client.cpp 17.1 KB
Newer Older
S
ShiningZhang 已提交
1
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
S
ShiningZhang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "core/general-client/include/client.h"
#include "core/sdk-cpp/include/common.h"
17
#include "core/sdk-cpp/general_model_service.pb.h"
S
ShiningZhang 已提交
18 19 20 21 22

namespace baidu {
namespace paddle_serving {
namespace client {
using configure::GeneralModelConfig;
23 24 25
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
26
// support: FLOAT32, INT64, INT32, UINT8, INT8, FLOAT16
S
ShiningZhang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39
enum ProtoDataType {
  P_INT64 = 0,
  P_FLOAT32,
  P_INT32,
  P_FP64,
  P_INT16,
  P_FP16,
  P_BF16,
  P_UINT8,
  P_INT8,
  P_BOOL,
  P_COMPLEX64,
  P_COMPLEX128,
S
ShiningZhang 已提交
40
  P_STRING = 20,
S
ShiningZhang 已提交
41
};
S
ShiningZhang 已提交
42 43 44 45 46 47 48 49

int ServingClient::init(const std::vector<std::string>& client_conf,
           const std::string server_port) {
  if (load_client_config(client_conf) != 0) {
    LOG(ERROR) << "Failed to load client config";
    return -1;
  }

S
ShiningZhang 已提交
50
  // pure virtual func, subclass implementation
S
ShiningZhang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  if (connect(server_port) != 0) {
    LOG(ERROR) << "Failed to connect";
    return -1;
  }

  return 0;
}

int ServingClient::load_client_config(const std::vector<std::string> &conf_file) {
  try {
    GeneralModelConfig model_config;
    if (configure::read_proto_conf(conf_file[0].c_str(), &model_config) != 0) {
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file[0];
      return -1;
    }

    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    _feed_name.clear();
    VLOG(2) << "feed var num: " << feed_var_num;
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
      VLOG(2) << "feed [" << i << "]"
              << " name: " << model_config.feed_var(i).name();
      _feed_name.push_back(model_config.feed_var(i).name());
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
      std::vector<int> tmp_feed_shape;
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
      }
      _type.push_back(model_config.feed_var(i).feed_type());
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
      _shape.push_back(tmp_feed_shape);
    }

    if (conf_file.size() > 1) {
      model_config.Clear();
      if (configure::read_proto_conf(conf_file[conf_file.size() - 1].c_str(),
                                     &model_config) != 0) {
        LOG(ERROR) << "Failed to load general model config"
                   << ", file path: " << conf_file[conf_file.size() - 1];
        return -1;
      }
    }
    int fetch_var_num = model_config.fetch_var_size();
    VLOG(2) << "fetch_var_num: " << fetch_var_num;
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
    }
  } catch (std::exception &e) {
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
  }
  return 0;
}

void PredictorData::add_float_data(const std::vector<float>& data,
                                    const std::string& name,
                                    const std::vector<int>& shape,
125 126
                                    const std::vector<int>& lod,
                                    const int datatype) {
S
ShiningZhang 已提交
127 128 129
  _float_data_map[name] = data;
  _shape_map[name] = shape;
  _lod_map[name] = lod;
130
  _datatype_map[name] = datatype;
S
ShiningZhang 已提交
131 132 133 134 135
}

void PredictorData::add_int64_data(const std::vector<int64_t>& data,
                                    const std::string& name,
                                    const std::vector<int>& shape,
136 137
                                    const std::vector<int>& lod,
                                    const int datatype) {
S
ShiningZhang 已提交
138 139 140
  _int64_data_map[name] = data;
  _shape_map[name] = shape;
  _lod_map[name] = lod;
141
  _datatype_map[name] = datatype;
S
ShiningZhang 已提交
142 143 144 145 146
}

void PredictorData::add_int32_data(const std::vector<int32_t>& data,
                                    const std::string& name,
                                    const std::vector<int>& shape,
147 148
                                    const std::vector<int>& lod,
                                    const int datatype) {
S
ShiningZhang 已提交
149 150 151
  _int32_data_map[name] = data;
  _shape_map[name] = shape;
  _lod_map[name] = lod;
152
  _datatype_map[name] = datatype;
S
ShiningZhang 已提交
153 154 155 156 157
}

void PredictorData::add_string_data(const std::string& data,
                                    const std::string& name,
                                    const std::vector<int>& shape,
158 159
                                    const std::vector<int>& lod,
                                    const int datatype) {
S
ShiningZhang 已提交
160 161 162
  _string_data_map[name] = data;
  _shape_map[name] = shape;
  _lod_map[name] = lod;
163 164 165 166 167 168 169 170 171
  _datatype_map[name] = datatype;
}

int PredictorData::get_datatype(std::string name) const {
  std::map<std::string, int>::const_iterator it = _datatype_map.find(name);
  if (it != _datatype_map.end()) {
    return it->second;
  }
  return 0;
S
ShiningZhang 已提交
172 173
}

S
ShiningZhang 已提交
174 175 176 177
void PredictorData::set_datatype(std::string name, int type) {
  _datatype_map[name] = type;
}

178 179 180 181 182 183 184 185 186
std::string PredictorData::print() {
  std::string res;
  res.append(map2string<std::string, float>(_float_data_map));
  res.append(map2string<std::string, int64_t>(_int64_data_map));
  res.append(map2string<std::string, int32_t>(_int32_data_map));
  res.append(map2string<std::string, std::string>(_string_data_map));
  return res;
}

S
ShiningZhang 已提交
187
int PredictorInputs::GenProto(const PredictorInputs& inputs,
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
                              const std::map<std::string, int>& feed_name_to_idx,
                              const std::vector<std::string>& feed_name,
                              Request& req) {
  const std::map<std::string, std::vector<float>>& float_feed_map = inputs.float_data_map();
  const std::map<std::string, std::vector<int64_t>>& int64_feed_map = inputs.int64_data_map();
  const std::map<std::string, std::vector<int32_t>>& int32_feed_map = inputs.int_data_map();
  const std::map<std::string, std::string>& string_feed_map = inputs.string_data_map();
  const std::map<std::string, std::vector<int>>& shape_map = inputs.shape_map();
  const std::map<std::string, std::vector<int>>& lod_map = inputs.lod_map();

  VLOG(2) << "float feed name size: " << float_feed_map.size();
  VLOG(2) << "int feed name size: " << int64_feed_map.size();
  VLOG(2) << "string feed name size: " << string_feed_map.size();

  // batch is already in Tensor.

  for (std::map<std::string, std::vector<float>>::const_iterator iter = float_feed_map.begin();
        iter != float_feed_map.end();
        ++iter) {
    std::string name = iter->first;
    const std::vector<float>& float_data = iter->second;
    const std::vector<int>& float_shape = shape_map.at(name);
    const std::vector<int>& float_lod = lod_map.at(name);
211 212
    // default datatype = P_FLOAT32
    int datatype = inputs.get_datatype(name);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    std::map<std::string, int>::const_iterator feed_name_it = feed_name_to_idx.find(name);
    if (feed_name_it == feed_name_to_idx.end()) {
      LOG(ERROR) << "Do not find [" << name << "] in feed_map!";
      return -1;
    }
    int idx = feed_name_to_idx.at(name);
    VLOG(2) << "prepare float feed " << name << " idx " << idx;
    int total_number = float_data.size();
    Tensor *tensor = req.add_tensor();

    VLOG(2) << "prepare float feed " << name << " shape size "
            << float_shape.size();
    for (uint32_t j = 0; j < float_shape.size(); ++j) {
      tensor->add_shape(float_shape[j]);
    }
    for (uint32_t j = 0; j < float_lod.size(); ++j) {
      tensor->add_lod(float_lod[j]);
    }
231
    tensor->set_elem_type(datatype);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    tensor->set_name(feed_name[idx]);
    tensor->set_alias_name(name);

    tensor->mutable_float_data()->Resize(total_number, 0);
    memcpy(tensor->mutable_float_data()->mutable_data(), float_data.data(), total_number * sizeof(float));
  }

  for (std::map<std::string, std::vector<int64_t>>::const_iterator iter = int64_feed_map.begin();
        iter != int64_feed_map.end();
        ++iter) {
    std::string name = iter->first;
    const std::vector<int64_t>& int64_data = iter->second;
    const std::vector<int>& int64_shape = shape_map.at(name);
    const std::vector<int>& int64_lod = lod_map.at(name);
247 248
    // default datatype = P_INT64
    int datatype = inputs.get_datatype(name);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    std::map<std::string, int>::const_iterator feed_name_it = feed_name_to_idx.find(name);
    if (feed_name_it == feed_name_to_idx.end()) {
      LOG(ERROR) << "Do not find [" << name << "] in feed_map!";
      return -1;
    }
    int idx = feed_name_to_idx.at(name);
    Tensor *tensor = req.add_tensor();
    int total_number = int64_data.size();

    for (uint32_t j = 0; j < int64_shape.size(); ++j) {
      tensor->add_shape(int64_shape[j]);
    }
    for (uint32_t j = 0; j < int64_lod.size(); ++j) {
      tensor->add_lod(int64_lod[j]);
    }
264
    tensor->set_elem_type(datatype);
265 266 267 268 269 270 271 272 273 274 275 276 277 278
    tensor->set_name(feed_name[idx]);
    tensor->set_alias_name(name);

    tensor->mutable_int64_data()->Resize(total_number, 0);
    memcpy(tensor->mutable_int64_data()->mutable_data(), int64_data.data(), total_number * sizeof(int64_t));
  }

  for (std::map<std::string, std::vector<int32_t>>::const_iterator iter = int32_feed_map.begin();
        iter != int32_feed_map.end();
        ++iter) {
    std::string name = iter->first;
    const std::vector<int32_t>& int32_data = iter->second;
    const std::vector<int>& int32_shape = shape_map.at(name);
    const std::vector<int>& int32_lod = lod_map.at(name);
279 280
    // default datatype = P_INT32
    int datatype = inputs.get_datatype(name);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    std::map<std::string, int>::const_iterator feed_name_it = feed_name_to_idx.find(name);
    if (feed_name_it == feed_name_to_idx.end()) {
      LOG(ERROR) << "Do not find [" << name << "] in feed_map!";
      return -1;
    }
    int idx = feed_name_to_idx.at(name);
    Tensor *tensor = req.add_tensor();
    int total_number = int32_data.size();

    for (uint32_t j = 0; j < int32_shape.size(); ++j) {
      tensor->add_shape(int32_shape[j]);
    }
    for (uint32_t j = 0; j < int32_lod.size(); ++j) {
      tensor->add_lod(int32_lod[j]);
    }
296
    tensor->set_elem_type(datatype);
297 298 299 300 301 302 303 304 305 306 307 308 309 310
    tensor->set_name(feed_name[idx]);
    tensor->set_alias_name(name);

    tensor->mutable_int_data()->Resize(total_number, 0);
    memcpy(tensor->mutable_int_data()->mutable_data(), int32_data.data(), total_number * sizeof(int32_t));
  }

  for (std::map<std::string, std::string>::const_iterator iter = string_feed_map.begin();
        iter != string_feed_map.end();
        ++iter) {
    std::string name = iter->first;
    const std::string& string_data = iter->second;
    const std::vector<int>& string_shape = shape_map.at(name);
    const std::vector<int>& string_lod = lod_map.at(name);
311 312
    // default datatype = P_STRING
    int datatype = inputs.get_datatype(name);
313 314 315 316 317 318 319 320 321 322 323 324 325 326
    std::map<std::string, int>::const_iterator feed_name_it = feed_name_to_idx.find(name);
    if (feed_name_it == feed_name_to_idx.end()) {
      LOG(ERROR) << "Do not find [" << name << "] in feed_map!";
      return -1;
    }
    int idx = feed_name_to_idx.at(name);
    Tensor *tensor = req.add_tensor();

    for (uint32_t j = 0; j < string_shape.size(); ++j) {
      tensor->add_shape(string_shape[j]);
    }
    for (uint32_t j = 0; j < string_lod.size(); ++j) {
      tensor->add_lod(string_lod[j]);
    }
327
    tensor->set_elem_type(datatype);
328 329 330
    tensor->set_name(feed_name[idx]);
    tensor->set_alias_name(name);

S
ShiningZhang 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344
    if (datatype == P_STRING) {
      const int string_shape_size = string_shape.size();
      // string_shape[vec_idx] = [1];cause numpy has no datatype of string.
      // we pass string via vector<vector<string> >.
      if (string_shape_size != 1) {
        LOG(ERROR) << "string_shape_size should be 1-D, but received is : "
                   << string_shape_size;
        return -1;
      }
      switch (string_shape_size) {
        case 1: {
          tensor->add_data(string_data);
          break;
        }
345
      }
S
ShiningZhang 已提交
346 347
    } else {
      tensor->set_tensor_content(string_data);
348
    }
S
ShiningZhang 已提交
349
    
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  }
  return 0;
}

std::string PredictorOutputs::print() {
  std::string res = "";
  for (size_t i = 0; i < _datas.size(); ++i) {
    res.append(_datas[i]->engine_name);
    res.append(":");
    res.append(_datas[i]->data.print());
    res.append("\n");
  }
  return res;
}

void PredictorOutputs::clear() {
  _datas.clear();
}

S
ShiningZhang 已提交
369
int PredictorOutputs::ParseProto(const Response& res,
370 371 372 373 374 375 376 377 378 379 380 381
                                  const std::vector<std::string>& fetch_name,
                                  std::map<std::string, int>& fetch_name_to_type,
                                  PredictorOutputs& outputs) {
  VLOG(2) << "get model output num";
  uint32_t model_num = res.outputs_size();
  VLOG(2) << "model num: " << model_num;
  for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
    VLOG(2) << "process model output index: " << m_idx;
    auto& output = res.outputs(m_idx);
    std::shared_ptr<PredictorOutputs::PredictorOutput> predictor_output =
        std::make_shared<PredictorOutputs::PredictorOutput>();
    predictor_output->engine_name = output.engine_name();
S
ShiningZhang 已提交
382 383

    PredictorData& predictor_data = predictor_output->data;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    std::map<std::string, std::vector<float>>& float_data_map = *predictor_output->data.mutable_float_data_map();
    std::map<std::string, std::vector<int64_t>>& int64_data_map = *predictor_output->data.mutable_int64_data_map();
    std::map<std::string, std::vector<int32_t>>& int32_data_map = *predictor_output->data.mutable_int_data_map();
    std::map<std::string, std::string>& string_data_map = *predictor_output->data.mutable_string_data_map();
    std::map<std::string, std::vector<int>>& shape_map = *predictor_output->data.mutable_shape_map();
    std::map<std::string, std::vector<int>>& lod_map = *predictor_output->data.mutable_lod_map();

    int idx = 0;
    for (auto &name : fetch_name) {
      // int idx = _fetch_name_to_idx[name];
      int shape_size = output.tensor(idx).shape_size();
      VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
              << shape_size;
      shape_map[name].resize(shape_size);
      for (int i = 0; i < shape_size; ++i) {
        shape_map[name][i] = output.tensor(idx).shape(i);
      }
      int lod_size = output.tensor(idx).lod_size();
      if (lod_size > 0) {
        lod_map[name].resize(lod_size);
        for (int i = 0; i < lod_size; ++i) {
          lod_map[name][i] = output.tensor(idx).lod(i);
        }
      }
      idx += 1;
    }
    idx = 0;

    for (auto &name : fetch_name) {
      // int idx = _fetch_name_to_idx[name];
      if (fetch_name_to_type[name] == P_INT64) {
S
ShiningZhang 已提交
415
        VLOG(2) << "fetch var " << name << "type int64";
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        int size = output.tensor(idx).int64_data_size();
        int64_data_map[name] = std::vector<int64_t>(
            output.tensor(idx).int64_data().begin(),
            output.tensor(idx).int64_data().begin() + size);
      } else if (fetch_name_to_type[name] == P_FLOAT32) {
        VLOG(2) << "fetch var " << name << "type float";
        int size = output.tensor(idx).float_data_size();
        float_data_map[name] = std::vector<float>(
            output.tensor(idx).float_data().begin(),
            output.tensor(idx).float_data().begin() + size);
      } else if (fetch_name_to_type[name] == P_INT32) {
        VLOG(2) << "fetch var " << name << "type int32";
        int size = output.tensor(idx).int_data_size();
        int32_data_map[name] = std::vector<int32_t>(
            output.tensor(idx).int_data().begin(),
            output.tensor(idx).int_data().begin() + size);
S
ShiningZhang 已提交
432
      } else if (fetch_name_to_type[name] == P_UINT8
433 434
                || fetch_name_to_type[name] == P_INT8
                || fetch_name_to_type[name] == P_FP16) {
S
ShiningZhang 已提交
435 436 437
        VLOG(2) << "fetch var [" << name << "]type="
                << fetch_name_to_type[name];
        string_data_map[name] = output.tensor(idx).tensor_content();
438
      }
S
ShiningZhang 已提交
439
      predictor_data.set_datatype(name, output.tensor(idx).elem_type());
440 441 442 443 444 445 446 447
      idx += 1;
    }
    outputs.add_data(predictor_output);
  }
  return 0;
}

}  // namespace client
S
ShiningZhang 已提交
448 449
}  // namespace paddle_serving
}  // namespace baidu