fluid_cpu_engine.h 15.5 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
wangguibao 已提交
15 16 17
#pragma once

#include <pthread.h>
W
wangguibao 已提交
18 19
#include <fstream>
#include <map>
W
wangguibao 已提交
20 21
#include <string>
#include <vector>
W
wangguibao 已提交
22 23
#include "configure/include/configure_parser.h"
#include "configure/inferencer_configure.pb.h"
W
wangguibao 已提交
24
#include "paddle_inference_api.h"  // NOLINT
W
wangguibao 已提交
25
#include "predictor/framework/infer.h"
W
wangguibao 已提交
26 27 28 29 30

namespace baidu {
namespace paddle_serving {
namespace fluid_cpu {

31 32
using configure::SigmoidConf;

W
wangguibao 已提交
33
class AutoLock {
W
wangguibao 已提交
34 35 36 37
 public:
  explicit AutoLock(pthread_mutex_t& mutex) : _mut(mutex) {
    pthread_mutex_lock(&mutex);
  }
W
wangguibao 已提交
38

W
wangguibao 已提交
39
  ~AutoLock() { pthread_mutex_unlock(&_mut); }
W
wangguibao 已提交
40

W
wangguibao 已提交
41 42
 private:
  pthread_mutex_t& _mut;
W
wangguibao 已提交
43 44 45
};

class GlobalPaddleCreateMutex {
W
wangguibao 已提交
46 47
 public:
  pthread_mutex_t& mutex() { return _mut; }
W
wangguibao 已提交
48

W
wangguibao 已提交
49 50 51 52
  static pthread_mutex_t& instance() {
    static GlobalPaddleCreateMutex gmutex;
    return gmutex.mutex();
  }
W
wangguibao 已提交
53

W
wangguibao 已提交
54 55
 private:
  GlobalPaddleCreateMutex() { pthread_mutex_init(&_mut, NULL); }
W
wangguibao 已提交
56

W
wangguibao 已提交
57
  pthread_mutex_t _mut;
W
wangguibao 已提交
58 59 60
};

class GlobalSigmoidCreateMutex {
W
wangguibao 已提交
61 62 63
 public:
  pthread_mutex_t& mutex() { return _mut; }
  static pthread_mutex_t& instance() {
W
wangguibao 已提交
64
    static GlobalSigmoidCreateMutex gmutex;
W
wangguibao 已提交
65 66
    return gmutex.mutex();
  }
W
wangguibao 已提交
67

W
wangguibao 已提交
68 69 70 71
 private:
  GlobalSigmoidCreateMutex() { pthread_mutex_init(&_mut, NULL); }

  pthread_mutex_t _mut;
W
wangguibao 已提交
72 73 74 75
};

// data interface
class FluidFamilyCore {
W
wangguibao 已提交
76 77 78 79
 public:
  virtual ~FluidFamilyCore() {}
  virtual bool Run(const void* in_data, void* out_data) {
    if (!_core->Run(*(std::vector<paddle::PaddleTensor>*)in_data,
W
wangguibao 已提交
80
                    (std::vector<paddle::PaddleTensor>*)out_data)) {
W
wangguibao 已提交
81 82
      LOG(ERROR) << "Failed call Run with paddle predictor";
      return false;
W
wangguibao 已提交
83 84
    }

W
wangguibao 已提交
85 86 87
    return true;
  }

88
  virtual int create(const predictor::InferEngineCreationParams& params) = 0;
W
wangguibao 已提交
89 90 91 92 93 94 95 96 97 98 99 100

  virtual int clone(void* origin_core) {
    if (origin_core == NULL) {
      LOG(ERROR) << "origin paddle Predictor is null.";
      return -1;
    }
    paddle::PaddlePredictor* p_predictor =
        (paddle::PaddlePredictor*)origin_core;
    _core = p_predictor->Clone();
    if (_core.get() == NULL) {
      LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
      return -1;
W
wangguibao 已提交
101
    }
W
wangguibao 已提交
102 103
    return 0;
  }
W
wangguibao 已提交
104

W
wangguibao 已提交
105
  virtual void* get() { return _core.get(); }
W
wangguibao 已提交
106

W
wangguibao 已提交
107 108
 protected:
  std::unique_ptr<paddle::PaddlePredictor> _core;
W
wangguibao 已提交
109 110 111 112
};

// infer interface
class FluidCpuAnalysisCore : public FluidFamilyCore {
W
wangguibao 已提交
113
 public:
114 115
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
116 117 118 119
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
W
wangguibao 已提交
120
    }
W
wangguibao 已提交
121

W
wangguibao 已提交
122 123 124 125 126
    paddle::AnalysisConfig analysis_config;
    analysis_config.SetParamsFile(data_path + "/__params__");
    analysis_config.SetProgFile(data_path + "/__model__");
    analysis_config.DisableGpu();
    analysis_config.SetCpuMathLibraryNumThreads(1);
127 128

    if (params.enable_memory_optimization()) {
W
wangguibao 已提交
129
      analysis_config.EnableMemoryOptim();
130 131
    }

W
wangguibao 已提交
132
    analysis_config.SwitchSpecifyInputNames(true);
W
wangguibao 已提交
133
    AutoLock lock(GlobalPaddleCreateMutex::instance());
W
wangguibao 已提交
134 135
    _core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
W
wangguibao 已提交
136 137 138 139 140 141 142 143
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
144 145 146
};

class FluidCpuNativeCore : public FluidFamilyCore {
W
wangguibao 已提交
147
 public:
148 149
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
150 151 152 153
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
W
wangguibao 已提交
154
    }
W
wangguibao 已提交
155 156 157 158 159 160

    paddle::NativeConfig native_config;
    native_config.param_file = data_path + "/__params__";
    native_config.prog_file = data_path + "/__model__";
    native_config.use_gpu = false;
    native_config.device = 0;
W
Wang Guibao 已提交
161 162
    native_config.fraction_of_gpu_memory = 0;

W
wangguibao 已提交
163 164 165 166 167 168 169 170 171 172 173 174
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                          paddle::PaddleEngineKind::kNative>(
        native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
175 176 177
};

class FluidCpuAnalysisDirCore : public FluidFamilyCore {
W
wangguibao 已提交
178
 public:
179 180
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
181 182 183 184
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
W
wangguibao 已提交
185 186
    }

W
wangguibao 已提交
187 188 189 190 191
    paddle::AnalysisConfig analysis_config;
    analysis_config.SetModel(data_path);
    analysis_config.DisableGpu();
    analysis_config.SwitchSpecifyInputNames(true);
    analysis_config.SetCpuMathLibraryNumThreads(1);
192 193

    if (params.enable_memory_optimization()) {
W
wangguibao 已提交
194
      analysis_config.EnableMemoryOptim();
195 196
    }

W
wangguibao 已提交
197
    AutoLock lock(GlobalPaddleCreateMutex::instance());
W
wangguibao 已提交
198 199
    _core =
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
W
wangguibao 已提交
200 201 202 203 204 205 206 207
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
208 209 210
};

class FluidCpuNativeDirCore : public FluidFamilyCore {
W
wangguibao 已提交
211
 public:
212 213
  int create(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
214 215 216 217 218 219 220 221 222 223
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.model_dir = data_path;
    native_config.use_gpu = false;
    native_config.device = 0;
W
Wang Guibao 已提交
224
    native_config.fraction_of_gpu_memory = 0;
W
wangguibao 已提交
225 226 227 228 229 230 231
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core = paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                          paddle::PaddleEngineKind::kNative>(
        native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
W
wangguibao 已提交
232 233
    }

W
wangguibao 已提交
234 235 236
    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
237 238 239
};

class Parameter {
W
wangguibao 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
 public:
  Parameter() : _row(0), _col(0), _params(NULL) {}
  ~Parameter() {
    LOG(INFO) << "before destroy Parameter, file_name[" << _file_name << "]";
    destroy();
  }

  int init(int row, int col, const char* file_name) {
    destroy();
    _file_name = file_name;
    _row = row;
    _col = col;
    _params = reinterpret_cast<float*>(malloc(_row * _col * sizeof(float)));
    if (_params == NULL) {
      LOG(ERROR) << "Load " << _file_name << " malloc error.";
      return -1;
W
wangguibao 已提交
256
    }
W
wangguibao 已提交
257 258 259 260 261 262 263 264 265 266
    LOG(WARNING) << "Load parameter file[" << _file_name << "] success.";
    return 0;
  }

  void destroy() {
    _row = 0;
    _col = 0;
    if (_params != NULL) {
      free(_params);
      _params = NULL;
W
wangguibao 已提交
267
    }
W
wangguibao 已提交
268
  }
W
wangguibao 已提交
269

W
wangguibao 已提交
270 271 272 273
  int load() {
    if (_params == NULL || _row <= 0 || _col <= 0) {
      LOG(ERROR) << "load parameter error [not inited].";
      return -1;
W
wangguibao 已提交
274 275
    }

W
wangguibao 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    FILE* fs = fopen(_file_name.c_str(), "rb");
    if (fs == NULL) {
      LOG(ERROR) << "load " << _file_name << " fopen error.";
      return -1;
    }
    static const uint32_t MODEL_FILE_HEAD_LEN = 16;
    char head[MODEL_FILE_HEAD_LEN] = {0};
    if (fread(head, 1, MODEL_FILE_HEAD_LEN, fs) != MODEL_FILE_HEAD_LEN) {
      destroy();
      LOG(ERROR) << "Load " << _file_name << " read head error.";
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
W
wangguibao 已提交
291 292
    }

W
wangguibao 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    uint32_t matrix_size = _row * _col;
    if (matrix_size == fread(_params, sizeof(float), matrix_size, fs)) {
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      LOG(INFO) << "load " << _file_name << " read ok.";
      return 0;
    } else {
      LOG(ERROR) << "load " << _file_name << " read error.";
      destroy();
      if (fs != NULL) {
        fclose(fs);
        fs = NULL;
      }
      return -1;
    }
    return 0;
  }

 public:
  std::string _file_name;
  int _row;
  int _col;
  float* _params;
W
wangguibao 已提交
318 319 320
};

class SigmoidModel {
W
wangguibao 已提交
321 322 323 324 325 326 327 328 329 330
 public:
  ~SigmoidModel() {}
  int load(const char* sigmoid_w_file,
           const char* sigmoid_b_file,
           float exp_max,
           float exp_min) {
    AutoLock lock(GlobalSigmoidCreateMutex::instance());
    if (0 != _sigmoid_w.init(2, 1, sigmoid_w_file) || 0 != _sigmoid_w.load()) {
      LOG(ERROR) << "load params sigmoid_w failed.";
      return -1;
W
wangguibao 已提交
331
    }
W
wangguibao 已提交
332 333 334 335 336
    LOG(WARNING) << "load sigmoid_w [" << _sigmoid_w._params[0] << "] ["
                 << _sigmoid_w._params[1] << "].";
    if (0 != _sigmoid_b.init(2, 1, sigmoid_b_file) || 0 != _sigmoid_b.load()) {
      LOG(ERROR) << "load params sigmoid_b failed.";
      return -1;
W
wangguibao 已提交
337
    }
W
wangguibao 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    LOG(WARNING) << "load sigmoid_b [" << _sigmoid_b._params[0] << "] ["
                 << _sigmoid_b._params[1] << "].";
    _exp_max_input = exp_max;
    _exp_min_input = exp_min;
    return 0;
  }

  int softmax(float x, double& o) {  // NOLINT
    float _y0 = x * _sigmoid_w._params[0] + _sigmoid_b._params[0];
    float _y1 = x * _sigmoid_w._params[1] + _sigmoid_b._params[1];
    _y0 = (_y0 > _exp_max_input)
              ? _exp_max_input
              : ((_y0 < _exp_min_input) ? _exp_min_input : _y0);
    _y1 = (_y1 > _exp_max_input)
              ? _exp_max_input
              : ((_y1 < _exp_min_input) ? _exp_min_input : _y1);
    o = 1.0f / (1.0f + exp(_y0 - _y1));
    return 0;
  }

 public:
  Parameter _sigmoid_w;
  Parameter _sigmoid_b;
  float _exp_max_input;
  float _exp_min_input;
W
wangguibao 已提交
363 364 365
};

class SigmoidFluidModel {
W
wangguibao 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
 public:
  int softmax(float x, double& o) {  // NOLINT
    return _sigmoid_core->softmax(x, o);
  }  // NOLINT

  std::unique_ptr<SigmoidFluidModel> Clone() {
    std::unique_ptr<SigmoidFluidModel> clone_model;
    clone_model.reset(new SigmoidFluidModel());
    clone_model->_sigmoid_core = _sigmoid_core;
    clone_model->_fluid_core = _fluid_core->Clone();
    return std::move(clone_model);
  }

 public:
  std::unique_ptr<paddle::PaddlePredictor> _fluid_core;
  std::shared_ptr<SigmoidModel> _sigmoid_core;
W
wangguibao 已提交
382 383 384
};

class FluidCpuWithSigmoidCore : public FluidFamilyCore {
W
wangguibao 已提交
385 386 387 388
 public:
  virtual ~FluidCpuWithSigmoidCore() {}

 public:
389 390
  int create(const predictor::InferEngineCreationParams& params) {
    std::string model_path = params.get_path();
W
wangguibao 已提交
391 392 393 394 395 396 397
    size_t pos = model_path.find_last_of("/\\");
    std::string conf_path = model_path.substr(0, pos);
    std::string conf_file = model_path.substr(pos);
    configure::SigmoidConf conf;
    if (configure::read_proto_conf(conf_path, conf_file, &conf) != 0) {
      LOG(ERROR) << "failed load model path: " << model_path;
      return -1;
W
wangguibao 已提交
398 399
    }

W
wangguibao 已提交
400
    _core.reset(new SigmoidFluidModel);
W
wangguibao 已提交
401

W
wangguibao 已提交
402
    std::string fluid_model_data_path = conf.dnn_model_path();
403 404 405
    predictor::InferEngineCreationParams new_params(params);
    new_params.set_path(fluid_model_data_path);
    int ret = load_fluid_model(new_params);
W
wangguibao 已提交
406 407 408
    if (ret < 0) {
      LOG(ERROR) << "fail to load fluid model.";
      return -1;
W
wangguibao 已提交
409
    }
W
wangguibao 已提交
410 411 412 413 414 415 416 417 418 419 420 421
    const char* sigmoid_w_file = conf.sigmoid_w_file().c_str();
    const char* sigmoid_b_file = conf.sigmoid_b_file().c_str();
    float exp_max = conf.exp_max_input();
    float exp_min = conf.exp_min_input();
    _core->_sigmoid_core.reset(new SigmoidModel);
    LOG(INFO) << "create sigmoid core[" << _core->_sigmoid_core.get()
              << "], use count[" << _core->_sigmoid_core.use_count() << "].";
    ret = _core->_sigmoid_core->load(
        sigmoid_w_file, sigmoid_b_file, exp_max, exp_min);
    if (ret < 0) {
      LOG(ERROR) << "fail to load sigmoid model.";
      return -1;
W
wangguibao 已提交
422
    }
W
wangguibao 已提交
423 424 425 426 427 428 429 430 431
    return 0;
  }

  virtual bool Run(const void* in_data, void* out_data) {
    if (!_core->_fluid_core->Run(
            *(std::vector<paddle::PaddleTensor>*)in_data,
            (std::vector<paddle::PaddleTensor>*)out_data)) {
      LOG(ERROR) << "Failed call Run with paddle predictor";
      return false;
W
wangguibao 已提交
432 433
    }

W
wangguibao 已提交
434 435
    return true;
  }
W
wangguibao 已提交
436

W
wangguibao 已提交
437 438 439 440
  virtual int clone(SigmoidFluidModel* origin_core) {
    if (origin_core == NULL) {
      LOG(ERROR) << "origin paddle Predictor is null.";
      return -1;
W
wangguibao 已提交
441
    }
W
wangguibao 已提交
442 443 444 445 446 447 448 449 450 451 452 453
    _core = origin_core->Clone();
    if (_core.get() == NULL) {
      LOG(ERROR) << "fail to clone paddle predictor: " << origin_core;
      return -1;
    }
    LOG(INFO) << "clone sigmoid core[" << _core->_sigmoid_core.get()
              << "] use count[" << _core->_sigmoid_core.use_count() << "].";
    return 0;
  }

  virtual SigmoidFluidModel* get() { return _core.get(); }

454 455
  virtual int load_fluid_model(
      const predictor::InferEngineCreationParams& params) = 0;
W
wangguibao 已提交
456

W
wangguibao 已提交
457 458 459 460 461 462
  int softmax(float x, double& o) {  // NOLINT
    return _core->_sigmoid_core->softmax(x, o);
  }

 protected:
  std::unique_ptr<SigmoidFluidModel> _core;
W
wangguibao 已提交
463 464 465
};

class FluidCpuNativeDirWithSigmoidCore : public FluidCpuWithSigmoidCore {
W
wangguibao 已提交
466
 public:
467 468
  int load_fluid_model(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
469 470 471 472 473 474 475 476 477 478
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
    }

    paddle::NativeConfig native_config;
    native_config.model_dir = data_path;
    native_config.use_gpu = false;
    native_config.device = 0;
W
Wang Guibao 已提交
479
    native_config.fraction_of_gpu_memory = 0;
W
wangguibao 已提交
480 481 482 483 484 485 486 487
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core->_fluid_core =
        paddle::CreatePaddlePredictor<paddle::NativeConfig,
                                      paddle::PaddleEngineKind::kNative>(
            native_config);
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
W
wangguibao 已提交
488 489
    }

W
wangguibao 已提交
490 491 492
    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
493 494 495
};

class FluidCpuAnalysisDirWithSigmoidCore : public FluidCpuWithSigmoidCore {
W
wangguibao 已提交
496
 public:
497 498
  int load_fluid_model(const predictor::InferEngineCreationParams& params) {
    std::string data_path = params.get_path();
W
wangguibao 已提交
499 500 501 502
    if (access(data_path.c_str(), F_OK) == -1) {
      LOG(ERROR) << "create paddle predictor failed, path not exits: "
                 << data_path;
      return -1;
W
wangguibao 已提交
503
    }
W
wangguibao 已提交
504

W
wangguibao 已提交
505 506 507 508 509
    paddle::AnalysisConfig analysis_config;
    analysis_config.SetModel(data_path);
    analysis_config.DisableGpu();
    analysis_config.SwitchSpecifyInputNames(true);
    analysis_config.SetCpuMathLibraryNumThreads(1);
510 511

    if (params.enable_memory_optimization()) {
W
wangguibao 已提交
512
      analysis_config.EnableMemoryOptim();
513 514
    }

W
wangguibao 已提交
515 516
    AutoLock lock(GlobalPaddleCreateMutex::instance());
    _core->_fluid_core =
W
wangguibao 已提交
517
        paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
W
wangguibao 已提交
518 519 520 521 522 523 524 525
    if (NULL == _core.get()) {
      LOG(ERROR) << "create paddle predictor failed, path: " << data_path;
      return -1;
    }

    LOG(WARNING) << "create paddle predictor sucess, path: " << data_path;
    return 0;
  }
W
wangguibao 已提交
526 527
};

W
wangguibao 已提交
528 529 530
}  // namespace fluid_cpu
}  // namespace paddle_serving
}  // namespace baidu