general_model.cpp 5.0 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <fstream>
#include "general_model.h"
#include "sdk-cpp/builtin_format.pb.h"
#include "sdk-cpp/include/common.h"
#include "sdk-cpp/include/predictor_sdk.h"

using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

namespace baidu {
namespace paddle_serving {
namespace general_model {

G
guru4elephant 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
void PredictorClient::init(const std::string & conf_file) {
  _conf_file = conf_file;
  std::ifstream fin(conf_file);
  if (!fin) {
    LOG(ERROR) << "Your inference conf file can not be found";
    exit(-1);
  }
  _feed_name_to_idx.clear();
  _fetch_name_to_idx.clear();
  _shape.clear();
  int feed_var_num = 0;
  int fetch_var_num = 0;
  fin >> feed_var_num >> fetch_var_num;
  std::string name;
  std::string fetch_var_name;
  int shape_num = 0;
  int dim = 0;
  for (int i = 0; i < feed_var_num; ++i) {
    fin >> name;
    _feed_name_to_idx[name] = i;
    fin >> shape_num;
    std::vector<int> tmp_feed_shape;
    for (int j = 0; j < shape_num; ++j) {
      fin >> dim;
      tmp_feed_shape.push_back(dim);
    }
    _shape.push_back(tmp_feed_shape);
  }

  for (int i = 0; i < fetch_var_num; ++i) {
    fin >> name;
    fin >> fetch_var_name;
    _fetch_name_to_idx[name] = i;
    _fetch_name_to_var_name[name] = fetch_var_name;
  }
}

void PredictorClient::set_predictor_conf(
    const std::string & conf_path,
    const std::string & conf_file) {
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
G
guru4elephant 已提交
73 74
}

G
guru4elephant 已提交
75 76 77 78 79 80 81 82 83
int PredictorClient::create_predictor() {
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
  _api.thrd_initialize();
}

void PredictorClient::predict(
G
guru4elephant 已提交
84 85 86 87
    const std::vector<std::vector<float> > & float_feed,
    const std::vector<std::string> & float_feed_name,
    const std::vector<std::vector<int64_t> > & int_feed,
    const std::vector<std::string> & int_feed_name,
G
guru4elephant 已提交
88 89 90 91 92
    const std::vector<std::string> & fetch_name,
    FetchedMap * fetch_result) {

  _api.thrd_clear();
  _predictor = _api.fetch_predictor("general_model");
G
guru4elephant 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  Request req;
  std::vector<Tensor *> tensor_vec;
  FeedInst * inst = req.add_insts();
  for (auto & name : float_feed_name) {
    tensor_vec.push_back(inst->add_tensor_array());
  }

  for (auto & name : int_feed_name) {
    tensor_vec.push_back(inst->add_tensor_array());
  }

  int vec_idx = 0;
  for (auto & name : float_feed_name) {
    int idx = _feed_name_to_idx[name];
    Tensor * tensor = tensor_vec[idx];
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(1);
G
guru4elephant 已提交
112 113 114 115
    for (int j = 0; j < float_feed[vec_idx].size(); ++j) {
      tensor->add_data(
          (char *)(&(float_feed[vec_idx][j])), sizeof(float));
    }
G
guru4elephant 已提交
116 117 118 119 120 121 122 123 124 125 126
    vec_idx++;
  }

  vec_idx = 0;
  for (auto & name : int_feed_name) {
    int idx = _feed_name_to_idx[name];
    Tensor * tensor = tensor_vec[idx];
    for (int j = 0; j < _shape[idx].size(); ++j) {
      tensor->add_shape(_shape[idx][j]);
    }
    tensor->set_elem_type(0);
G
guru4elephant 已提交
127 128 129 130 131
    for (int j = 0; j < int_feed[vec_idx].size(); ++j) {
      tensor->add_data(
          (char *)(&(int_feed[vec_idx][j])), sizeof(int64_t));
    }
    vec_idx++;
G
guru4elephant 已提交
132 133
  }

G
guru4elephant 已提交
134
  // std::map<std::string, std::vector<float> > result;
G
guru4elephant 已提交
135
  Response res;
G
guru4elephant 已提交
136 137

  res.Clear();
G
guru4elephant 已提交
138
  if (_predictor->inference(&req, &res) != 0) {
G
guru4elephant 已提交
139 140 141
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    exit(-1);
  } else {
G
guru4elephant 已提交
142 143
    for (auto & name : fetch_name) {
      int idx = _fetch_name_to_idx[name];
G
guru4elephant 已提交
144 145 146 147 148 149
      int len = res.insts(0).tensor_array(idx).data_size();
      (*fetch_result)[name].resize(len);
      for (int i = 0; i < len; ++i) {
        (*fetch_result)[name][i] = *(const float *)
                    res.insts(0).tensor_array(idx).data(i).c_str();
      }
G
guru4elephant 已提交
150 151 152
    }
  }

G
guru4elephant 已提交
153
  return;
G
guru4elephant 已提交
154 155
}

G
guru4elephant 已提交
156
void PredictorClient::predict_with_profile(
G
guru4elephant 已提交
157 158 159 160
    const std::vector<std::vector<float> > & float_feed,
    const std::vector<std::string> & float_feed_name,
    const std::vector<std::vector<int64_t> > & int_feed,
    const std::vector<std::string> & int_feed_name,
G
guru4elephant 已提交
161 162 163
    const std::vector<std::string> & fetch_name,
    FetchedMap * fetch_result) {
  return;
G
guru4elephant 已提交
164 165 166 167 168
}

}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu