general_detection_op.cpp 12.8 KB
Newer Older
H
HexToString 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "core/general-server/op/general_detection_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"

/*
#include "opencv2/imgcodecs/legacy/constants_c.h"
#include "opencv2/imgproc/types_c.h"
*/

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

int GeneralDetectionOp::inference() {
  VLOG(2) << "Going to run inference";
  const std::vector<std::string> pre_node_names = pre_names();
  if (pre_node_names.size() != 1) {
    LOG(ERROR) << "This op(" << op_name()
               << ") can only have one predecessor op, but received "
               << pre_node_names.size();
    return -1;
  }
  const std::string pre_name = pre_node_names[0];

H
HexToString 已提交
53
  const GeneralBlob* input_blob = get_depend_argument<GeneralBlob>(pre_name);
H
HexToString 已提交
54 55
  if (!input_blob) {
    LOG(ERROR) << "input_blob is nullptr,error";
H
HexToString 已提交
56
    return -1;
H
HexToString 已提交
57 58 59 60
  }
  uint64_t log_id = input_blob->GetLogId();
  VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;

H
HexToString 已提交
61
  GeneralBlob* output_blob = mutable_data<GeneralBlob>();
H
HexToString 已提交
62 63
  if (!output_blob) {
    LOG(ERROR) << "output_blob is nullptr,error";
H
HexToString 已提交
64
    return -1;
H
HexToString 已提交
65 66 67 68 69 70 71 72 73
  }
  output_blob->SetLogId(log_id);

  if (!input_blob) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed mutable depended argument, op:" << pre_name;
    return -1;
  }

H
HexToString 已提交
74
  const TensorVector* in = &input_blob->tensor_vector;
H
HexToString 已提交
75 76 77 78 79 80 81 82
  TensorVector* out = &output_blob->tensor_vector;

  int batch_size = input_blob->_batch_size;
  VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;

  output_blob->_batch_size = batch_size;

  std::vector<int> input_shape;
H
HexToString 已提交
83
  int in_num = 0;
H
HexToString 已提交
84 85 86
  void* databuf_data = NULL;
  char* databuf_char = NULL;
  size_t databuf_size = 0;
H
HexToString 已提交
87 88 89
  // now only support single string
  char* total_input_ptr = static_cast<char*>(in->at(0).data.data());
  std::string base64str = total_input_ptr;
H
HexToString 已提交
90 91 92 93 94 95 96

  float ratio_h{};
  float ratio_w{};

  cv::Mat img = Base2Mat(base64str);
  cv::Mat srcimg;
  cv::Mat resize_img;
H
HexToString 已提交
97

H
HexToString 已提交
98 99 100 101
  cv::Mat resize_img_rec;
  cv::Mat crop_img;
  img.copyTo(srcimg);

H
HexToString 已提交
102 103 104 105 106
  this->resize_op_.Run(img,
                       resize_img,
                       this->max_side_len_,
                       ratio_h,
                       ratio_w,
H
HexToString 已提交
107 108
                       this->use_tensorrt_);

H
HexToString 已提交
109 110
  this->normalize_op_.Run(
      &resize_img, this->mean_det, this->scale_det, this->is_scale_);
H
HexToString 已提交
111 112 113 114 115 116 117 118 119 120 121 122

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
  this->permute_op_.Run(&resize_img, input.data());

  TensorVector* real_in = new TensorVector();
  if (!real_in) {
    LOG(ERROR) << "real_in is nullptr,error";
    return -1;
  }

  for (int i = 0; i < in->size(); ++i) {
    input_shape = {1, 3, resize_img.rows, resize_img.cols};
H
HexToString 已提交
123 124 125
    in_num = std::accumulate(
        input_shape.begin(), input_shape.end(), 1, std::multiplies<int>());
    databuf_size = in_num * sizeof(float);
H
HexToString 已提交
126 127
    databuf_data = MempoolWrapper::instance().malloc(databuf_size);
    if (!databuf_data) {
H
HexToString 已提交
128 129
      LOG(ERROR) << "Malloc failed, size: " << databuf_size;
      return -1;
H
HexToString 已提交
130
    }
H
HexToString 已提交
131
    memcpy(databuf_data, input.data(), databuf_size);
H
HexToString 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    databuf_char = reinterpret_cast<char*>(databuf_data);
    paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
    paddle::PaddleTensor tensor_in;
    tensor_in.name = in->at(i).name;
    tensor_in.dtype = paddle::PaddleDType::FLOAT32;
    tensor_in.shape = {1, 3, resize_img.rows, resize_img.cols};
    tensor_in.lod = in->at(i).lod;
    tensor_in.data = paddleBuf;
    real_in->push_back(tensor_in);
  }

  Timer timeline;
  int64_t start = timeline.TimeStampUS();
  timeline.Start();
H
HexToString 已提交
146

H
HexToString 已提交
147 148 149 150 151 152
  if (InferManager::instance().infer(
          engine_name().c_str(), real_in, out, batch_size)) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed do infer in fluid model: " << engine_name().c_str();
    return -1;
  }
H
HexToString 已提交
153 154
  delete real_in;

H
HexToString 已提交
155
  std::vector<int> output_shape;
H
HexToString 已提交
156
  int out_num = 0;
H
HexToString 已提交
157 158 159
  void* databuf_data_out = NULL;
  char* databuf_char_out = NULL;
  size_t databuf_size_out = 0;
H
HexToString 已提交
160 161 162
  // this is special add for PaddleOCR postprecess
  int infer_outnum = out->size();
  for (int k = 0; k < infer_outnum; ++k) {
H
HexToString 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175
    int n2 = out->at(k).shape[2];
    int n3 = out->at(k).shape[3];
    int n = n2 * n3;

    float* out_data = static_cast<float*>(out->at(k).data.data());
    std::vector<float> pred(n, 0.0);
    std::vector<unsigned char> cbuf(n, ' ');

    for (int i = 0; i < n; i++) {
      pred[i] = float(out_data[i]);
      cbuf[i] = (unsigned char)((out_data[i]) * 255);
    }

H
HexToString 已提交
176 177
    cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char*)cbuf.data());
    cv::Mat pred_map(n2, n3, CV_32F, (float*)pred.data());
H
HexToString 已提交
178 179 180 181 182 183

    const double threshold = this->det_db_thresh_ * 255;
    const double maxvalue = 255;
    cv::Mat bit_map;
    cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
    cv::Mat dilation_map;
H
HexToString 已提交
184 185
    cv::Mat dila_ele =
        cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
H
HexToString 已提交
186
    cv::dilate(bit_map, dilation_map, dila_ele);
H
HexToString 已提交
187 188
    boxes = post_processor_.BoxesFromBitmap(pred_map,
                                            dilation_map,
H
HexToString 已提交
189 190 191 192 193
                                            this->det_db_box_thresh_,
                                            this->det_db_unclip_ratio_);

    boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);

194 195 196 197 198 199 200 201 202 203 204 205 206
    float max_wh_ratio = 0.0f;
    std::vector<cv::Mat> crop_imgs;
    std::vector<cv::Mat> resize_imgs;
    int max_resize_w = 0;
    int max_resize_h = 0;
    int box_num = boxes.size();
    std::vector<std::vector<float>> output_rec;
    for (int i = 0; i < box_num; ++i) {
      cv::Mat line_img = GetRotateCropImage(img, boxes[i]);
      float wh_ratio = float(line_img.cols) / float(line_img.rows);
      max_wh_ratio = max_wh_ratio > wh_ratio ? max_wh_ratio : wh_ratio;
      crop_imgs.push_back(line_img);
    }
H
HexToString 已提交
207

208 209 210
    for (int i = 0; i < box_num; ++i) {
      cv::Mat resize_img;
      crop_img = crop_imgs[i];
H
HexToString 已提交
211
      this->resize_op_rec.Run(
212
          crop_img, resize_img, max_wh_ratio, this->use_tensorrt_);
H
HexToString 已提交
213

H
HexToString 已提交
214
      this->normalize_op_.Run(
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
          &resize_img, this->mean_rec, this->scale_rec, this->is_scale_);

      max_resize_w = std::max(max_resize_w, resize_img.cols);
      max_resize_h = std::max(max_resize_h, resize_img.rows);
      resize_imgs.push_back(resize_img);
    }
    int buf_size = 3 * max_resize_h * max_resize_w;
    output_rec = std::vector<std::vector<float>>(box_num,
                     std::vector<float>(buf_size, 0.0f));
    for (int i = 0; i < box_num; ++i) {
      resize_img_rec = resize_imgs[i];

      this->permute_op_.Run(&resize_img_rec, output_rec[i].data());
    }

    // Inference.
    output_shape = {box_num, 3, max_resize_h, max_resize_w};
    out_num = std::accumulate(
        output_shape.begin(), output_shape.end(), 1, std::multiplies<int>());
    databuf_size_out = out_num * sizeof(float);
    databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out);
    if (!databuf_data_out) {
      LOG(ERROR) << "Malloc failed, size: " << databuf_size_out;
      return -1;
    }
    int offset = buf_size * sizeof(float);
    for (int i = 0; i < box_num; ++i) {
      memcpy(databuf_data_out + i * offset, output_rec[i].data(), offset);
H
HexToString 已提交
243
    }
244 245 246
    databuf_char_out = reinterpret_cast<char*>(databuf_data_out);
    paddle::PaddleBuf paddleBuf(databuf_char_out, databuf_size_out);
    paddle::PaddleTensor tensor_out;
S
ShiningZhang 已提交
247
    tensor_out.name = "x";
248 249 250 251
    tensor_out.dtype = paddle::PaddleDType::FLOAT32;
    tensor_out.shape = output_shape;
    tensor_out.data = paddleBuf;
    out->push_back(tensor_out);
H
HexToString 已提交
252
  }
H
HexToString 已提交
253
  out->erase(out->begin(), out->begin() + infer_outnum);
H
HexToString 已提交
254 255 256 257 258 259 260 261

  int64_t end = timeline.TimeStampUS();
  CopyBlobInfo(input_blob, output_blob);
  AddBlobInfo(output_blob, start);
  AddBlobInfo(output_blob, end);
  return 0;
}

H
HexToString 已提交
262 263 264 265 266 267 268
cv::Mat GeneralDetectionOp::Base2Mat(std::string& base64_data) {
  cv::Mat img;
  std::string s_mat;
  s_mat = base64Decode(base64_data.data(), base64_data.size());
  std::vector<char> base64_img(s_mat.begin(), s_mat.end());
  img = cv::imdecode(base64_img, cv::IMREAD_COLOR);  // CV_LOAD_IMAGE_COLOR
  return img;
H
HexToString 已提交
269 270
}

H
HexToString 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
std::string GeneralDetectionOp::base64Decode(const char* Data, int DataByte) {
  const char
      DecodeTable[] =
          {
              0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
              0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
              0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
              62,  // '+'
              0,  0,  0,
              63,                                      // '/'
              52, 53, 54, 55, 56, 57, 58, 59, 60, 61,  // '0'-'9'
              0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  3,  4,  5,  6,  7,
              8,  9,  10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
              23, 24, 25,  // 'A'-'Z'
              0,  0,  0,  0,  0,  0,  26, 27, 28, 29, 30, 31, 32, 33, 34,
              35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
              50, 51,  // 'a'-'z'
          };

  std::string strDecode;
  int nValue;
  int i = 0;
  while (i < DataByte) {
    if (*Data != '\r' && *Data != '\n') {
      nValue = DecodeTable[*Data++] << 18;
      nValue += DecodeTable[*Data++] << 12;
      strDecode += (nValue & 0x00FF0000) >> 16;
      if (*Data != '=') {
        nValue += DecodeTable[*Data++] << 6;
        strDecode += (nValue & 0x0000FF00) >> 8;
        if (*Data != '=') {
          nValue += DecodeTable[*Data++];
          strDecode += nValue & 0x000000FF;
        }
      }
      i += 4;
    } else  // 回车换行,跳过
    {
      Data++;
      i++;
    }
  }
  return strDecode;
H
HexToString 已提交
314 315
}

H
HexToString 已提交
316 317
cv::Mat GeneralDetectionOp::GetRotateCropImage(
    const cv::Mat& srcimage, std::vector<std::vector<int>> box) {
H
HexToString 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
H
HexToString 已提交
357 358 359
  cv::warpPerspective(img_crop,
                      dst_img,
                      M,
H
HexToString 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

DEFINE_OP(GeneralDetectionOp);

}  // namespace serving
}  // namespace paddle_serving
H
HexToString 已提交
377
}  // namespace baidu