elastic_ctr.py 5.6 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wangguibao 已提交
15
from __future__ import print_function
W
wangguibao 已提交
16 17 18 19
import json
import sys
import os

W
wangguibao 已提交
20 21
from elastic_ctr_api import ElasticCTRAPI

W
Wang Guibao 已提交
22
BATCH_SIZE = 10
W
wangguibao 已提交
23 24
SERVING_IP = "127.0.0.1"
SLOT_CONF_FILE = "./conf/slot.conf"
W
wangguibao 已提交
25
CTR_EMBEDDING_TABLE_SIZE = 100000001
W
wangguibao 已提交
26 27 28
SLOTS = []


W
wangguibao 已提交
29 30 31 32 33 34 35
def str2long(str):
    if sys.version_info[0] == 2:
        return long(str)
    elif sys.version_info[0] == 3:
        return int(str)


S
suoych 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def tied_rank(x):
    """
    Computes the tied rank of elements in x.
    This function computes the tied rank of elements in x.
    Parameters
    ----------
    x : list of numbers, numpy array
    Returns
    -------
    score : list of numbers
            The tied rank f each element in x
    """
    sorted_x = sorted(zip(x,range(len(x))))
    r = [0 for k in x]
    cur_val = sorted_x[0][0]
    last_rank = 0
    for i in range(len(sorted_x)):
        if cur_val != sorted_x[i][0]:
            cur_val = sorted_x[i][0]
            for j in range(last_rank, i): 
                r[sorted_x[j][1]] = float(last_rank+1+i)/2.0
            last_rank = i
        if i==len(sorted_x)-1:
            for j in range(last_rank, i+1): 
                r[sorted_x[j][1]] = float(last_rank+i+2)/2.0
    return r


def auc(actual, posterior):
    """
    Computes the area under the receiver-operater characteristic (AUC)
    This function computes the AUC error metric for binary classification.
    Parameters
    ----------
    actual : list of binary numbers, numpy array
             The ground truth value
    posterior : same type as actual
                Defines a ranking on the binary numbers, from most likely to
                be positive to least likely to be positive.
    Returns
    -------
    score : double
            The mean squared error between actual and posterior
    """
    r = tied_rank(posterior)
    num_positive = len([0 for x in actual if x==1])
    num_negative = len(actual)-num_positive
    sum_positive = sum([r[i] for i in range(len(r)) if actual[i]==1])
    auc = ((sum_positive - num_positive*(num_positive+1)/2.0) /
           (num_negative*num_positive))
    return auc


W
wangguibao 已提交
89 90
def data_reader(data_file, samples, labels):
    if not os.path.exists(data_file):
W
wangguibao 已提交
91
        print("Path %s not exist" % data_file)
W
wangguibao 已提交
92 93 94 95 96 97 98
        return -1

    with open(data_file, "r") as f:
        for line in f:
            sample = {}
            line = line.rstrip('\n')
            feature_slots = line.split(' ')
W
wangguibao 已提交
99
            labels.append(int(feature_slots[1]))
W
wangguibao 已提交
100 101 102 103 104 105 106 107
            feature_slots = feature_slots[2:]
            feature_slot_maps = [x.split(':') for x in feature_slots]

            features = [x[0] for x in feature_slot_maps]
            slots = [x[1] for x in feature_slot_maps]

            for i in range(0, len(features)):
                if slots[i] in sample:
W
wangguibao 已提交
108 109
                    sample[slots[i]].append(int(features[i]) %
                        CTR_EMBEDDING_TABLE_SIZE)
W
wangguibao 已提交
110
                else:
W
wangguibao 已提交
111
                    sample[slots[i]] = [
W
wangguibao 已提交
112
                        int(features[i]) % CTR_EMBEDDING_TABLE_SIZE
W
wangguibao 已提交
113
                    ]
W
wangguibao 已提交
114 115 116 117 118 119

            for x in SLOTS:
                if not x in sample:
                    sample[x] = [0]
            samples.append(sample)

S
suoych 已提交
120
            
W
wangguibao 已提交
121 122 123
if __name__ == "__main__":
    """ main
    """
W
wangguibao 已提交
124
    if len(sys.argv) != 5:
W
wangguibao 已提交
125 126 127
        print(
            "Usage: python elastic_ctr.py SERVING_IP SERVING_PORT SLOT_CONF_FILE DATA_FILE"
        )
W
wangguibao 已提交
128 129 130 131 132 133
        sys.exit(-1)

    samples = []
    labels = []

    SERVING_IP = sys.argv[1]
W
wangguibao 已提交
134 135
    SERVING_PORT = sys.argv[2]
    SLOT_CONF_FILE = sys.argv[3]
W
wangguibao 已提交
136

W
wangguibao 已提交
137 138
    api = ElasticCTRAPI(SERVING_IP, SERVING_PORT)
    ret = api.read_slots_conf(SLOT_CONF_FILE)
W
wangguibao 已提交
139 140 141
    if ret != 0:
        sys.exit(-1)

W
wangguibao 已提交
142
    ret = data_reader(sys.argv[4], samples, labels)
W
wangguibao 已提交
143
    correct = 0
S
suoych 已提交
144 145
    wrong_label_1_count = 0
    result_list = []
W
wangguibao 已提交
146 147
    #for i in range(0, len(samples) - BATCH_SIZE, BATCH_SIZE):
    for i in range(0, len(samples), BATCH_SIZE):
W
wangguibao 已提交
148
        api.clear()
W
wangguibao 已提交
149 150 151
        batch = samples[i:i + BATCH_SIZE]
        instances = []
        for sample in batch:
W
wangguibao 已提交
152
            instance = api.add_instance()
W
wangguibao 已提交
153 154 155 156 157 158
            if sys.version_info[0] == 2:
                for k, v in sample.iteritems():
                    api.add_slot(instance, k, v)
            elif sys.version_info[0] == 3:
                for k, v in sample.items():
                    api.add_slot(instance, k, v)
W
wangguibao 已提交
159 160

        ret = api.inference()
W
wangguibao 已提交
161 162 163 164 165
        ret = json.loads(ret)
        predictions = ret["predictions"]

        idx = 0
        for x in predictions:
S
suoych 已提交
166
            result_list.append(x["prob1"])
W
wangguibao 已提交
167 168 169 170 171 172 173 174
            if x["prob0"] >= x["prob1"]:
                pred = 0
            else:
                pred = 1

            if labels[i + idx] == pred:
                correct += 1
            else:
S
suoych 已提交
175 176 177 178 179 180
                #if labels[i + idx] == 1:
                #    wrong_label_1_count += 1
                #    print("error label=1 count", wrong_label_1_count)
                #print("id=%d predict incorrect: pred=%d label=%d (%f %f)" %
                #      (i + idx, pred, labels[i + idx], x["prob0"], x["prob1"]))
                pass
W
wangguibao 已提交
181 182
            idx = idx + 1

S
suoych 已提交
183
    print("auc = ", auc(labels, result_list) )