benchmark.py 4.2 KB
Newer Older
R
root 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

from __future__ import unicode_literals, absolute_import
import os
import sys
import time
import json
import requests
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args, show_latency
from paddle_serving_app.reader import ChineseBertReader

from paddle_serving_app.reader import *
import numpy as np

args = benchmark_args()


def single_func(idx, resource):
W
wangjiawei04 已提交
36
    img = "./000000570688.jpg"
R
root 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    profile_flags = False
    latency_flags = False
    if os.getenv("FLAGS_profile_client"):
        profile_flags = True
    if os.getenv("FLAGS_serving_latency"):
        latency_flags = True
        latency_list = []

    if args.request == "rpc":
        preprocess = Sequential([
            File2Image(), BGR2RGB(), Div(255.0),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False),
            Resize(640, 640), Transpose((2, 0, 1))
        ])

        postprocess = RCNNPostprocess("label_list.txt", "output")
        client = Client()

        client.load_client_config(args.model)
        client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])

        start = time.time()
        for i in range(turns):
            if args.batch_size >= 1:
                l_start = time.time()
                feed_batch = []
                b_start = time.time()
                im = preprocess(img)
                for bi in range(args.batch_size):
                    print("1111batch")
                    print(bi)
W
wangjiawei04 已提交
68 69
                    feed_batch.append({
                        "image": im,
R
root 已提交
70
                        "im_info": np.array(list(im.shape[1:]) + [1.0]),
W
wangjiawei04 已提交
71 72 73
                        "im_shape": np.array(list(im.shape[1:]) + [1.0])
                    })
            # im = preprocess(img)
R
root 已提交
74 75 76 77 78 79 80 81 82 83
                b_end = time.time()

                if profile_flags:
                    sys.stderr.write(
                        "PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format(
                            os.getpid(),
                            int(round(b_start * 1000000)),
                            int(round(b_end * 1000000))))
                #result = client.predict(feed=feed_batch, fetch=fetch)
                fetch_map = client.predict(
W
wangjiawei04 已提交
84
                    feed=feed_batch, fetch=["multiclass_nms"])
R
root 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
                fetch_map["image"] = img
                postprocess(fetch_map)

                l_end = time.time()
                if latency_flags:
                    latency_list.append(l_end * 1000 - l_start * 1000)
            else:
                print("unsupport batch size {}".format(args.batch_size))
    else:
        raise ValueError("not implemented {} request".format(args.request))
    end = time.time()
    if latency_flags:
        return [[end - start], latency_list]
    else:
        return [[end - start]]


if __name__ == '__main__':
    multi_thread_runner = MultiThreadRunner()
W
wangjiawei04 已提交
104
    endpoint_list = ["127.0.0.1:7777"]
R
root 已提交
105 106 107
    turns = 10
    start = time.time()
    result = multi_thread_runner.run(
W
wangjiawei04 已提交
108 109
        single_func, args.thread, {"endpoint": endpoint_list,
                                   "turns": turns})
R
root 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123
    end = time.time()
    total_cost = end - start

    avg_cost = 0
    for i in range(args.thread):
        avg_cost += result[0][i]
    avg_cost = avg_cost / args.thread

    print("total cost: {}s".format(total_cost))
    print("each thread cost: {}s. ".format(avg_cost))
    print("qps: {}samples/s".format(args.batch_size * args.thread * turns /
                                    total_cost))
    if os.getenv("FLAGS_serving_latency"):
        show_latency(result[1])