feed_var or fetch_var) = 1 means dataType is float32
#param 'type'(which is in feed_var or fetch_var) = 2 means dataType is int32
S
ShiningZhang 已提交
34 35 36 37
#param 'type'(which is in feed_var or fetch_var) = 5 means dataType is float16
#param 'type'(which is in feed_var or fetch_var) = 7 means dataType is uint8
#param 'type'(which is in feed_var or fetch_var) = 8 means dataType is int8
#param 'type'(which is in feed_var or fetch_var) = 20 means dataType is string(also called bytes in proto)
Z
zhangjun 已提交
38 39 40
int64_type = 0
float32_type = 1
int32_type = 2
S
ShiningZhang 已提交
41 42 43 44
float16_type = 5
uint8_type = 7
int8_type = 8
bytes_type = 20
H
HexToString 已提交
45
#int_type,float_type,string_type are the set of each subdivision classes.
Z
zhangjun 已提交
46 47
int_type = set([int64_type, int32_type])
float_type = set([float32_type])
S
ShiningZhang 已提交
48
string_type = set([bytes_type, float16_type, uint8_type, int8_type])
Z
zhangjun 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


class _NOPProfiler(object):
    def record(self, name):
        pass

    def print_profile(self):
        pass


class _TimeProfiler(object):
    def __init__(self):
        self.pid = os.getpid()
        self.print_head = 'PROFILE\tpid:{}\t'.format(self.pid)
        self.time_record = [self.print_head]

    def record(self, name):
        self.time_record.append('{}:{} '.format(
            name, int(round(time.time() * 1000000))))

    def print_profile(self):
        self.time_record.append('\n')
        sys.stderr.write(''.join(self.time_record))
        self.time_record = [self.print_head]


_is_profile = int(os.environ.get('FLAGS_profile_client', 0))
_Profiler = _TimeProfiler if _is_profile else _NOPProfiler


class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
H
HexToString 已提交
85
        self.rpc_timeout_ms = 200000
Z
zhangjun 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        self.load_balance_strategy = "la"

    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)

    def set_load_banlance_strategy(self, strategy):
        self.load_balance_strategy = strategy

    def gen_desc(self, rpc_timeout_ms):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)

        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = rpc_timeout_ms
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"

        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

        return self.sdk_desc


class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
        self.feed_shapes_ = {}
        self.feed_types_ = {}
        self.feed_names_to_idx_ = {}
        self.pid = os.getpid()
        self.predictor_sdk_ = None
        self.producers = []
        self.consumer = None
        self.profile_ = _Profiler()
        self.all_numpy_input = True
        self.has_numpy_input = False
H
HexToString 已提交
148
        self.rpc_timeout_ms = 200000
Z
zhangjun 已提交
149 150 151
        from .serving_client import PredictorRes
        self.predictorres_constructor = PredictorRes

152 153 154 155 156 157 158 159 160
    def load_client_config(self, model_config_path_list):
        if isinstance(model_config_path_list, str):
            model_config_path_list = [model_config_path_list]
        elif isinstance(model_config_path_list, list):
            pass

        file_path_list = []
        for single_model_config in model_config_path_list:
            if os.path.isdir(single_model_config):
H
fix bug  
HexToString 已提交
161
                file_path_list.append("{}/serving_client_conf.prototxt".format(
162 163 164
                    single_model_config))
            elif os.path.isfile(single_model_config):
                file_path_list.append(single_model_config)
Z
zhangjun 已提交
165 166
        from .serving_client import PredictorClient
        model_conf = m_config.GeneralModelConfig()
167
        f = open(file_path_list[0], 'r')
Z
zhangjun 已提交
168 169 170 171 172 173 174 175
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
        self.client_handle_ = PredictorClient()
176
        self.client_handle_.init(file_path_list)
Z
zhangjun 已提交
177 178 179 180 181 182
        if "FLAGS_max_body_size" not in os.environ:
            os.environ["FLAGS_max_body_size"] = str(512 * 1024 * 1024)
        read_env_flags = ["profile_client", "profile_server", "max_body_size"]
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
H
HexToString 已提交
183
        self.feed_names_to_idx_ = {}  #this is not useful
Z
zhangjun 已提交
184
        self.lod_tensor_set = set()
H
HexToString 已提交
185
        self.feed_tensor_len = {}  #this is only used for shape check
Z
zhangjun 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199
        self.key = None

        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape

            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
200 201 202 203 204 205 206 207
        if len(file_path_list) > 1:
            model_conf = m_config.GeneralModelConfig()
            f = open(file_path_list[-1], 'r')
            model_conf = google.protobuf.text_format.Merge(
                str(f.read()), model_conf)
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
Z
zhangjun 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
        return

    def add_variant(self, tag, cluster, variant_weight):
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

    def set_rpc_timeout_ms(self, rpc_timeout):
        if not isinstance(rpc_timeout, int):
            raise ValueError("rpc_timeout must be int type.")
        else:
            self.rpc_timeout_ms = rpc_timeout

    def use_key(self, key_filename):
        with open(key_filename, "rb") as f:
            self.key = f.read()

    def get_serving_port(self, endpoints):
        if self.key is not None:
            req = json.dumps({"key": base64.b64encode(self.key).decode()})
        else:
            req = json.dumps({})
        r = requests.post("http://" + endpoints[0], req)
        result = r.json()
        print(result)
        if "endpoint_list" not in result:
            raise ValueError("server not ready")
        else:
            endpoints = [
                endpoints[0].split(":")[0] + ":" +
                str(result["endpoint_list"][0])
            ]
            return endpoints

    def connect(self, endpoints=None, encryption=False):
        # check whether current endpoint is available
        # init from client config
        # create predictor here
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise ValueError(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if encryption:
                endpoints = self.get_serving_port(endpoints)
            if self.predictor_sdk_ is None:
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
                                 100)
            else:
                print(
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
                    format(endpoints))
        sdk_desc = self.predictor_sdk_.gen_desc(self.rpc_timeout_ms)
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
        if isinstance(feed[key],
                      list) and len(feed[key]) != self.feed_tensor_len[key]:
            raise ValueError("The shape of feed tensor {} not match.".format(
                key))
        if type(feed[key]).__module__ == np.__name__ and np.size(feed[
                key]) != self.feed_tensor_len[key]:
            #raise SystemExit("The shape of feed tensor {} not match.".format(
            #    key))
            pass

    def predict(self,
                feed=None,
                fetch=None,
                batch=False,
                need_variant_tag=False,
                log_id=0):
        self.profile_.record('py_prepro_0')

H
HexToString 已提交
298
        # fetch 可以为空,此时会取所有的输出结果
H
HexToString 已提交
299 300
        if feed is None:
            raise ValueError("You should specify feed for prediction")
Z
zhangjun 已提交
301 302 303 304 305 306

        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
H
HexToString 已提交
307
        # fetch 可以为空,此时会取所有的输出结果
H
HexToString 已提交
308 309
        elif fetch == None:
            pass
Z
zhangjun 已提交
310
        else:
H
HexToString 已提交
311
            raise ValueError("Fetch only accepts string or list of string")
Z
zhangjun 已提交
312 313 314 315 316

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
H
HexToString 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330
            # feed = [dict]
            if len(feed) == 1 and isinstance(feed[0], dict):
                feed_batch = feed
            else:
                # if input is a list and the number of feed_var is 1.
                # create a temp_dict { key = feed_var_name, value = list}
                # put the temp_dict into the feed_batch.
                if len(self.feed_names_) != 1:
                    raise ValueError(
                        "input is a list, but we got 0 or 2+ feed_var, don`t know how to divide the feed list"
                    )
                temp_dict = {}
                temp_dict[self.feed_names_[0]] = feed
                feed_batch.append(temp_dict)
Z
zhangjun 已提交
331 332 333
        else:
            raise ValueError("Feed only accepts dict and list of dict")

H
HexToString 已提交
334 335 336 337
        # batch_size must be 1, cause batch is already in Tensor.
        if len(feed_batch) != 1:
            raise ValueError("len of feed_batch can only be 1.")

338 339 340 341 342 343 344 345 346
        int32_slot = []
        int32_feed_names = []
        int32_shape = []
        int32_lod_slot_batch = []

        int64_slot = []
        int64_feed_names = []
        int64_shape = []
        int64_lod_slot_batch = []
H
HexToString 已提交
347 348

        float_slot = []
349
        float_feed_names = []
Z
zhangjun 已提交
350 351
        float_lod_slot_batch = []
        float_shape = []
H
HexToString 已提交
352 353

        string_slot = []
354 355 356
        string_feed_names = []
        string_lod_slot_batch = []
        string_shape = []
Z
zhangjun 已提交
357 358 359 360 361 362
        fetch_names = []

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

H
HexToString 已提交
363 364
        feed_dict = feed_batch[0]
        for key in feed_dict:
H
HexToString 已提交
365 366 367 368 369
            if ".lod" not in key and key not in self.feed_names_:
                raise ValueError("Wrong feed name: {}.".format(key))
            if ".lod" in key:
                continue

H
HexToString 已提交
370
            self.shape_check(feed_dict, key)
H
HexToString 已提交
371 372 373
            if self.feed_types_[key] in int_type:
                shape_lst = []
                if batch == False:
H
HexToString 已提交
374
                    feed_dict[key] = np.expand_dims(feed_dict[key], 0).repeat(
H
HexToString 已提交
375
                        1, axis=0)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
                # verify different input int_type
                if(self.feed_types_[key] == int64_type):
                    int64_feed_names.append(key)
                    if isinstance(feed_dict[key], np.ndarray):
                        shape_lst.extend(list(feed_dict[key].shape))
                        int64_shape.append(shape_lst)
                        self.has_numpy_input = True
                    else:
                        int64_shape.append(self.feed_shapes_[key])
                        self.all_numpy_input = False
                    if "{}.lod".format(key) in feed_dict:
                        int64_lod_slot_batch.append(feed_dict["{}.lod".format(key)])
                    else:
                        int64_lod_slot_batch.append([])
                    int64_slot.append(np.ascontiguousarray(feed_dict[key]))
H
HexToString 已提交
391
                else:
392 393 394 395 396 397 398 399 400 401 402 403 404
                    int32_feed_names.append(key)
                    if isinstance(feed_dict[key], np.ndarray):
                        shape_lst.extend(list(feed_dict[key].shape))
                        int32_shape.append(shape_lst)
                        self.has_numpy_input = True
                    else:
                        int32_shape.append(self.feed_shapes_[key])
                        self.all_numpy_input = False
                    if "{}.lod".format(key) in feed_dict:
                        int32_lod_slot_batch.append(feed_dict["{}.lod".format(key)])
                    else:
                        int32_lod_slot_batch.append([])
                    int32_slot.append(np.ascontiguousarray(feed_dict[key]))
H
HexToString 已提交
405 406 407 408 409

            elif self.feed_types_[key] in float_type:
                float_feed_names.append(key)
                shape_lst = []
                if batch == False:
H
HexToString 已提交
410
                    feed_dict[key] = np.expand_dims(feed_dict[key], 0).repeat(
H
HexToString 已提交
411
                        1, axis=0)
H
HexToString 已提交
412 413
                if isinstance(feed_dict[key], np.ndarray):
                    shape_lst.extend(list(feed_dict[key].shape))
H
HexToString 已提交
414 415 416
                    float_shape.append(shape_lst)
                else:
                    float_shape.append(self.feed_shapes_[key])
H
HexToString 已提交
417 418
                if "{}.lod".format(key) in feed_dict:
                    float_lod_slot_batch.append(feed_dict["{}.lod".format(key)])
H
HexToString 已提交
419 420 421
                else:
                    float_lod_slot_batch.append([])

H
HexToString 已提交
422 423
                if isinstance(feed_dict[key], np.ndarray):
                    float_slot.append(np.ascontiguousarray(feed_dict[key]))
H
HexToString 已提交
424 425
                    self.has_numpy_input = True
                else:
H
HexToString 已提交
426
                    float_slot.append(np.ascontiguousarray(feed_dict[key]))
H
HexToString 已提交
427 428 429 430 431
                    self.all_numpy_input = False
            #if input is string, feed is not numpy.
            elif self.feed_types_[key] in string_type:
                string_feed_names.append(key)
                string_shape.append(self.feed_shapes_[key])
H
HexToString 已提交
432 433 434
                if "{}.lod".format(key) in feed_dict:
                    string_lod_slot_batch.append(feed_dict["{}.lod".format(
                        key)])
H
HexToString 已提交
435 436
                else:
                    string_lod_slot_batch.append([])
437 438 439 440
                if type(feed_dict[key]) is np.ndarray:
                    string_slot.append(feed_dict[key].tostring())
                else:
                    string_slot.append(feed_dict[key])
H
HexToString 已提交
441
                self.has_numpy_input = True
Z
zhangjun 已提交
442 443 444 445 446 447 448

        self.profile_.record('py_prepro_1')
        self.profile_.record('py_client_infer_0')

        result_batch_handle = self.predictorres_constructor()
        if self.all_numpy_input:
            res = self.client_handle_.numpy_predict(
H
HexToString 已提交
449
                float_slot, float_feed_names, float_shape, float_lod_slot_batch,
450 451
                int32_slot, int32_feed_names, int32_shape, int32_lod_slot_batch,
                int64_slot, int64_feed_names, int64_shape, int64_lod_slot_batch,
H
HexToString 已提交
452 453 454
                string_slot, string_feed_names, string_shape,
                string_lod_slot_batch, fetch_names, result_batch_handle,
                self.pid, log_id)
Z
zhangjun 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
        elif self.has_numpy_input == False:
            raise ValueError(
                "Please make sure all of your inputs are numpy array")
        else:
            raise ValueError(
                "Please make sure the inputs are all in list type or all in numpy.array type"
            )

        self.profile_.record('py_client_infer_1')
        self.profile_.record('py_postpro_0')

        if res == -1:
            return None

        multi_result_map = []
        model_engine_names = result_batch_handle.get_engine_names()
        for mi, engine_name in enumerate(model_engine_names):
            result_map = {}
H
HexToString 已提交
473
            # fetch 为空,则会取所有的输出结果
H
HexToString 已提交
474 475
            if len(fetch_names) == 0:
                fetch_names = result_batch_handle.get_tensor_alias_names(mi)
Z
zhangjun 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
            # result map needs to be a numpy array
            for i, name in enumerate(fetch_names):
                if self.fetch_names_to_type_[name] == int64_type:
                    # result_map[name] will be py::array(numpy array)
                    result_map[name] = result_batch_handle.get_int64_by_name(
                        mi, name)
                    shape = result_batch_handle.get_shape(mi, name)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
                elif self.fetch_names_to_type_[name] == float32_type:
                    result_map[name] = result_batch_handle.get_float_by_name(
                        mi, name)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
                elif self.fetch_names_to_type_[name] == int32_type:
                    # result_map[name] will be py::array(numpy array)
                    result_map[name] = result_batch_handle.get_int32_by_name(
                        mi, name)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
S
ShiningZhang 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
                elif self.fetch_names_to_type_[name] == uint8_type:
                    # result_map[name] will be py::array(numpy array)
                    tmp_str = result_batch_handle.get_string_by_name(
                        mi, name)
                    result_map[name] = np.fromstring(tmp_str, dtype = np.uint8)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
                elif self.fetch_names_to_type_[name] == int8_type:
                    # result_map[name] will be py::array(numpy array)
                    tmp_str = result_batch_handle.get_string_by_name(
                        mi, name)
                    result_map[name] = np.fromstring(tmp_str, dtype = np.int8)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
                elif self.fetch_names_to_type_[name] == float16_type:
                    # result_map[name] will be py::array(numpy array)
                    tmp_str = result_batch_handle.get_string_by_name(
                        mi, name)
                    result_map[name] = np.fromstring(tmp_str, dtype = np.float16)
                    if result_map[name].size == 0:
                        raise ValueError(
                            "Failed to fetch, maybe the type of [{}]"
                            " is wrong, please check the model file".format(
                                name))
                    shape = result_batch_handle.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        tmp_lod = result_batch_handle.get_lod(mi, name)
Z
zhangjun 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
                        if np.size(tmp_lod) > 0:
                            result_map["{}.lod".format(name)] = tmp_lod
            multi_result_map.append(result_map)
        ret = None
        if len(model_engine_names) == 1:
            # If only one model result is returned, the format of ret is result_map
            ret = multi_result_map[0]
        else:
            # If multiple model results are returned, the format of ret is {name: result_map}
            ret = {
                engine_name: multi_result_map[mi]
                for mi, engine_name in enumerate(model_engine_names)
            }

        self.profile_.record('py_postpro_1')
        self.profile_.print_profile()

        # When using the A/B test, the tag of variant needs to be returned
        return ret if not need_variant_tag else [
            ret, result_batch_handle.variant_tag()
        ]

    def release(self):
        self.client_handle_.destroy_predictor()
        self.client_handle_ = None