test_py_server.py 4.3 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

B
barrierye 已提交
16 17 18
from pyserver import Op
from pyserver import Channel
from pyserver import PyServer
B
barrierye 已提交
19 20
import numpy as np
import python_service_channel_pb2
B
barrierye 已提交
21 22


B
barrierye 已提交
23 24
# channel data: {name(str): data(bytes)}
class ImdbOp(Op):
B
barrierye 已提交
25
    def preprocess(self, input_data):
B
barrierye 已提交
26 27 28 29 30
        data = input_data[0]  # batchsize=1
        feed = {}
        for inst in data.insts:
            feed[inst.name] = np.frombuffer(inst.data, dtype='int64')
            # feed[inst.name] = np.frombuffer(inst.data)
B
barrierye 已提交
31
        return feed
B
barrierye 已提交
32 33

    def postprocess(self, output_data):
B
barrierye 已提交
34 35 36 37 38 39 40
        data = python_service_channel_pb2.ChannelData()
        inst = python_service_channel_pb2.Inst()
        pred = np.array(output_data["prediction"][0][0], dtype='float')
        inst.data = np.ndarray.tobytes(pred)
        inst.name = "prediction"
        inst.id = 0  #TODO
        data.insts.append(inst)
B
barrierye 已提交
41 42 43 44 45 46
        return data


class CombineOp(Op):
    def preprocess(self, input_data):
        cnt = 0
B
barrierye 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        for input in input_data:
            data = input[0]  # batchsize=1
            cnt += np.frombuffer(data.insts[0].data, dtype='float')
        data = python_service_channel_pb2.ChannelData()
        inst = python_service_channel_pb2.Inst()
        inst.data = np.ndarray.tobytes(cnt)
        inst.name = "resp"
        inst.id = 0  #TODO
        data.insts.append(inst)
        print(data)
        return data


class UciOp(Op):
    def preprocess(self, input_data):
        data = input_data[0]  # batchsize=1
        feed = {}
        for inst in data.insts:
            feed[inst.name] = np.frombuffer(inst.data, dtype='float')
            # feed[inst.name] = np.frombuffer(inst.data)
        return feed

    def postprocess(self, output_data):
        data = python_service_channel_pb2.ChannelData()
        inst = python_service_channel_pb2.Inst()
        pred = np.array(output_data["price"][0][0], dtype='float')
        inst.data = np.ndarray.tobytes(pred)
        inst.name = "prediction"
        inst.id = 0  #TODO
        data.insts.append(inst)
        return data
B
barrierye 已提交
78 79 80 81 82 83


read_channel = Channel(consumer=2)
cnn_out_channel = Channel()
bow_out_channel = Channel()
combine_out_channel = Channel()
B
barrierye 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
cnn_op = UciOp(
    inputs=[read_channel],
    outputs=[cnn_out_channel],
    server_model="./uci_housing_model",
    server_port="9393",
    device="cpu",
    client_config="uci_housing_client/serving_client_conf.prototxt",
    server_name="127.0.0.1:9393",
    fetch_names=["price"])
bow_op = UciOp(
    inputs=[read_channel],
    outputs=[bow_out_channel],
    server_model="./uci_housing_model",
    server_port="9292",
    device="cpu",
    client_config="uci_housing_client/serving_client_conf.prototxt",
    server_name="127.0.0.1:9393",
    fetch_names=["price"])
'''
B
barrierye 已提交
103 104 105 106 107 108 109 110
cnn_op = ImdbOp(
    inputs=[read_channel],
    outputs=[cnn_out_channel],
    server_model="./imdb_cnn_model",
    server_port="9393",
    device="cpu",
    client_config="imdb_cnn_client_conf/serving_client_conf.prototxt",
    server_name="127.0.0.1:9393",
B
barrierye 已提交
111
    fetch_names=["acc", "cost", "prediction"])
B
barrierye 已提交
112 113 114 115 116 117 118 119
bow_op = ImdbOp(
    inputs=[read_channel],
    outputs=[bow_out_channel],
    server_model="./imdb_bow_model",
    server_port="9292",
    device="cpu",
    client_config="imdb_bow_client_conf/serving_client_conf.prototxt",
    server_name="127.0.0.1:9292",
B
barrierye 已提交
120 121
    fetch_names=["acc", "cost", "prediction"])
'''
B
barrierye 已提交
122 123
combine_op = CombineOp(
    inputs=[cnn_out_channel, bow_out_channel], outputs=[combine_out_channel])
B
barrierye 已提交
124 125 126

pyserver = PyServer()
pyserver.add_channel(read_channel)
B
barrierye 已提交
127 128 129
pyserver.add_channel(cnn_out_channel)
pyserver.add_channel(bow_out_channel)
pyserver.add_channel(combine_out_channel)
B
barrierye 已提交
130 131 132
pyserver.add_op(cnn_op)
pyserver.add_op(bow_op)
pyserver.add_op(combine_op)
B
barrierye 已提交
133
pyserver.prepare_server(port=8080, worker_num=1)
B
barrierye 已提交
134
pyserver.run_server()