test_client.py 1.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
17 18 19
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
20 21 22 23 24 25 26

preprocess = DetectionSequential([
        DetectionFile2Image(),
        DetectionResize(
        (608, 608), False, interpolation=2), 
        DetectionNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
        DetectionTranspose((2,0,1)),
27 28
])

29
postprocess = RCNNPostprocess("label_list.txt", "output")
30 31 32 33 34
client = Client()

client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9494'])

35
im, im_info = preprocess(sys.argv[1])
36 37 38 39
fetch_map = client.predict(
    feed={
        "image": im,
        "im_shape": np.array(list(im.shape[1:])).reshape(-1),
40
        "scale_factor": im_info['scale_factor'],
41 42 43 44 45
    },
    fetch=["save_infer_model/scale_0.tmp_1"],
    batch=False)
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)