pipeline_server.py 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
import threading
import multiprocessing
import multiprocessing.queues
import sys
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
import os
from paddle_serving_client import MultiLangClient, Client
from concurrent import futures
import numpy as np
import grpc
from ..proto import general_python_service_pb2 as pyservice_pb2
from ..proto import pyserving_channel_pb2 as channel_pb2
from ..proto import general_python_service_pb2_grpc
import logging
import random
import time
import func_timeout
import enum
import collections
import copy

from .operator import Op, VirtualOp
from .channel import ThreadChannel, ProcessChannel, ChannelData, ChannelDataEcode, ChannelDataType
from .profiler import TimeProfiler

_profiler = TimeProfiler()


class GeneralPythonService(
        general_python_service_pb2_grpc.GeneralPythonServiceServicer):
    def __init__(self, in_channel, out_channel, retry=2):
        super(GeneralPythonService, self).__init__()
        self.name = "#G"
        self.set_in_channel(in_channel)
        self.set_out_channel(out_channel)
        logging.debug(self._log(in_channel.debug()))
        logging.debug(self._log(out_channel.debug()))
        #TODO: 
        #  multi-lock for different clients
        #  diffenert lock for server and client
        self._id_lock = threading.Lock()
        self._cv = threading.Condition()
        self._globel_resp_dict = {}
        self._id_counter = 0
        self._retry = retry
        self._recive_func = threading.Thread(
            target=GeneralPythonService._recive_out_channel_func, args=(self, ))
        self._recive_func.start()

    def _log(self, info_str):
        return "[{}] {}".format(self.name, info_str)

    def set_in_channel(self, in_channel):
        if not isinstance(in_channel, (ThreadChannel, ProcessChannel)):
            raise TypeError(
                self._log('in_channel must be Channel type, but get {}'.format(
                    type(in_channel))))
        in_channel.add_producer(self.name)
        self._in_channel = in_channel

    def set_out_channel(self, out_channel):
        if not isinstance(out_channel, (ThreadChannel, ProcessChannel)):
            raise TypeError(
                self._log('out_channel must be Channel type, but get {}'.format(
                    type(out_channel))))
        out_channel.add_consumer(self.name)
        self._out_channel = out_channel

    def _recive_out_channel_func(self):
        while True:
            channeldata = self._out_channel.front(self.name)
            if not isinstance(channeldata, ChannelData):
                raise TypeError(
                    self._log('data must be ChannelData type, but get {}'.
                              format(type(channeldata))))
            with self._cv:
                data_id = channeldata.id
                self._globel_resp_dict[data_id] = channeldata
                self._cv.notify_all()

    def _get_next_id(self):
        with self._id_lock:
            self._id_counter += 1
            return self._id_counter - 1

    def _get_data_in_globel_resp_dict(self, data_id):
        resp = None
        with self._cv:
            while data_id not in self._globel_resp_dict:
                self._cv.wait()
            resp = self._globel_resp_dict.pop(data_id)
            self._cv.notify_all()
        return resp

    def _pack_data_for_infer(self, request):
        logging.debug(self._log('start inferce'))
        data_id = self._get_next_id()
        npdata = {}
        try:
            for idx, name in enumerate(request.feed_var_names):
                logging.debug(
                    self._log('name: {}'.format(request.feed_var_names[idx])))
                logging.debug(
                    self._log('data: {}'.format(request.feed_insts[idx])))
                npdata[name] = np.frombuffer(
                    request.feed_insts[idx], dtype=request.type[idx])
                npdata[name].shape = np.frombuffer(
                    request.shape[idx], dtype="int32")
        except Exception as e:
            return ChannelData(
                ecode=ChannelDataEcode.RPC_PACKAGE_ERROR.value,
                error_info="rpc package error",
                data_id=data_id), data_id
        else:
            return ChannelData(
                datatype=ChannelDataType.CHANNEL_NPDATA.value,
                npdata=npdata,
                data_id=data_id), data_id

    def _pack_data_for_resp(self, channeldata):
        logging.debug(self._log('get channeldata'))
        resp = pyservice_pb2.Response()
        resp.ecode = channeldata.ecode
        if resp.ecode == ChannelDataEcode.OK.value:
            if channeldata.datatype == ChannelDataType.CHANNEL_PBDATA.value:
                for inst in channeldata.pbdata.insts:
                    resp.fetch_insts.append(inst.data)
                    resp.fetch_var_names.append(inst.name)
                    resp.shape.append(inst.shape)
                    resp.type.append(inst.type)
            elif channeldata.datatype in (ChannelDataType.CHANNEL_FUTURE.value,
                                          ChannelDataType.CHANNEL_NPDATA.value):
                feed = channeldata.parse()
                for name, var in feed.items():
                    resp.fetch_insts.append(var.tobytes())
                    resp.fetch_var_names.append(name)
                    resp.shape.append(
                        np.array(
                            var.shape, dtype="int32").tobytes())
                    resp.type.append(str(var.dtype))
            else:
                raise TypeError(
                    self._log("Error type({}) in datatype.".format(
                        channeldata.datatype)))
        else:
            resp.error_info = channeldata.error_info
        return resp

    def inference(self, request, context):
        _profiler.record("{}-prepack_0".format(self.name))
        data, data_id = self._pack_data_for_infer(request)
        _profiler.record("{}-prepack_1".format(self.name))

        resp_channeldata = None
        for i in range(self._retry):
            logging.debug(self._log('push data'))
            _profiler.record("{}-push_0".format(self.name))
            self._in_channel.push(data, self.name)
            _profiler.record("{}-push_1".format(self.name))

            logging.debug(self._log('wait for infer'))
            _profiler.record("{}-fetch_0".format(self.name))
            resp_channeldata = self._get_data_in_globel_resp_dict(data_id)
            _profiler.record("{}-fetch_1".format(self.name))

            if resp_channeldata.ecode == ChannelDataEcode.OK.value:
                break
            if i + 1 < self._retry:
                logging.warn("retry({}): {}".format(
                    i + 1, resp_channeldata.error_info))

        _profiler.record("{}-postpack_0".format(self.name))
        resp = self._pack_data_for_resp(resp_channeldata)
        _profiler.record("{}-postpack_1".format(self.name))
        _profiler.print_profile()
        return resp


class PipelineServer(object):
    def __init__(self,
                 use_multithread=True,
                 client_type='brpc',
                 use_future=False,
                 retry=2,
                 profile=False):
        self._channels = []
        self._user_ops = []
        self._actual_ops = []
        self._port = None
        self._worker_num = None
        self._in_channel = None
        self._out_channel = None
        self._retry = retry
        self._use_multithread = use_multithread
        self._client_type = client_type
        self._use_future = use_future
        if not self._use_multithread:
            self._manager = multiprocessing.Manager()
            if profile:
                raise Exception(
                    "profile cannot be used in multiprocess version temporarily")
            if self._use_future:
                raise Exception("cannot use future in multiprocess")
        if self._client_type == 'brpc' and self._use_future:
            logging.warn("brpc impl cannot use future")
        _profiler.enable(profile)

    def add_channel(self, channel):
        self._channels.append(channel)

    def add_op(self, op):
        self._user_ops.append(op)

    def add_ops(self, ops):
        self._user_ops.extend(ops)

    def gen_desc(self):
        logging.info('here will generate desc for PAAS')
        pass

    def _topo_sort(self):
        indeg_num = {}
        que_idx = 0  # scroll queue 
        ques = [Queue.Queue() for _ in range(2)]
        for op in self._user_ops:
            if len(op.get_input_ops()) == 0:
                op.name = "#G"  # update read_op.name
                break
        outdegs = {op.name: [] for op in self._user_ops}
        zero_indeg_num, zero_outdeg_num = 0, 0
        for idx, op in enumerate(self._user_ops):
            # check the name of op is globally unique
            if op.name in indeg_num:
                raise Exception("the name of Op must be unique")
            indeg_num[op.name] = len(op.get_input_ops())
            if indeg_num[op.name] == 0:
                ques[que_idx].put(op)
                zero_indeg_num += 1
            for pred_op in op.get_input_ops():
                outdegs[pred_op.name].append(op)
        if zero_indeg_num != 1:
            raise Exception("DAG contains multiple input Ops")
        for _, succ_list in outdegs.items():
            if len(succ_list) == 0:
                zero_outdeg_num += 1
        if zero_outdeg_num != 1:
            raise Exception("DAG contains multiple output Ops")

        # topo sort to get dag_views
        dag_views = []
        sorted_op_num = 0
        while True:
            que = ques[que_idx]
            next_que = ques[(que_idx + 1) % 2]
            dag_view = []
            while que.qsize() != 0:
                op = que.get()
                dag_view.append(op)
                sorted_op_num += 1
                for succ_op in outdegs[op.name]:
                    indeg_num[succ_op.name] -= 1
                    if indeg_num[succ_op.name] == 0:
                        next_que.put(succ_op)
            dag_views.append(dag_view)
            if next_que.qsize() == 0:
                break
            que_idx = (que_idx + 1) % 2
        if sorted_op_num < len(self._user_ops):
            raise Exception("not legal DAG")

        # create channels and virtual ops
        def name_generator(prefix):
            def number_generator():
                idx = 0
                while True:
                    yield "{}{}".format(prefix, idx)
                    idx += 1

            return number_generator()

        def gen_channel(name_gen):
            channel = None
            if self._use_multithread:
                if sys.version_info.major == 2:
                    channel = ThreadChannel(name=name_gen.next())
                elif sys.version_info.major == 3:
                    channel = ThreadChannel(name=name_gen.__next__())
                else:
                    raise Exception("Error Python version")
            else:
                if sys.version_info.major == 2:
                    channel = ProcessChannel(
                        self._manager, name=name_gen.next())
                elif sys.version_info.major == 3:
                    channel = ProcessChannel(
                        self._manager, name=name_gen.__next__())
                else:
                    raise Exception("Error Python version")
            return channel

        def gen_virtual_op(name_gen):
            virtual_op = None
            if sys.version_info.major == 2:
                virtual_op = VirtualOp(name=name_gen.next())
            elif sys.version_info.major == 3:
                virtual_op = VirtualOp(name=op_name_gen.__next__())
            else:
                raise Exception("Error Python version")
            return virtual_op

        virtual_op_name_gen = name_generator("vir")
        channel_name_gen = name_generator("chl")
        virtual_ops = []
        channels = []
        input_channel = None
        actual_view = None
        for v_idx, view in enumerate(dag_views):
            if v_idx + 1 >= len(dag_views):
                break
            next_view = dag_views[v_idx + 1]
            if actual_view is None:
                actual_view = view
            actual_next_view = []
            pred_op_of_next_view_op = {}
            for op in actual_view:
                # find actual succ op in next view and create virtual op
                for succ_op in outdegs[op.name]:
                    if succ_op in next_view:
                        if succ_op not in actual_next_view:
                            actual_next_view.append(succ_op)
                        if succ_op.name not in pred_op_of_next_view_op:
                            pred_op_of_next_view_op[succ_op.name] = []
                        pred_op_of_next_view_op[succ_op.name].append(op)
                    else:
                        # create virtual op
                        virtual_op = gen_virtual_op(virtual_op_name_gen)
                        virtual_ops.append(virtual_op)
                        outdegs[virtual_op.name] = [succ_op]
                        actual_next_view.append(virtual_op)
                        pred_op_of_next_view_op[virtual_op.name] = [op]
                        virtual_op.add_virtual_pred_op(op)
            actual_view = actual_next_view
            # create channel
            processed_op = set()
            for o_idx, op in enumerate(actual_next_view):
                if op.name in processed_op:
                    continue
                channel = gen_channel(channel_name_gen)
                channels.append(channel)
                logging.debug("{} => {}".format(channel.name, op.name))
                op.add_input_channel(channel)
                pred_ops = pred_op_of_next_view_op[op.name]
                if v_idx == 0:
                    input_channel = channel
                else:
                    # if pred_op is virtual op, it will use ancestors as producers to channel
                    for pred_op in pred_ops:
                        logging.debug("{} => {}".format(pred_op.name,
                                                        channel.name))
                        pred_op.add_output_channel(channel)
                processed_op.add(op.name)
                # find same input op to combine channel
                for other_op in actual_next_view[o_idx + 1:]:
                    if other_op.name in processed_op:
                        continue
                    other_pred_ops = pred_op_of_next_view_op[other_op.name]
                    if len(other_pred_ops) != len(pred_ops):
                        continue
                    same_flag = True
                    for pred_op in pred_ops:
                        if pred_op not in other_pred_ops:
                            same_flag = False
                            break
                    if same_flag:
                        logging.debug("{} => {}".format(channel.name,
                                                        other_op.name))
                        other_op.add_input_channel(channel)
                        processed_op.add(other_op.name)
        output_channel = gen_channel(channel_name_gen)
        channels.append(output_channel)
        last_op = dag_views[-1][0]
        last_op.add_output_channel(output_channel)

        self._actual_ops = virtual_ops
        for op in self._user_ops:
            if len(op.get_input_ops()) == 0:
                # pass read op
                continue
            self._actual_ops.append(op)
        self._channels = channels
        for c in channels:
            logging.debug(c.debug())
        return input_channel, output_channel

    def prepare_server(self, port, worker_num):
        self._port = port
        self._worker_num = worker_num

        input_channel, output_channel = self._topo_sort()
        self._in_channel = input_channel
        self._out_channel = output_channel
        for op in self._actual_ops:
            if op.with_serving:
                self.prepare_serving(op)
        self.gen_desc()

    def _run_ops(self):
        threads_or_proces = []
        for op in self._actual_ops:
            op.init_profiler(_profiler)
            if self._use_multithread:
                threads_or_proces.extend(
                    op.start_with_thread(self._client_type, self._use_future))
            else:
                threads_or_proces.extend(
                    op.start_with_process(self._client_type, self._use_future))
        return threads_or_proces

    def _stop_ops(self):
        for op in self._actual_ops:
            op.stop()

    def run_server(self):
        op_threads_or_proces = self._run_ops()
        server = grpc.server(
            futures.ThreadPoolExecutor(max_workers=self._worker_num))
        general_python_service_pb2_grpc.add_GeneralPythonServiceServicer_to_server(
            GeneralPythonService(self._in_channel, self._out_channel,
                                 self._retry), server)
        server.add_insecure_port('[::]:{}'.format(self._port))
        server.start()
        server.wait_for_termination()
        self._stop_ops()  # TODO
        for x in op_threads_or_proces:
            x.join()

    def prepare_serving(self, op):
        model_path = op._server_model
        port = op._server_port
        device = op._device

        if self._client_type == "grpc":
            if device == "cpu":
                cmd = "(Use grpc impl) python -m paddle_serving_server.serve" \
                      " --model {} --thread 4 --port {} --use_multilang &>/dev/null &".format(model_path, port)
            else:
                cmd = "(Use grpc impl) python -m paddle_serving_server_gpu.serve" \
                      " --model {} --thread 4 --port {} --use_multilang &>/dev/null &".format(model_path, port)
        elif self._client_type == "brpc":
            if device == "cpu":
                cmd = "(Use brpc impl) python -m paddle_serving_server.serve" \
                      " --model {} --thread 4 --port {} &>/dev/null &".format(model_path, port)
            else:
                cmd = "(Use brpc impl) python -m paddle_serving_server_gpu.serve" \
                      " --model {} --thread 4 --port {} &>/dev/null &".format(model_path, port)
        else:
            raise Exception("unknow client type: {}".format(self._client_type))
        # run a server (not in PyServing)
        logging.info("run a server (not in PyServing): {}".format(cmd))