fluid_gpu_engine.h 15.8 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <pthread.h>
#include <fstream>
#include <map>
X
xulongteng 已提交
20
#include <memory>
W
Wang Guibao 已提交
21
#include <string>
X
xulongteng 已提交
22
#include <utility>
W
Wang Guibao 已提交
23 24 25 26 27 28 29 30 31 32
#include <vector>
#include "configure/include/configure_parser.h"
#include "configure/inferencer_configure.pb.h"
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
W
wangguibao 已提交
33
#include "paddle_inference_api.h"  // NOLINT
W
Wang Guibao 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#endif
#include "predictor/framework/infer.h"

DECLARE_int32(gpuid);

namespace baidu {
namespace paddle_serving {
namespace fluid_gpu {

using configure::SigmoidConf;

class AutoLock {
 public:
  explicit AutoLock(pthread_mutex_t& mutex) : _mut(mutex) {
    pthread_mutex_lock(&mutex);
  }

  ~AutoLock() { pthread_mutex_unlock(&_mut); }

 private:
  pthread_mutex_t& _mut;
};

class GlobalPaddleCreateMutex {
 public:
  pthread_mutex_t& mutex() { return _mut; }

  static pthread_mutex_t& instance() {
    static GlobalPaddleCreateMutex gmutex;
    return gmutex.mutex();
  }

 private:
  GlobalPaddleCreateMutex() { pthread_mutex_init(&_mut, NULL); }

  pthread_mutex_t _mut;
};

class GlobalSigmoidCreateMutex {
 public:
  pthread_mutex_t& mutex() { return _mut; }
  static pthread_mutex_t& instance() {
    static GlobalSigmoidCreateMutex gmutex;
    return gmutex.mutex();
  }

 private:
  GlobalSigmoidCreateMutex() { pthread_mutex_init(&_mut, NULL); }

  pthread_mutex_t _mut;
};

// data interface
class FluidFamilyCore {
 public:
  virtual ~FluidFamilyCore() {}
  virtual bool Run(const void* in_data, void* out_data) {
    if (!_core->Run(*(std::vector<paddle::PaddleTensor>*)in_data,
                    (std::vector<paddle::PaddleTensor>*)out_data)) {
      LOG(ERROR) << "Failed call Run with paddle predictor";
      return false;
    }

    return true;
  }

100
  virtual int create(const predictor::InferEngineCreationParams& params) = 0;
W
Wang Guibao 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  virtual int clone(void* origin_core) {
    if (origin_core == NULL) {
      LOG(ERROR) << "origin paddle Predictor is null.";
      return -1;
    }
    paddle::PaddlePredictor* p_predictor =
        (paddle::PaddlePredictor*)origin_core;
    _core = p_predictor->Clone();
    if (_core.get() == NULL) {
      LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
      return -1;
    }
    return 0;
  }

  virtual void* get() { return _core.get(); }

 protected:
  std::unique_ptr<paddle::PaddlePredictor> _core;
};

// infer interface
class FluidGpuAnalysisCore : public FluidFamilyCore {
 public:
126 127
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
Wang Guibao 已提交
128 129 130 131 132 133 134 135 136 137 138
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::AnalysisConfig analysis_config;
    analysis_config.SetParamsFile(data_path + "/__params__");
    analysis_config.SetProgFile(data_path + "/__model__");
    analysis_config.EnableUseGpu(100, FLAGS_gpuid);
    analysis_config.SetCpuMathLibraryNumThreads(1);
139 140

    if (params.enable_memory_optimization()) {
W
wangguibao 已提交
141
      analysis_config.EnableMemoryOptim();
142 143
    }

W
Wang Guibao 已提交
144
    analysis_config.SwitchSpecifyInputNames(true);
W
Wang Guibao 已提交
145

W
Wang Guibao 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

class FluidGpuNativeCore : public FluidFamilyCore {
 public:
161 162
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
Wang Guibao 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.param_file = data_path + "/__params__";
    native_config.prog_file = data_path + "/__model__";
    native_config.use_gpu = true;
    native_config.fraction_of_gpu_memory = 0.01;
    native_config.device = FLAGS_gpuid;
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                          paddle::PaddleEngineKind::kNative>(
        native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

class FluidGpuAnalysisDirCore : public FluidFamilyCore {
 public:
191 192
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
Wang Guibao 已提交
193 194 195 196 197 198 199 200 201 202 203
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::AnalysisConfig analysis_config;
    analysis_config.SetModel(data_path);
    analysis_config.EnableUseGpu(100, FLAGS_gpuid);
    analysis_config.SwitchSpecifyInputNames(true);
    analysis_config.SetCpuMathLibraryNumThreads(1);
204 205

    if (params.enable_memory_optimization()) {
W
wangguibao 已提交
206
      analysis_config.EnableMemoryOptim();
207
    }
W
Wang Guibao 已提交
208

W
Wang Guibao 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

class FluidGpuNativeDirCore : public FluidFamilyCore {
 public:
224 225
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
Wang Guibao 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.model_dir = data_path;
    native_config.use_gpu = true;
    native_config.fraction_of_gpu_memory = 0.01;
    native_config.device = FLAGS_gpuid;
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                          paddle::PaddleEngineKind::kNative>(
        native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

class Parameter {
 public:
  Parameter() : _row(0), _col(0), _params(NULL) {}
  ~Parameter() {
    LOG(INFO) << "before destroy Parameter, file_name[" << _file_name << "]";
    destroy();
  }

  int init(int row, int col, const char* file_name) {
    destroy();
    _file_name = file_name;
    _row = row;
    _col = col;
    _params = reinterpret_cast<float*>(malloc(_row * _col * sizeof(float)));
    if (_params == NULL) {
      LOG(ERROR) << "Load " << _file_name << " malloc error.";
      return -1;
    }
    LOG(WARNING) << "Load parameter file[" << _file_name << "] success.";
    return 0;
  }

  void destroy() {
    _row = 0;
    _col = 0;
    if (_params != NULL) {
      free(_params);
      _params = NULL;
    }
  }

  int load() {
    if (_params == NULL || _row <= 0 || _col <= 0) {
      LOG(ERROR) << "load parameter error [not inited].";
      return -1;
    }

    FILE* fs = fopen(_file_name.c_str(), "rb");
    if (fs == NULL) {
      LOG(ERROR) << "load " << _file_name << " fopen error.";
      return -1;
    }
    static const uint32_t MODEL_FILE_HEAD_LEN = 16;
    char head[MODEL_FILE_HEAD_LEN] = {0};
    if (fread(head, 1, MODEL_FILE_HEAD_LEN, fs) != MODEL_FILE_HEAD_LEN) {
      destroy();
      LOG(ERROR) << "Load " << _file_name << " read head error.";
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
    }

    uint32_t matrix_size = _row * _col;
    if (matrix_size == fread(_params, sizeof(float), matrix_size, fs)) {
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      LOG(INFO) << "load " << _file_name << " read ok.";
      return 0;
    } else {
      LOG(ERROR) << "load " << _file_name << " read error.";
      destroy();
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
    }
    return 0;
  }

 public:
  std::string _file_name;
  int _row;
  int _col;
  float* _params;
};

class SigmoidModel {
 public:
  ~SigmoidModel() {}
  int load(const char* sigmoid_w_file,
           const char* sigmoid_b_file,
           float exp_max,
           float exp_min) {
    AutoLock lock(GlobalSigmoidCreateMutex::instance());
    if (0 != _sigmoid_w.init(2, 1, sigmoid_w_file) || 0 != _sigmoid_w.load()) {
      LOG(ERROR) << "load params sigmoid_w failed.";
      return -1;
    }
    LOG(WARNING) << "load sigmoid_w [" << _sigmoid_w._params[0] << "] ["
                 << _sigmoid_w._params[1] << "].";
    if (0 != _sigmoid_b.init(2, 1, sigmoid_b_file) || 0 != _sigmoid_b.load()) {
      LOG(ERROR) << "load params sigmoid_b failed.";
      return -1;
    }
    LOG(WARNING) << "load sigmoid_b [" << _sigmoid_b._params[0] << "] ["
                 << _sigmoid_b._params[1] << "].";
    _exp_max_input = exp_max;
    _exp_min_input = exp_min;
    return 0;
  }

  int softmax(float x, double& o) {  // NOLINT
    float _y0 = x * _sigmoid_w._params[0] + _sigmoid_b._params[0];
    float _y1 = x * _sigmoid_w._params[1] + _sigmoid_b._params[1];
    _y0 = (_y0 > _exp_max_input)
              ? _exp_max_input
              : ((_y0 < _exp_min_input) ? _exp_min_input : _y0);
    _y1 = (_y1 > _exp_max_input)
              ? _exp_max_input
              : ((_y1 < _exp_min_input) ? _exp_min_input : _y1);
    o = 1.0f / (1.0f + exp(_y0 - _y1));
    return 0;
  }

 public:
  Parameter _sigmoid_w;
  Parameter _sigmoid_b;
  float _exp_max_input;
  float _exp_min_input;
};

class SigmoidFluidModel {
 public:
  int softmax(float x, double& o) {  // NOLINT
    return _sigmoid_core->softmax(x, o);
  }  // NOLINT

  std::unique_ptr<SigmoidFluidModel> Clone() {
    std::unique_ptr<SigmoidFluidModel> clone_model;
    clone_model.reset(new SigmoidFluidModel());
    clone_model->_sigmoid_core = _sigmoid_core;
    clone_model->_fluid_core = _fluid_core->Clone();
    return std::move(clone_model);
  }

 public:
  std::unique_ptr<paddle::PaddlePredictor> _fluid_core;
  std::shared_ptr<SigmoidModel> _sigmoid_core;
};

class FluidGpuWithSigmoidCore : public FluidFamilyCore {
 public:
  virtual ~FluidGpuWithSigmoidCore() {}

 public:
401 402
  int create(const predictor::InferEngineCreationParams& params) {
    std::string model_path = params.get_path();
W
Wang Guibao 已提交
403 404 405 406 407 408 409 410 411 412 413 414
    size_t pos = model_path.find_last_of("/\\");
    std::string conf_path = model_path.substr(0, pos);
    std::string conf_file = model_path.substr(pos);
    configure::SigmoidConf conf;
    if (configure::read_proto_conf(conf_path, conf_file, &conf) != 0) {
      LOG(ERROR) << "failed load model path: " << model_path;
      return -1;
    }

    _core.reset(new SigmoidFluidModel);

    std::string fluid_model_data_path = conf.dnn_model_path();
415 416 417
    predictor::InferEngineCreationParams new_params(params);
    new_params.set_path(fluid_model_data_path);
    int ret = load_fluid_model(new_params);
W
Wang Guibao 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    if (ret < 0) {
      LOG(ERROR) << "fail to load fluid model.";
      return -1;
    }
    const char* sigmoid_w_file = conf.sigmoid_w_file().c_str();
    const char* sigmoid_b_file = conf.sigmoid_b_file().c_str();
    float exp_max = conf.exp_max_input();
    float exp_min = conf.exp_min_input();
    _core->_sigmoid_core.reset(new SigmoidModel);
    LOG(INFO) << "create sigmoid core[" << _core->_sigmoid_core.get()
              << "], use count[" << _core->_sigmoid_core.use_count() << "].";
    ret = _core->_sigmoid_core->load(
        sigmoid_w_file, sigmoid_b_file, exp_max, exp_min);
    if (ret < 0) {
      LOG(ERROR) << "fail to load sigmoid model.";
      return -1;
    }
    return 0;
  }

  virtual bool Run(const void* in_data, void* out_data) {
    if (!_core->_fluid_core->Run(
            *(std::vector<paddle::PaddleTensor>*)in_data,
            (std::vector<paddle::PaddleTensor>*)out_data)) {
      LOG(ERROR) << "Failed call Run with paddle predictor";
      return false;
    }

    return true;
  }

  virtual int clone(SigmoidFluidModel* origin_core) {
    if (origin_core == NULL) {
      LOG(ERROR) << "origin paddle Predictor is null.";
      return -1;
    }
    _core = origin_core->Clone();
    if (_core.get() == NULL) {
      LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
      return -1;
    }
    LOG(INFO) << "clone sigmoid core[" << _core->_sigmoid_core.get()
              << "] use count[" << _core->_sigmoid_core.use_count() << "].";
    return 0;
  }

  virtual SigmoidFluidModel* get() { return _core.get(); }

466 467
  virtual int load_fluid_model(
      const predictor::InferEngineCreationParams& params) = 0;
W
Wang Guibao 已提交
468 469 470 471 472 473 474 475 476 477 478

  int softmax(float x, double& o) {  // NOLINT
    return _core->_sigmoid_core->softmax(x, o);
  }

 protected:
  std::unique_ptr<SigmoidFluidModel> _core;
};

class FluidGpuNativeDirWithSigmoidCore : public FluidGpuWithSigmoidCore {
 public:
479 480
  int load_fluid_model(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
Wang Guibao 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.model_dir = data_path;
    native_config.use_gpu = true;
    native_config.fraction_of_gpu_memory = 0.01;
    native_config.device = FLAGS_gpuid;
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core->_fluid_core =
        paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                      paddle::PaddleEngineKind::kNative>(
            native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

class FluidGpuAnalysisDirWithSigmoidCore : public FluidGpuWithSigmoidCore {
 public:
509 510
  int load_fluid_model(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
Wang Guibao 已提交
511 512 513 514 515 516 517 518 519 520 521
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::AnalysisConfig analysis_config;
    analysis_config.SetModel(data_path);
    analysis_config.EnableUseGpu(100, FLAGS_gpuid);
    analysis_config.SwitchSpecifyInputNames(true);
    analysis_config.SetCpuMathLibraryNumThreads(1);
522 523

    if (params.enable_memory_optimization()) {
W
wangguibao 已提交
524
      analysis_config.EnableMemoryOptim();
525 526
    }

W
Wang Guibao 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core->_fluid_core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
};

}  // namespace fluid_gpu
}  // namespace paddle_serving
}  // namespace baidu