benchmark.py 4.0 KB
Newer Older
M
MRXLT 已提交
1 2
# -*- coding: utf-8 -*-
#
3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
# pylint: disable=doc-string-missing
17

M
MRXLT 已提交
18 19
from __future__ import unicode_literals, absolute_import
import os
20
import sys
M
MRXLT 已提交
21
import time
M
MRXLT 已提交
22 23 24
import requests
import json
import base64
25 26 27
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
M
MRXLT 已提交
28 29
from paddle_serving_app.reader import Sequential, URL2Image, Resize
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
30 31 32

args = benchmark_args()

M
MRXLT 已提交
33 34 35 36 37
seq_preprocess = Sequential([
    URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
    Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])

38 39

def single_func(idx, resource):
M
MRXLT 已提交
40 41 42 43 44 45
    file_list = []
    for file_name in os.listdir("./image_data/n01440764"):
        file_list.append(file_name)
    img_list = []
    for i in range(1000):
        img_list.append(open("./image_data/n01440764/" + file_list[i]).read())
M
MRXLT 已提交
46 47 48 49
    profile_flags = False
    if "FLAGS_profile_client" in os.environ and os.environ[
            "FLAGS_profile_client"]:
        profile_flags = True
50 51 52 53 54
    if args.request == "rpc":
        reader = ImageReader()
        fetch = ["score"]
        client = Client()
        client.load_client_config(args.model)
B
barrierye 已提交
55
        client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
56 57
        start = time.time()
        for i in range(1000):
M
MRXLT 已提交
58 59
            if args.batch_size >= 1:
                feed_batch = []
M
MRXLT 已提交
60
                i_start = time.time()
M
MRXLT 已提交
61
                for bi in range(args.batch_size):
M
MRXLT 已提交
62
                    img = seq_preprocess(img_list[i])
M
MRXLT 已提交
63
                    feed_batch.append({"image": img})
M
MRXLT 已提交
64 65 66 67 68 69 70
                i_end = time.time()
                if profile_flags:
                    print("PROFILE\tpid:{}\timage_pre_0:{} image_pre_1:{}".
                          format(os.getpid(),
                                 int(round(i_start * 1000000)),
                                 int(round(i_end * 1000000))))

M
MRXLT 已提交
71 72 73 74 75
                result = client.predict(feed=feed_batch, fetch=fetch)
            else:
                print("unsupport batch size {}".format(args.batch_size))

    elif args.request == "http":
M
MRXLT 已提交
76 77 78
        py_version = 2
        server = "http://" + resource["endpoint"][idx % len(resource[
            "endpoint"])] + "/image/prediction"
79
        start = time.time()
M
MRXLT 已提交
80 81 82 83 84 85 86 87 88 89
        for i in range(1000):
            if py_version == 2:
                image = base64.b64encode(
                    open("./image_data/n01440764/" + file_list[i]).read())
            else:
                image = base64.b64encode(open(image_path, "rb").read()).decode(
                    "utf-8")
            req = json.dumps({"feed": [{"image": image}], "fetch": ["score"]})
            r = requests.post(
                server, data=req, headers={"Content-Type": "application/json"})
M
MRXLT 已提交
90
    end = time.time()
91 92 93
    return [[end - start]]


M
MRXLT 已提交
94
if __name__ == '__main__':
95
    multi_thread_runner = MultiThreadRunner()
M
MRXLT 已提交
96
    endpoint_list = ["127.0.0.1:9393"]
M
MRXLT 已提交
97
    #endpoint_list = endpoint_list + endpoint_list + endpoint_list
98 99
    result = multi_thread_runner.run(single_func, args.thread,
                                     {"endpoint": endpoint_list})
M
MRXLT 已提交
100
    #result = single_func(0, {"endpoint": endpoint_list})
M
MRXLT 已提交
101 102 103 104 105
    avg_cost = 0
    for i in range(args.thread):
        avg_cost += result[0][i]
    avg_cost = avg_cost / args.thread
    print("average total cost {} s.".format(avg_cost))