general_model_op.cpp 7.8 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "examples/demo-serving/op/general_model_op.h"
G
guru4elephant 已提交
16 17
#include <algorithm>
#include <iostream>
18
#include <memory>
M
MRXLT 已提交
19
#include <sstream>
G
guru4elephant 已提交
20 21
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
22
#include "core/predictor/framework/resource.h"
G
guru4elephant 已提交
23 24 25 26 27 28 29 30 31 32 33

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::FetchInst;
34
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
G
guru4elephant 已提交
35 36 37 38

static std::once_flag g_proto_init_flag;

int GeneralModelOp::inference() {
39
  // request
G
guru4elephant 已提交
40 41 42 43 44 45 46 47 48 49
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  TensorVector *in = butil::get_object<TensorVector>();

  int batch_size = req->insts_size();
  int input_var_num = 0;

  std::vector<int> elem_type;
  std::vector<int> elem_size;
  std::vector<int> capacity;
G
guru4elephant 已提交
50

51
  // infer
G
guru4elephant 已提交
52 53
  if (batch_size > 0) {
    int var_num = req->insts(0).tensor_array_size();
54
    VLOG(2) << "var num: " << var_num;
G
guru4elephant 已提交
55 56 57 58 59 60
    elem_type.resize(var_num);
    elem_size.resize(var_num);
    capacity.resize(var_num);
    paddle::PaddleTensor lod_tensor;
    for (int i = 0; i < var_num; ++i) {
      elem_type[i] = req->insts(0).tensor_array(i).elem_type();
61
      VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i];
G
guru4elephant 已提交
62 63 64 65 66 67 68
      if (elem_type[i] == 0) {  // int64
        elem_size[i] = sizeof(int64_t);
        lod_tensor.dtype = paddle::PaddleDType::INT64;
      } else {
        elem_size[i] = sizeof(float);
        lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
      }
G
guru4elephant 已提交
69

G
guru4elephant 已提交
70 71 72
      if (req->insts(0).tensor_array(i).shape(0) == -1) {
        lod_tensor.lod.resize(1);
        lod_tensor.lod[0].push_back(0);
73
        VLOG(2) << "var[" << i << "] is lod_tensor";
G
guru4elephant 已提交
74 75 76
      } else {
        lod_tensor.shape.push_back(batch_size);
        capacity[i] = 1;
M
MRXLT 已提交
77
        for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
G
guru4elephant 已提交
78
          int dim = req->insts(0).tensor_array(i).shape(k);
79
          VLOG(2) << "shape for var[" << i << "]: " << dim;
G
guru4elephant 已提交
80 81 82
          capacity[i] *= dim;
          lod_tensor.shape.push_back(dim);
        }
83
        VLOG(2) << "var[" << i << "] is tensor, capacity: " << capacity[i];
G
guru4elephant 已提交
84 85 86 87 88
      }
      if (i == 0) {
        lod_tensor.name = "words";
      } else {
        lod_tensor.name = "label";
G
guru4elephant 已提交
89 90 91 92 93
      }
      in->push_back(lod_tensor);
    }

    for (int i = 0; i < var_num; ++i) {
G
guru4elephant 已提交
94
      if (in->at(i).lod.size() == 1) {
G
guru4elephant 已提交
95
        for (int j = 0; j < batch_size; ++j) {
M
MRXLT 已提交
96
          const Tensor &tensor = req->insts(j).tensor_array(i);
G
guru4elephant 已提交
97
          int data_len = tensor.data_size();
98
          VLOG(2) << "tensor size for var[" << i << "]: " << tensor.data_size();
G
guru4elephant 已提交
99
          int cur_len = in->at(i).lod[0].back();
100
          VLOG(2) << "current len: " << cur_len;
G
guru4elephant 已提交
101
          in->at(i).lod[0].push_back(cur_len + data_len);
102
          VLOG(2) << "new len: " << cur_len + data_len;
G
guru4elephant 已提交
103
        }
G
guru4elephant 已提交
104 105
        in->at(i).data.Resize(in->at(i).lod[0].back() * elem_size[i]);
        in->at(i).shape = {in->at(i).lod[0].back(), 1};
106
        VLOG(2) << "var[" << i
M
MRXLT 已提交
107
                << "] is lod_tensor and len=" << in->at(i).lod[0].back();
G
guru4elephant 已提交
108
      } else {
G
guru4elephant 已提交
109
        in->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]);
110
        VLOG(2) << "var[" << i
M
MRXLT 已提交
111
                << "] is tensor and capacity=" << batch_size * capacity[i];
G
guru4elephant 已提交
112 113 114 115
      }
    }

    for (int i = 0; i < var_num; ++i) {
G
guru4elephant 已提交
116
      if (elem_type[i] == 0) {
M
MRXLT 已提交
117
        int64_t *dst_ptr = static_cast<int64_t *>(in->at(i).data.data());
G
guru4elephant 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130
        int offset = 0;
        for (int j = 0; j < batch_size; ++j) {
          for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
            dst_ptr[offset + k] =
                *(const int64_t *)req->insts(j).tensor_array(i).data(k).c_str();
          }
          if (in->at(i).lod.size() == 1) {
            offset = in->at(i).lod[0][j + 1];
          } else {
            offset += capacity[i];
          }
        }
      } else {
M
MRXLT 已提交
131
        float *dst_ptr = static_cast<float *>(in->at(i).data.data());
G
guru4elephant 已提交
132 133 134 135 136 137 138 139 140 141 142
        int offset = 0;
        for (int j = 0; j < batch_size; ++j) {
          for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
            dst_ptr[offset + k] =
                *(const float *)req->insts(j).tensor_array(i).data(k).c_str();
          }
          if (in->at(i).lod.size() == 1) {
            offset = in->at(i).lod[0][j + 1];
          } else {
            offset += capacity[i];
          }
G
guru4elephant 已提交
143 144 145 146
        }
      }
    }

147
    VLOG(2) << "going to infer";
G
guru4elephant 已提交
148 149 150 151 152 153
    TensorVector *out = butil::get_object<TensorVector>();
    if (!out) {
      LOG(ERROR) << "Failed get tls output object";
      return -1;
    }

154 155 156 157 158 159
    // print request
    std::ostringstream oss;
    int64_t *example = reinterpret_cast<int64_t *>((*in)[0].data.data());
    for (uint32_t i = 0; i < 10; i++) {
      oss << *(example + i) << " ";
    }
160
    VLOG(2) << "msg: " << oss.str();
161 162

    // infer
G
guru4elephant 已提交
163 164
    if (predictor::InferManager::instance().infer(
            GENERAL_MODEL_NAME, in, out, batch_size)) {
M
MRXLT 已提交
165
      LOG(ERROR) << "Failed do infer in fluid model: " << GENERAL_MODEL_NAME;
G
guru4elephant 已提交
166 167
      return -1;
    }
168 169
    // print response
    float *example_1 = reinterpret_cast<float *>((*out)[0].data.data());
170
    VLOG(2) << "result: " << *example_1;
G
guru4elephant 已提交
171

M
MRXLT 已提交
172 173
    Response *res = mutable_data<Response>();

G
guru4elephant 已提交
174
    for (int i = 0; i < batch_size; ++i) {
M
MRXLT 已提交
175
      FetchInst *fetch_inst = res->add_insts();
G
guru4elephant 已提交
176
      for (int j = 0; j < out->size(); ++j) {
M
MRXLT 已提交
177
        Tensor *tensor = fetch_inst->add_tensor_array();
G
guru4elephant 已提交
178
        tensor->set_elem_type(1);
G
guru4elephant 已提交
179
        if (out->at(j).lod.size() == 1) {
G
guru4elephant 已提交
180 181
          tensor->add_shape(-1);
        } else {
G
guru4elephant 已提交
182 183
          for (int k = 1; k < out->at(j).shape.size(); ++k) {
            tensor->add_shape(out->at(j).shape[k]);
G
guru4elephant 已提交
184 185 186 187 188 189
          }
        }
      }
    }

    for (int i = 0; i < out->size(); ++i) {
M
MRXLT 已提交
190
      float *data_ptr = static_cast<float *>(out->at(i).data.data());
G
guru4elephant 已提交
191
      int cap = 1;
M
MRXLT 已提交
192
      for (int j = 1; j < out->at(i).shape.size(); ++j) {
G
guru4elephant 已提交
193 194 195
        cap *= out->at(i).shape[j];
      }
      if (out->at(i).lod.size() == 1) {
G
guru4elephant 已提交
196
        for (int j = 0; j < batch_size; ++j) {
M
MRXLT 已提交
197
          for (int k = out->at(i).lod[0][j]; k < out->at(i).lod[0][j + 1];
G
guru4elephant 已提交
198 199
               k++) {
            res->mutable_insts(j)->mutable_tensor_array(i)->add_data(
M
MRXLT 已提交
200
                reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
G
guru4elephant 已提交
201
          }
G
guru4elephant 已提交
202 203 204
        }
      } else {
        for (int j = 0; j < batch_size; ++j) {
G
guru4elephant 已提交
205 206
          for (int k = j * cap; k < (j + 1) * cap; ++k) {
            res->mutable_insts(j)->mutable_tensor_array(i)->add_data(
M
MRXLT 已提交
207
                reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
G
guru4elephant 已提交
208
          }
G
guru4elephant 已提交
209 210 211
        }
      }
    }
M
MRXLT 已提交
212

G
guru4elephant 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    for (size_t i = 0; i < in->size(); ++i) {
      (*in)[i].shape.clear();
    }
    in->clear();
    butil::return_object<TensorVector>(in);

    for (size_t i = 0; i < out->size(); ++i) {
      (*out)[i].shape.clear();
    }
    out->clear();
    butil::return_object<TensorVector>(out);
  }

  return 0;
}

DEFINE_OP(GeneralModelOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu