bert_service_op.cpp 6.2 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "demo-serving/op/bert_service_op.h"
#include <cstdio>
#include <string>
#include "predictor/framework/infer.h"
#include "predictor/framework/memory.h"
namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::bert_service::BertResInstance;
using baidu::paddle_serving::predictor::bert_service::Response;
using baidu::paddle_serving::predictor::bert_service::BertReqInstance;
using baidu::paddle_serving::predictor::bert_service::Request;
X
xulongteng 已提交
29
using baidu::paddle_serving::predictor::bert_service::EmbeddingValues;
M
MRXLT 已提交
30 31

int BertServiceOp::inference() {
X
fix bug  
xulongteng 已提交
32 33 34
  timeval op_start;
  gettimeofday(&op_start, NULL);

M
MRXLT 已提交
35 36 37 38 39 40 41 42 43 44 45
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  TensorVector *in = butil::get_object<TensorVector>();
  Response *res = mutable_data<Response>();

  uint32_t batch_size = req->instances_size();
  if (batch_size <= 0) {
    LOG(WARNING) << "No instances need to inference!";
    return 0;
  }

X
xulongteng 已提交
46 47
  const int64_t MAX_SEQ_LEN = req->instances(0).max_seq_len();
  const int64_t EMB_SIZE = req->instances(0).emb_size();
X
xulongteng 已提交
48

M
MRXLT 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  paddle::PaddleTensor src_ids;
  paddle::PaddleTensor pos_ids;
  paddle::PaddleTensor seg_ids;
  paddle::PaddleTensor input_masks;
  src_ids.name = std::string("src_ids");
  pos_ids.name = std::string("pos_ids");
  seg_ids.name = std::string("sent_ids");
  input_masks.name = std::string("input_mask");

  src_ids.dtype = paddle::PaddleDType::INT64;
  src_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  src_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  pos_ids.dtype = paddle::PaddleDType::INT64;
  pos_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  pos_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  seg_ids.dtype = paddle::PaddleDType::INT64;
  seg_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  seg_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  input_masks.dtype = paddle::PaddleDType::FLOAT32;
  input_masks.shape = {batch_size, MAX_SEQ_LEN, 1};
  input_masks.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(float));

  std::vector<std::vector<size_t>> lod_set;
  lod_set.resize(1);
  for (uint32_t i = 0; i < batch_size; i++) {
    lod_set[0].push_back(i * MAX_SEQ_LEN);
  }
X
xulongteng 已提交
79 80 81 82
  // src_ids.lod = lod_set;
  // pos_ids.lod = lod_set;
  // seg_ids.lod = lod_set;
  // input_masks.lod = lod_set;
M
MRXLT 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95

  uint32_t index = 0;
  for (uint32_t i = 0; i < batch_size; i++) {
    int64_t *src_data = static_cast<int64_t *>(src_ids.data.data()) + index;
    int64_t *pos_data = static_cast<int64_t *>(pos_ids.data.data()) + index;
    int64_t *seg_data = static_cast<int64_t *>(seg_ids.data.data()) + index;
    float *input_masks_data =
        static_cast<float *>(input_masks.data.data()) + index;

    const BertReqInstance &req_instance = req->instances(i);

    memcpy(src_data,
           req_instance.token_ids().data(),
X
xulongteng 已提交
96
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
97 98
    memcpy(pos_data,
           req_instance.position_ids().data(),
X
xulongteng 已提交
99
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
100 101
    memcpy(seg_data,
           req_instance.sentence_type_ids().data(),
X
xulongteng 已提交
102
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
103 104
    memcpy(input_masks_data,
           req_instance.input_masks().data(),
X
xulongteng 已提交
105 106
           sizeof(float) * MAX_SEQ_LEN);
    index += MAX_SEQ_LEN;
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118
  }

  in->push_back(src_ids);
  in->push_back(pos_ids);
  in->push_back(seg_ids);
  in->push_back(input_masks);

  TensorVector *out = butil::get_object<TensorVector>();
  if (!out) {
    LOG(ERROR) << "Failed get tls output object";
    return -1;
  }
X
xulongteng 已提交
119

X
fix bug  
xulongteng 已提交
120 121 122
#if 0  // print request
  std::ostringstream oss;
  for (int j = 0; j < 3; j++) {
X
xulongteng 已提交
123
    int64_t* example = reinterpret_cast<int64_t*>((*in)[j].data.data());
X
fix bug  
xulongteng 已提交
124 125 126 127 128
    for (uint32_t i = 0; i < MAX_SEQ_LEN; i++) {
        oss << *(example + i) << " ";
    }
    oss << ";";
  }
X
xulongteng 已提交
129
  float* example = reinterpret_cast<float*>((*in)[3].data.data());
X
fix bug  
xulongteng 已提交
130 131 132 133 134 135 136
  for (int i = 0; i < MAX_SEQ_LEN; i++) {
    oss << *(example + i) << " ";
  }
  LOG(INFO) << "msg: " << oss.str();
#endif
  timeval infer_start;
  gettimeofday(&infer_start, NULL);
M
MRXLT 已提交
137 138 139 140 141
  if (predictor::InferManager::instance().infer(
          BERT_MODEL_NAME, in, out, batch_size)) {
    LOG(ERROR) << "Failed do infer in fluid model: " << BERT_MODEL_NAME;
    return -1;
  }
X
fix bug  
xulongteng 已提交
142 143 144 145 146
  timeval infer_end;
  gettimeofday(&infer_end, NULL);
  uint64_t infer_time =
      (infer_end.tv_sec * 1000 + infer_end.tv_usec / 1000 -
       (infer_start.tv_sec * 1000 + infer_start.tv_usec / 1000));
X
xulongteng 已提交
147

X
xulongteng 已提交
148 149
  LOG(INFO) << "batch_size : " << out->at(0).shape[0]
            << " emb_size : " << out->at(0).shape[1];
X
fix bug  
xulongteng 已提交
150
  float *out_data = reinterpret_cast<float *>(out->at(0).data.data());
X
xulongteng 已提交
151 152 153
  for (uint32_t bi = 0; bi < batch_size; bi++) {
    BertResInstance *res_instance = res->add_instances();
    for (uint32_t si = 0; si < 1; si++) {
X
xulongteng 已提交
154
      EmbeddingValues *emb_instance = res_instance->add_instances();
X
xulongteng 已提交
155 156 157 158 159 160
      for (uint32_t ei = 0; ei < EMB_SIZE; ei++) {
        uint32_t index = bi * EMB_SIZE + ei;
        emb_instance->add_values(out_data[index]);
      }
    }
  }
X
xulongteng 已提交
161

X
fix bug  
xulongteng 已提交
162 163 164 165 166 167 168
  timeval op_end;
  gettimeofday(&op_end, NULL);
  uint64_t op_time = (op_end.tv_sec * 1000 + op_end.tv_usec / 1000 -
                      (op_start.tv_sec * 1000 + op_start.tv_usec / 1000));

  res->set_op_time(op_time);
  res->set_infer_time(infer_time);
X
xulongteng 已提交
169

X
xulongteng 已提交
170 171 172 173 174
  for (size_t i = 0; i < in->size(); ++i) {
    (*in)[i].shape.clear();
  }
  in->clear();
  butil::return_object<TensorVector>(in);
M
MRXLT 已提交
175

X
xulongteng 已提交
176 177 178 179 180
  for (size_t i = 0; i < out->size(); ++i) {
    (*out)[i].shape.clear();
  }
  out->clear();
  butil::return_object<TensorVector>(out);
X
fix bug  
xulongteng 已提交
181

M
MRXLT 已提交
182 183 184 185 186 187 188 189
  return 0;
}

DEFINE_OP(BertServiceOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu