operator.py 63.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18 19 20 21 22
import threading
import multiprocessing
from paddle_serving_client import MultiLangClient, Client
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
B
barrierye 已提交
29 30 31 32 33 34
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
35

B
barrierye 已提交
36
from .proto import pipeline_service_pb2
T
TeslaZhao 已提交
37
from .channel import (ThreadChannel, ProcessChannel, ChannelDataErrcode,
B
bug fix  
barriery 已提交
38
                      ChannelData, ChannelDataType, ChannelStopError,
T
TeslaZhao 已提交
39
                      ChannelTimeoutError, ProductErrCode)
B
barrierye 已提交
40
from .util import NameGenerator
B
barriery 已提交
41
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
42
from . import local_service_handler
43

44
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
45 46
_op_name_gen = NameGenerator("Op")

D
dongdaxiang 已提交
47 48 49

class Op(object):
    def __init__(self,
B
barrierye 已提交
50
                 name=None,
D
dongdaxiang 已提交
51
                 input_ops=[],
B
barriery 已提交
52 53
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
54
                 client_config=None,
W
wangjiawei04 已提交
55
                 client_type=None,
B
barriery 已提交
56 57
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
58
                 retry=0,
B
barriery 已提交
59
                 batch_size=None,
60
                 auto_batching_timeout=None,
W
wangjiawei04 已提交
61
                 local_service_handler=None):
B
barriery 已提交
62
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
63
        if name is None:
B
barrierye 已提交
64
            name = _op_name_gen.next()
65
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
66
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
67
        self.set_input_ops(input_ops)
B
barrierye 已提交
68

W
wangjiawei04 已提交
69
        self._local_service_handler = local_service_handler
B
barriery 已提交
70
        self._server_endpoints = server_endpoints
B
barrierye 已提交
71
        self._fetch_names = fetch_list
B
barriery 已提交
72
        self._client_config = client_config
W
wangjiawei04 已提交
73
        self.client_type = client_type
B
barriery 已提交
74
        self._timeout = timeout
75
        self._retry = max(1, retry)
B
barriery 已提交
76 77 78
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

79 80
        self._input = None
        self._outputs = []
B
barrierye 已提交
81

B
barriery 已提交
82 83 84 85 86 87 88 89 90
        self._server_use_profile = False
        self._tracer = None

        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False

B
barriery 已提交
91
    def init_from_dict(self, conf):
92 93 94 95 96 97 98 99 100 101 102 103
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
            None
        """
B
barriery 已提交
104
        # init op
B
barriery 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")

        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
            _LOGGER.warning(
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

134 135 136
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
137
        self.device_type = -1
138 139 140
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
B
barriery 已提交
141 142 143 144 145 146
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
147
                self.client_type = conf["client_type"]
148
            else:
W
wangjiawei04 已提交
149
                if self._local_service_handler is None:
B
barriery 已提交
150
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
151 152
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
153
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
154
                    self.client_type = local_service_conf.get("client_type")
155 156
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
157
                    self.device_type = local_service_conf.get("device_type")
158 159 160 161 162
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
                    if self.model_config is None:
B
barriery 已提交
163 164 165 166
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
167 168
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
169
                                model_config=self.model_config,
W
wangjiawei04 已提交
170
                                client_type=self.client_type,
171 172
                                workdir=self.workdir,
                                thread_num=self.thread_num,
173
                                device_type=self.device_type,
174 175 176
                                devices=self.devices,
                                mem_optim=self.mem_optim,
                                ir_optim=self.ir_optim)
W
wangjiawei04 已提交
177 178 179 180 181 182 183 184 185 186 187 188
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
189
                            service_handler = local_service_handler.LocalServiceHandler(
190
                                model_config=self.model_config,
W
wangjiawei04 已提交
191
                                client_type=self.client_type,
192 193
                                workdir=self.workdir,
                                thread_num=self.thread_num,
194
                                device_type=self.device_type,
195
                                devices=self.devices,
196 197 198
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
                                ir_optim=self.ir_optim)
W
wangjiawei04 已提交
199 200 201 202
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
203
                else:
B
barriery 已提交
204
                    self.with_serving = True
W
wangjiawei04 已提交
205
                    self._local_service_handler.prepare_server(
B
barriery 已提交
206
                    )  # get fetch_list
W
wangjiawei04 已提交
207
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
208 209 210
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
211
                    if self._client_config is None:
W
wangjiawei04 已提交
212
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
213
                        )
B
barriery 已提交
214
                    if self._fetch_names is None:
W
wangjiawei04 已提交
215
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
216
                        )
B
barriery 已提交
217 218
        else:
            self.with_serving = True
B
barriery 已提交
219

220 221 222 223 224 225 226 227 228 229 230
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
231
                              ", ".join([op.name for op in self._input_ops
232 233 234 235
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
236

237
    def launch_local_rpc_service(self):
238 239 240 241 242 243 244 245 246
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
247
        if self._local_service_handler is None:
B
barriery 已提交
248 249
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
250
                          " service: local_service_handler is None."))
B
barriery 已提交
251
            return
W
wangjiawei04 已提交
252
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
253 254 255
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
256
        self._local_service_handler.start_server()
B
barriery 已提交
257
        _LOGGER.info("Op({}) use local rpc service at port: {}"
258 259
                     .format(self.name, port))

B
barriery 已提交
260
    def use_default_auto_batching_config(self):
261 262 263 264 265 266 267 268 269
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
270
        if self._batch_size != 1:
271 272
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
273 274
            self._batch_size = 1
        if self._auto_batching_timeout != None:
275
            _LOGGER.warning(
B
barriery 已提交
276 277
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
278
            self._auto_batching_timeout = None
B
barriery 已提交
279

B
barrierye 已提交
280
    def use_profiler(self, use_profile):
B
barrierye 已提交
281
        self._server_use_profile = use_profile
282

B
barriery 已提交
283 284 285
    def set_tracer(self, tracer):
        self._tracer = tracer

W
wangjiawei04 已提交
286
    def init_client(self, client_config, server_endpoints):
287 288 289 290 291 292 293 294 295 296 297 298
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
299
        if self.with_serving == False:
B
barriery 已提交
300
            _LOGGER.info("Op({}) has no client (and it also do not "
301
                         "run the process function)".format(self.name))
B
barrierye 已提交
302
            return None
W
wangjiawei04 已提交
303
        if self.client_type == 'brpc':
B
barrierye 已提交
304 305
            client = Client()
            client.load_client_config(client_config)
W
wangjiawei04 已提交
306
        elif self.client_type == 'grpc':
B
barrierye 已提交
307
            client = MultiLangClient()
W
wangjiawei04 已提交
308 309 310 311
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
312
        else:
B
barriery 已提交
313
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
314
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
315 316 317
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
318 319
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
B
barrierye 已提交
320
        return client
321 322 323 324 325

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
326 327 328 329 330 331 332 333 334 335
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
336 337 338 339 340
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
341
                _LOGGER.critical(
B
barriery 已提交
342 343
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
344
                os._exit(-1)
345
            self._input_ops.append(op)
D
dongdaxiang 已提交
346

347
    def add_input_channel(self, channel):
348 349 350 351
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
352
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
353
            _LOGGER.critical(
B
barriery 已提交
354 355 356
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
357
            os._exit(-1)
358 359
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
360

361
    def clean_input_channel(self):
B
barrierye 已提交
362 363 364 365
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
366

367
    def add_output_channel(self, channel):
368 369 370 371 372 373 374 375 376 377
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
378
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
379
            _LOGGER.critical(
B
barriery 已提交
380 381
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
382
            os._exit(-1)
383 384
        channel.add_producer(self.name)
        self._outputs.append(channel)
D
dongdaxiang 已提交
385

386
    def clean_output_channels(self):
B
barrierye 已提交
387 388 389 390 391
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

392
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
393 394 395 396 397 398
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
399 400
            data_id: inner unique id, 0 default
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
401 402

        Return:
T
TeslaZhao 已提交
403
            output_data: data for process stage
T
TeslaZhao 已提交
404 405 406 407 408
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
409
        # multiple previous Op
B
barrierye 已提交
410
        if len(input_dicts) != 1:
411 412
            _LOGGER.critical(
                self._log(
B
barriery 已提交
413 414
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
415
            os._exit(-1)
D
dongdaxiang 已提交
416

B
barrierye 已提交
417
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
418
        return input_dict, False, None, ""
B
barrierye 已提交
419

420
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
421 422 423 424 425
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
426 427
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
428 429 430 431

        Returns:
            call_result: predict result
        """
B
bug fix  
barriery 已提交
432
        err, err_info = ChannelData.check_batch_npdata(feed_batch)
B
barrierye 已提交
433
        if err != 0:
434
            _LOGGER.critical(
B
barriery 已提交
435 436
                self._log("Failed to run process: {}. Please override "
                          "preprocess func.".format(err_info)))
437
            os._exit(-1)
W
wangjiawei04 已提交
438 439 440
        if self.client_type == "local_predictor":
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
441
                fetch=self._fetch_names,
W
wangjiawei04 已提交
442 443 444 445 446
                batch=True,
                log_id=typical_logid)
        else:
            call_result = self.client.predict(
                feed=feed_batch,
W
wangjiawei04 已提交
447
                fetch=self._fetch_names,
W
wangjiawei04 已提交
448 449
                batch=True,
                log_id=typical_logid)
B
barriery 已提交
450 451 452 453
        if isinstance(self.client, MultiLangClient):
            if call_result is None or call_result["serving_status_code"] != 0:
                return None
            call_result.pop("serving_status_code")
454 455
        return call_result

T
TeslaZhao 已提交
456
    def postprocess(self, input_data, fetch_data, log_id=0):
T
TeslaZhao 已提交
457 458 459
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
460 461
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
462
            log_id: logid, 0 default
T
TeslaZhao 已提交
463 464

        Returns: 
T
TeslaZhao 已提交
465
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
466 467 468 469
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
470 471 472
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
473
        return fetch_dict, None, ""
D
dongdaxiang 已提交
474

B
barrierye 已提交
475
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
489
        data_id, error_channeldata = None, None
B
barrierye 已提交
490
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
491 492 493 494
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
495
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
496
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
497 498

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
499
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
500 501 502
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
503
            if client_need_profile:
B
barrierye 已提交
504
                profile_set |= data.profile_data_set
B
barrierye 已提交
505
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
506
                profile_set, log_id)
B
barrierye 已提交
507 508 509 510 511

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
512
                                 profile_str=None,
B
barrierye 已提交
513
                                 client_need_profile=False,
B
barrierye 已提交
514
                                 profile_set=None):
T
TeslaZhao 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
529 530
        if name is None:
            name = self.name
B
barrierye 已提交
531

B
barriery 已提交
532
        # add profile into channeldata
B
barrierye 已提交
533
        if client_need_profile and profile_set is not None:
B
barriery 已提交
534 535
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
536
            data.add_profile(profile_set)
B
barrierye 已提交
537

B
barriery 已提交
538 539 540
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
541
    def start_with_process(self):
542 543 544 545 546 547 548 549 550 551
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
552 553 554
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
555
        process = []
B
barrierye 已提交
556
        for concurrency_idx in range(self.concurrency):
557 558
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
559
                args=(concurrency_idx, self._get_input_channel(),
560 561
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
562 563
                      self.device_type, self.devices, self.mem_optim,
                      self.ir_optim))
B
barriery 已提交
564
            p.daemon = True
565
            p.start()
W
wangjiawei04 已提交
566 567
            process.append(p)
        return process
568

W
wangjiawei04 已提交
569
    def start_with_thread(self):
570 571 572 573 574 575 576 577 578 579
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
580 581 582
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
583 584 585 586

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
587
            self.local_predictor = self._local_service_handler.get_client(0)
588

589
        threads = []
B
barrierye 已提交
590
        for concurrency_idx in range(self.concurrency):
591 592
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
593
                args=(concurrency_idx, self._get_input_channel(),
594 595
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
596 597
                      self.device_type, self.devices, self.mem_optim,
                      self.ir_optim))
B
barriery 已提交
598 599 600
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
601 602 603 604
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
605
    def init_op(self):
B
barrierye 已提交
606 607
        pass

T
TeslaZhao 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
622
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
623 624
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
625
        skip_process_dict = {}
626 627
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
628 629 630
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
631
            try:
T
TeslaZhao 已提交
632 633 634 635 636
                preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                    parsed_data, data_id, logid_dict.get(data_id))
                # Set skip_process_dict
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
637 638
            except TypeError as e:
                # Error type in channeldata.datatype
T
TeslaZhao 已提交
639 640
                error_info = "(data_id={} log_id={}) {} Failed to preprocess: {}".format(
                    data_id, log_id, op_info_prefix, e)
B
barriery 已提交
641
                _LOGGER.error(error_info, exc_info=True)
642
                error_channeldata = ChannelData(
T
TeslaZhao 已提交
643
                    error_code=ChannelDataErrcode.TYPE_ERROR.value,
644
                    error_info=error_info,
T
TeslaZhao 已提交
645 646
                    data_id=data_id,
                    log_id=log_id)
647
            except Exception as e:
T
TeslaZhao 已提交
648 649
                error_info = "(data_id={} log_id={}) {} Failed to preprocess: {}".format(
                    data_id, log_id, op_info_prefix, e)
B
barriery 已提交
650
                _LOGGER.error(error_info, exc_info=True)
651
                error_channeldata = ChannelData(
T
TeslaZhao 已提交
652
                    error_code=ChannelDataErrcode.UNKNOW.value,
653
                    error_info=error_info,
T
TeslaZhao 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666
                    data_id=data_id,
                    log_id=log_id)

            if prod_errcode is not None:
                # product errors occured
                error_channeldata = ChannelData(
                    error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                    error_info="",
                    prod_error_code=prod_errcode,
                    prod_error_info=prod_errinfo,
                    data_id=data_id,
                    log_id=log_id)

667 668 669 670
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
671
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
688
        _LOGGER.debug("{} Running process".format(op_info_prefix))
689 690
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
691
        is_skip_process = False
T
TeslaZhao 已提交
692
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
693 694

        # skip process stage
T
TeslaZhao 已提交
695 696
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
732 733
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
779

T
TeslaZhao 已提交
780 781 782 783 784 785
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
B
barriery 已提交
786
                    midped_batch = self.process(feed_batch, typical_logid)
T
TeslaZhao 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
                        predict_res = self.process([feed_batch[idx]],
                                                   typical_logid)
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
804
                        midped_batch = func_timeout.func_timeout(
B
barriery 已提交
805 806 807
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
808
                    else:
T
TeslaZhao 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822
                        midped_batch = []
                        for idx in range(len(feed_batch)):
                            predict_res = func_timeout.func_timeout(
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
823
                    else:
T
TeslaZhao 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
            error_info = "(log_id={}) {} failed to predict.".format(
                typical_logid, self.name)
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=ChannelDataErrcode.CLIENT_ERROR.value,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
890
        else:
T
TeslaZhao 已提交
891 892 893 894 895
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
896 897
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
898
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
913
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
914 915
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
B
bug fix  
barriery 已提交
916
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
917
            log_id = logid_dict.get(data_id)
918
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
919
            prod_errcode, prod_errinfo = None, None
920
            try:
T
TeslaZhao 已提交
921 922 923
                postped_data, prod_errcode, prod_errinfo = self.postprocess(
                    parsed_data_dict[data_id], midped_data,
                    logid_dict.get(data_id))
924
            except Exception as e:
T
TeslaZhao 已提交
925 926
                error_info = "(data_id={} log_id={}) {} Failed to postprocess: {}".format(
                    data_id, log_id, op_info_prefix, e)
B
barriery 已提交
927
                _LOGGER.error(error_info, exc_info=True)
928
                err_channeldata = ChannelData(
T
TeslaZhao 已提交
929
                    error_code=ChannelDataErrcode.UNKNOW.value,
930
                    error_info=error_info,
T
TeslaZhao 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943
                    data_id=data_id,
                    log_id=log_id)

            if prod_errcode is not None:
                # product errors occured
                err_channeldata = ChannelData(
                    error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                    error_info="",
                    prod_error_code=prod_errcode,
                    prod_error_info=prod_errinfo,
                    data_id=data_id,
                    log_id=log_id)

944 945 946 947 948
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue
            else:
                if not isinstance(postped_data, dict):
T
TeslaZhao 已提交
949
                    error_info = "(log_id={} log_id={}) {} Failed to postprocess: " \
B
barriery 已提交
950 951
                            "output of postprocess funticon must be " \
                            "dict type, but get {}".format(
T
TeslaZhao 已提交
952
                                data_id, log_id, op_info_prefix,
B
barriery 已提交
953
                                type(postped_data))
954 955
                    _LOGGER.error(error_info)
                    err_channeldata = ChannelData(
T
TeslaZhao 已提交
956
                        error_code=ChannelDataErrcode.UNKNOW.value,
957
                        error_info=error_info,
T
TeslaZhao 已提交
958 959
                        data_id=data_id,
                        log_id=log_id)
960 961 962 963 964 965 966 967 968
                    err_channeldata_dict[data_id] = err_channeldata
                    continue

                output_data = None
                err, _ = ChannelData.check_npdata(postped_data)
                if err == 0:
                    output_data = ChannelData(
                        ChannelDataType.CHANNEL_NPDATA.value,
                        npdata=postped_data,
T
TeslaZhao 已提交
969 970
                        data_id=data_id,
                        log_id=log_id)
971 972 973 974
                else:
                    output_data = ChannelData(
                        ChannelDataType.DICT.value,
                        dictdata=postped_data,
T
TeslaZhao 已提交
975 976
                        data_id=data_id,
                        log_id=log_id)
977
                postped_data_dict[data_id] = output_data
B
barriery 已提交
978
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
979
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
980 981

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
982
                                 timeout, op_info_prefix):
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1011 1012
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1013
                                break
B
barriery 已提交
1014 1015
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1016 1017 1018
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1019 1020 1021
                        _LOGGER.debug(
                            "_auto_batching_generator get {} channeldata from op:{} into batch, batch_size:{}".
                            format(idx, op_name, batch_size))
B
barriery 已提交
1022
                    except ChannelTimeoutError:
B
barriery 已提交
1023 1024
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1025
                        break
B
barriery 已提交
1026 1027
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1028
            yield batch
1029

1030
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1043
        parsed_data_dict = collections.OrderedDict()
1044 1045
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1046
        logid_dict = {}
B
bug fix  
barriery 已提交
1047
        for channeldata_dict in batch:
1048
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1049
                    client_need_profile, profile_set, log_id) = \
1050 1051 1052 1053 1054
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1055
                logid_dict[data_id] = log_id
1056 1057 1058
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1059 1060
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1061

T
TeslaZhao 已提交
1062
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1063

W
wangjiawei04 已提交
1064
    def _run(self, concurrency_idx, input_channel, output_channels,
1065
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
1066
             device_type, devices, mem_optim, ir_optim):
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1084
            device_type: support multiple devices
1085 1086 1087 1088 1089 1090 1091
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
            ir_optim: use calculation chart optimization, False default. 

        Returns:
            None
        """
1092
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1093

1094
        # init ops
B
barriery 已提交
1095
        profiler = None
B
barrierye 已提交
1096
        try:
1097 1098 1099 1100 1101 1102
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1103
                    device_type=device_type,
1104 1105 1106 1107 1108 1109
                    devices=devices,
                    mem_optim=mem_optim,
                    ir_optim=ir_optim)

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1110 1111
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1112
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1113
            profiler = self._initialize(is_thread_op, concurrency_idx)
1114

B
barrierye 已提交
1115
        except Exception as e:
B
barriery 已提交
1116
            _LOGGER.critical(
T
TeslaZhao 已提交
1117
                "{} failed to init op: {}".format(op_info_prefix, e),
B
barriery 已提交
1118
                exc_info=True)
B
barrierye 已提交
1119
            os._exit(-1)
B
barriery 已提交
1120
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1121

B
barriery 已提交
1122
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1123 1124 1125 1126
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1127
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1128

B
barriery 已提交
1129
        start, end = None, None
B
barrierye 已提交
1130
        trace_que = collections.deque()
B
barrierye 已提交
1131
        while True:
B
barriery 已提交
1132
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1133
            try:
B
barriery 已提交
1134
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1135
            except ChannelStopError:
B
barriery 已提交
1136
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1137
                self._finalize(is_thread_op)
B
barrierye 已提交
1138
                break
B
barriery 已提交
1139
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1140
            in_time = end - start
1141

B
barriery 已提交
1142 1143
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1144
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1145 1146
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1147
            except ChannelStopError:
B
barriery 已提交
1148
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1149
                self._finalize(is_thread_op)
B
barriery 已提交
1150
                break
1151 1152 1153
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1154 1155

            # preprecess
B
barriery 已提交
1156
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1157 1158
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1159
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1160
            prep_time = end - start
1161
            try:
T
TeslaZhao 已提交
1162
                # put error requests into output channel, skip process and postprocess stage
1163
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1164
                    self._push_to_output_channels(
B
barriery 已提交
1165 1166
                        data=err_channeldata,
                        channels=output_channels,
1167 1168 1169
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1170
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1171 1172
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1173
            if len(preped_data_dict) == 0:
1174 1175
                continue

B
barrierye 已提交
1176
            # process
B
barriery 已提交
1177
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1178
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1179
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1180
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1181
            midp_time = end - start
1182 1183
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1184
                    self._push_to_output_channels(
B
barriery 已提交
1185 1186
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1187 1188
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1189
            except ChannelStopError:
B
barriery 已提交
1190
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1191 1192 1193
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1194
                continue
1195 1196

            # postprocess
B
barriery 已提交
1197
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1198
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1199
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1200
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1201
            postp_time = end - start
1202 1203
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1204
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1205
                        data=err_channeldata,
B
barriery 已提交
1206
                        channels=output_channels,
B
barriery 已提交
1207 1208
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1209
            except ChannelStopError:
B
barriery 已提交
1210
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1211 1212 1213
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1214
                continue
1215 1216

            # push data to channel (if run succ)
B
barriery 已提交
1217
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1218
            try:
B
barriery 已提交
1219
                profile_str = profiler.gen_profile_str()
1220
                for data_id, postped_data in postped_data_dict.items():
B
barriery 已提交
1221 1222
                    if self._server_use_profile:
                        sys.stderr.write(profile_str)
1223
                    self._push_to_output_channels(
B
barriery 已提交
1224 1225 1226
                        data=postped_data,
                        channels=output_channels,
                        profile_str=profile_str,
B
barriery 已提交
1227 1228
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
B
barrierye 已提交
1229
            except ChannelStopError:
B
barriery 已提交
1230
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1231
                self._finalize(is_thread_op)
B
barrierye 已提交
1232
                break
B
barriery 已提交
1233
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1234
            out_time = end - start
B
barriery 已提交
1235
            if trace_buffer is not None:
B
barrierye 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1253

W
wangjiawei04 已提交
1254
    def _initialize(self, is_thread_op, concurrency_idx):
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
B
barriery 已提交
1268 1269 1270 1271 1272 1273
        if is_thread_op:
            with self._for_init_op_lock:
                if not self._succ_init_op:
                    # for the threaded version of Op, each thread cannot get its concurrency_idx
                    self.concurrency_idx = None
                    # init client
W
wangjiawei04 已提交
1274
                    self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1275
                                                   self._server_endpoints)
B
barriery 已提交
1276 1277 1278 1279
                    # user defined
                    self.init_op()
                    self._succ_init_op = True
                    self._succ_close_op = False
B
bug fix  
barriery 已提交
1280 1281 1282
        else:
            self.concurrency_idx = concurrency_idx
            # init client
W
wangjiawei04 已提交
1283 1284
            self.client = self.init_client(self._client_config,
                                           self._server_endpoints)
B
bug fix  
barriery 已提交
1285 1286
            # user defined
            self.init_op()
B
barriery 已提交
1287

B
barriery 已提交
1288 1289 1290 1291 1292
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1293 1294 1295 1296 1297 1298 1299 1300
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1301 1302 1303 1304 1305

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1306
class RequestOp(Op):
1307 1308 1309 1310 1311 1312
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1313

B
barrierye 已提交
1314
    def __init__(self):
1315 1316 1317
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1318 1319
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1320
        # init op
1321
        try:
1322
            self.init_op()
1323
        except Exception as e:
B
barriery 已提交
1324
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1325
            os._exit(-1)
B
barrierye 已提交
1326 1327

    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

        for idx, key in enumerate(request.key):
            data = request.value[idx]
            try:
                evaled_data = eval(data)
                if isinstance(evaled_data, np.ndarray):
                    data = evaled_data
            except Exception as e:
                pass
            dict_data[key] = data
T
TeslaZhao 已提交
1356
        log_id = request.logid
1357 1358 1359
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}".format(log_id, request.clientip, request.name,
                                       request.method))
T
TeslaZhao 已提交
1360 1361

        return dict_data, log_id, None, ""
B
barrierye 已提交
1362 1363 1364


class ResponseOp(Op):
1365 1366 1367 1368 1369 1370
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1371

B
barrierye 已提交
1372
    def __init__(self, input_ops):
1373 1374 1375
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1376 1377
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
B
barrierye 已提交
1378
        # init op
1379
        try:
1380
            self.init_op()
1381
        except Exception as e:
B
barriery 已提交
1382 1383
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1384
            os._exit(-1)
B
barrierye 已提交
1385 1386

    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1387
        """
1388 1389 1390 1391 1392 1393 1394 1395
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1396
        """
B
barrierye 已提交
1397
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1398 1399 1400
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1401
            # Framework level errors
B
barrierye 已提交
1402 1403 1404 1405
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1406
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1407
                for name, var in feed.items():
1408 1409
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1410 1411 1412 1413
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1414 1415
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1416 1417
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1418 1419
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1420
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1421
                        break
1422 1423
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1424
            else:
T
TeslaZhao 已提交
1425 1426 1427
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1428
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1429
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1430
        else:
1431
            # Product level errors
T
TeslaZhao 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1444
        return resp
1445 1446 1447


class VirtualOp(Op):
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1465 1466 1467

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1468
            name=name, input_ops=None, concurrency=concurrency)
1469 1470 1471
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1472 1473 1474 1475 1476 1477 1478 1479 1480
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1481 1482
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1483
    def _actual_pred_op_names(self, op):
1484 1485 1486 1487 1488 1489 1490 1491 1492
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1493
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1494 1495 1496 1497 1498 1499 1500
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1501
    def add_output_channel(self, channel):
1502 1503 1504 1505 1506 1507 1508 1509 1510
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1511
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1512
            _LOGGER.critical(
B
barriery 已提交
1513 1514 1515
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1516
            os._exit(-1)
1517
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1518 1519
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1520
        self._outputs.append(channel)
D
dongdaxiang 已提交
1521

1522
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1523
             is_thread_op):
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1538
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1539 1540 1541
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1542 1543 1544 1545 1546 1547 1548
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1549 1550
        while True:
            try:
1551
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1552
            except ChannelStopError:
B
barriery 已提交
1553
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1554
                self._finalize(is_thread_op)
B
barrierye 已提交
1555
                break
D
dongdaxiang 已提交
1556

B
barrierye 已提交
1557
            try:
1558 1559 1560 1561
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1562
            except ChannelStopError:
B
barriery 已提交
1563
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1564
                self._finalize(is_thread_op)
B
barrierye 已提交
1565
                break