client.cpp 17.0 KB
Newer Older
S
ShiningZhang 已提交
1
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
S
ShiningZhang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "core/general-client/include/client.h"
#include "core/sdk-cpp/include/common.h"
17
#include "core/sdk-cpp/general_model_service.pb.h"
S
ShiningZhang 已提交
18 19 20 21 22

namespace baidu {
namespace paddle_serving {
namespace client {
using configure::GeneralModelConfig;
23 24 25
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
S
ShiningZhang 已提交
26 27
// paddle inference 2.1 support: FLOAT32, INT64, INT32, UINT8, INT8
// will support: FLOAT16
S
ShiningZhang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40
enum ProtoDataType {
  P_INT64 = 0,
  P_FLOAT32,
  P_INT32,
  P_FP64,
  P_INT16,
  P_FP16,
  P_BF16,
  P_UINT8,
  P_INT8,
  P_BOOL,
  P_COMPLEX64,
  P_COMPLEX128,
S
ShiningZhang 已提交
41
  P_STRING = 20,
S
ShiningZhang 已提交
42
};
S
ShiningZhang 已提交
43 44 45 46 47 48 49 50

int ServingClient::init(const std::vector<std::string>& client_conf,
           const std::string server_port) {
  if (load_client_config(client_conf) != 0) {
    LOG(ERROR) << "Failed to load client config";
    return -1;
  }

S
ShiningZhang 已提交
51
  // pure virtual func, subclass implementation
S
ShiningZhang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  if (connect(server_port) != 0) {
    LOG(ERROR) << "Failed to connect";
    return -1;
  }

  return 0;
}

int ServingClient::load_client_config(const std::vector<std::string> &conf_file) {
  try {
    GeneralModelConfig model_config;
    if (configure::read_proto_conf(conf_file[0].c_str(), &model_config) != 0) {
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file[0];
      return -1;
    }

    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    _feed_name.clear();
    VLOG(2) << "feed var num: " << feed_var_num;
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
      VLOG(2) << "feed [" << i << "]"
              << " name: " << model_config.feed_var(i).name();
      _feed_name.push_back(model_config.feed_var(i).name());
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
      std::vector<int> tmp_feed_shape;
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
      }
      _type.push_back(model_config.feed_var(i).feed_type());
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
      _shape.push_back(tmp_feed_shape);
    }

    if (conf_file.size() > 1) {
      model_config.Clear();
      if (configure::read_proto_conf(conf_file[conf_file.size() - 1].c_str(),
                                     &model_config) != 0) {
        LOG(ERROR) << "Failed to load general model config"
                   << ", file path: " << conf_file[conf_file.size() - 1];
        return -1;
      }
    }
    int fetch_var_num = model_config.fetch_var_size();
    VLOG(2) << "fetch_var_num: " << fetch_var_num;
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
    }
  } catch (std::exception &e) {
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
  }
  return 0;
}

void PredictorData::add_float_data(const std::vector<float>& data,
                                    const std::string& name,
                                    const std::vector<int>& shape,
126 127
                                    const std::vector<int>& lod,
                                    const int datatype) {
S
ShiningZhang 已提交
128 129 130
  _float_data_map[name] = data;
  _shape_map[name] = shape;
  _lod_map[name] = lod;
131
  _datatype_map[name] = datatype;
S
ShiningZhang 已提交
132 133 134 135 136
}

void PredictorData::add_int64_data(const std::vector<int64_t>& data,
                                    const std::string& name,
                                    const std::vector<int>& shape,
137 138
                                    const std::vector<int>& lod,
                                    const int datatype) {
S
ShiningZhang 已提交
139 140 141
  _int64_data_map[name] = data;
  _shape_map[name] = shape;
  _lod_map[name] = lod;
142
  _datatype_map[name] = datatype;
S
ShiningZhang 已提交
143 144 145 146 147
}

void PredictorData::add_int32_data(const std::vector<int32_t>& data,
                                    const std::string& name,
                                    const std::vector<int>& shape,
148 149
                                    const std::vector<int>& lod,
                                    const int datatype) {
S
ShiningZhang 已提交
150 151 152
  _int32_data_map[name] = data;
  _shape_map[name] = shape;
  _lod_map[name] = lod;
153
  _datatype_map[name] = datatype;
S
ShiningZhang 已提交
154 155 156 157 158
}

void PredictorData::add_string_data(const std::string& data,
                                    const std::string& name,
                                    const std::vector<int>& shape,
159 160
                                    const std::vector<int>& lod,
                                    const int datatype) {
S
ShiningZhang 已提交
161 162 163
  _string_data_map[name] = data;
  _shape_map[name] = shape;
  _lod_map[name] = lod;
164 165 166 167 168 169 170 171 172
  _datatype_map[name] = datatype;
}

int PredictorData::get_datatype(std::string name) const {
  std::map<std::string, int>::const_iterator it = _datatype_map.find(name);
  if (it != _datatype_map.end()) {
    return it->second;
  }
  return 0;
S
ShiningZhang 已提交
173 174
}

S
ShiningZhang 已提交
175 176 177 178
void PredictorData::set_datatype(std::string name, int type) {
  _datatype_map[name] = type;
}

179 180 181 182 183 184 185 186 187
std::string PredictorData::print() {
  std::string res;
  res.append(map2string<std::string, float>(_float_data_map));
  res.append(map2string<std::string, int64_t>(_int64_data_map));
  res.append(map2string<std::string, int32_t>(_int32_data_map));
  res.append(map2string<std::string, std::string>(_string_data_map));
  return res;
}

S
ShiningZhang 已提交
188
int PredictorInputs::GenProto(const PredictorInputs& inputs,
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                              const std::map<std::string, int>& feed_name_to_idx,
                              const std::vector<std::string>& feed_name,
                              Request& req) {
  const std::map<std::string, std::vector<float>>& float_feed_map = inputs.float_data_map();
  const std::map<std::string, std::vector<int64_t>>& int64_feed_map = inputs.int64_data_map();
  const std::map<std::string, std::vector<int32_t>>& int32_feed_map = inputs.int_data_map();
  const std::map<std::string, std::string>& string_feed_map = inputs.string_data_map();
  const std::map<std::string, std::vector<int>>& shape_map = inputs.shape_map();
  const std::map<std::string, std::vector<int>>& lod_map = inputs.lod_map();

  VLOG(2) << "float feed name size: " << float_feed_map.size();
  VLOG(2) << "int feed name size: " << int64_feed_map.size();
  VLOG(2) << "string feed name size: " << string_feed_map.size();

  // batch is already in Tensor.

  for (std::map<std::string, std::vector<float>>::const_iterator iter = float_feed_map.begin();
        iter != float_feed_map.end();
        ++iter) {
    std::string name = iter->first;
    const std::vector<float>& float_data = iter->second;
    const std::vector<int>& float_shape = shape_map.at(name);
    const std::vector<int>& float_lod = lod_map.at(name);
212 213
    // default datatype = P_FLOAT32
    int datatype = inputs.get_datatype(name);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    std::map<std::string, int>::const_iterator feed_name_it = feed_name_to_idx.find(name);
    if (feed_name_it == feed_name_to_idx.end()) {
      LOG(ERROR) << "Do not find [" << name << "] in feed_map!";
      return -1;
    }
    int idx = feed_name_to_idx.at(name);
    VLOG(2) << "prepare float feed " << name << " idx " << idx;
    int total_number = float_data.size();
    Tensor *tensor = req.add_tensor();

    VLOG(2) << "prepare float feed " << name << " shape size "
            << float_shape.size();
    for (uint32_t j = 0; j < float_shape.size(); ++j) {
      tensor->add_shape(float_shape[j]);
    }
    for (uint32_t j = 0; j < float_lod.size(); ++j) {
      tensor->add_lod(float_lod[j]);
    }
232
    tensor->set_elem_type(datatype);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    tensor->set_name(feed_name[idx]);
    tensor->set_alias_name(name);

    tensor->mutable_float_data()->Resize(total_number, 0);
    memcpy(tensor->mutable_float_data()->mutable_data(), float_data.data(), total_number * sizeof(float));
  }

  for (std::map<std::string, std::vector<int64_t>>::const_iterator iter = int64_feed_map.begin();
        iter != int64_feed_map.end();
        ++iter) {
    std::string name = iter->first;
    const std::vector<int64_t>& int64_data = iter->second;
    const std::vector<int>& int64_shape = shape_map.at(name);
    const std::vector<int>& int64_lod = lod_map.at(name);
248 249
    // default datatype = P_INT64
    int datatype = inputs.get_datatype(name);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    std::map<std::string, int>::const_iterator feed_name_it = feed_name_to_idx.find(name);
    if (feed_name_it == feed_name_to_idx.end()) {
      LOG(ERROR) << "Do not find [" << name << "] in feed_map!";
      return -1;
    }
    int idx = feed_name_to_idx.at(name);
    Tensor *tensor = req.add_tensor();
    int total_number = int64_data.size();

    for (uint32_t j = 0; j < int64_shape.size(); ++j) {
      tensor->add_shape(int64_shape[j]);
    }
    for (uint32_t j = 0; j < int64_lod.size(); ++j) {
      tensor->add_lod(int64_lod[j]);
    }
265
    tensor->set_elem_type(datatype);
266 267 268 269 270 271 272 273 274 275 276 277 278 279
    tensor->set_name(feed_name[idx]);
    tensor->set_alias_name(name);

    tensor->mutable_int64_data()->Resize(total_number, 0);
    memcpy(tensor->mutable_int64_data()->mutable_data(), int64_data.data(), total_number * sizeof(int64_t));
  }

  for (std::map<std::string, std::vector<int32_t>>::const_iterator iter = int32_feed_map.begin();
        iter != int32_feed_map.end();
        ++iter) {
    std::string name = iter->first;
    const std::vector<int32_t>& int32_data = iter->second;
    const std::vector<int>& int32_shape = shape_map.at(name);
    const std::vector<int>& int32_lod = lod_map.at(name);
280 281
    // default datatype = P_INT32
    int datatype = inputs.get_datatype(name);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    std::map<std::string, int>::const_iterator feed_name_it = feed_name_to_idx.find(name);
    if (feed_name_it == feed_name_to_idx.end()) {
      LOG(ERROR) << "Do not find [" << name << "] in feed_map!";
      return -1;
    }
    int idx = feed_name_to_idx.at(name);
    Tensor *tensor = req.add_tensor();
    int total_number = int32_data.size();

    for (uint32_t j = 0; j < int32_shape.size(); ++j) {
      tensor->add_shape(int32_shape[j]);
    }
    for (uint32_t j = 0; j < int32_lod.size(); ++j) {
      tensor->add_lod(int32_lod[j]);
    }
297
    tensor->set_elem_type(datatype);
298 299 300 301 302 303 304 305 306 307 308 309 310 311
    tensor->set_name(feed_name[idx]);
    tensor->set_alias_name(name);

    tensor->mutable_int_data()->Resize(total_number, 0);
    memcpy(tensor->mutable_int_data()->mutable_data(), int32_data.data(), total_number * sizeof(int32_t));
  }

  for (std::map<std::string, std::string>::const_iterator iter = string_feed_map.begin();
        iter != string_feed_map.end();
        ++iter) {
    std::string name = iter->first;
    const std::string& string_data = iter->second;
    const std::vector<int>& string_shape = shape_map.at(name);
    const std::vector<int>& string_lod = lod_map.at(name);
312 313
    // default datatype = P_STRING
    int datatype = inputs.get_datatype(name);
314 315 316 317 318 319 320 321 322 323 324 325 326 327
    std::map<std::string, int>::const_iterator feed_name_it = feed_name_to_idx.find(name);
    if (feed_name_it == feed_name_to_idx.end()) {
      LOG(ERROR) << "Do not find [" << name << "] in feed_map!";
      return -1;
    }
    int idx = feed_name_to_idx.at(name);
    Tensor *tensor = req.add_tensor();

    for (uint32_t j = 0; j < string_shape.size(); ++j) {
      tensor->add_shape(string_shape[j]);
    }
    for (uint32_t j = 0; j < string_lod.size(); ++j) {
      tensor->add_lod(string_lod[j]);
    }
328
    tensor->set_elem_type(datatype);
329 330 331
    tensor->set_name(feed_name[idx]);
    tensor->set_alias_name(name);

S
ShiningZhang 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345
    if (datatype == P_STRING) {
      const int string_shape_size = string_shape.size();
      // string_shape[vec_idx] = [1];cause numpy has no datatype of string.
      // we pass string via vector<vector<string> >.
      if (string_shape_size != 1) {
        LOG(ERROR) << "string_shape_size should be 1-D, but received is : "
                   << string_shape_size;
        return -1;
      }
      switch (string_shape_size) {
        case 1: {
          tensor->add_data(string_data);
          break;
        }
346
      }
S
ShiningZhang 已提交
347 348
    } else {
      tensor->set_tensor_content(string_data);
349
    }
S
ShiningZhang 已提交
350
    
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  }
  return 0;
}

std::string PredictorOutputs::print() {
  std::string res = "";
  for (size_t i = 0; i < _datas.size(); ++i) {
    res.append(_datas[i]->engine_name);
    res.append(":");
    res.append(_datas[i]->data.print());
    res.append("\n");
  }
  return res;
}

void PredictorOutputs::clear() {
  _datas.clear();
}

S
ShiningZhang 已提交
370
int PredictorOutputs::ParseProto(const Response& res,
371 372 373 374 375 376 377 378 379 380 381 382
                                  const std::vector<std::string>& fetch_name,
                                  std::map<std::string, int>& fetch_name_to_type,
                                  PredictorOutputs& outputs) {
  VLOG(2) << "get model output num";
  uint32_t model_num = res.outputs_size();
  VLOG(2) << "model num: " << model_num;
  for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
    VLOG(2) << "process model output index: " << m_idx;
    auto& output = res.outputs(m_idx);
    std::shared_ptr<PredictorOutputs::PredictorOutput> predictor_output =
        std::make_shared<PredictorOutputs::PredictorOutput>();
    predictor_output->engine_name = output.engine_name();
S
ShiningZhang 已提交
383 384

    PredictorData& predictor_data = predictor_output->data;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    std::map<std::string, std::vector<float>>& float_data_map = *predictor_output->data.mutable_float_data_map();
    std::map<std::string, std::vector<int64_t>>& int64_data_map = *predictor_output->data.mutable_int64_data_map();
    std::map<std::string, std::vector<int32_t>>& int32_data_map = *predictor_output->data.mutable_int_data_map();
    std::map<std::string, std::string>& string_data_map = *predictor_output->data.mutable_string_data_map();
    std::map<std::string, std::vector<int>>& shape_map = *predictor_output->data.mutable_shape_map();
    std::map<std::string, std::vector<int>>& lod_map = *predictor_output->data.mutable_lod_map();

    int idx = 0;
    for (auto &name : fetch_name) {
      // int idx = _fetch_name_to_idx[name];
      int shape_size = output.tensor(idx).shape_size();
      VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
              << shape_size;
      shape_map[name].resize(shape_size);
      for (int i = 0; i < shape_size; ++i) {
        shape_map[name][i] = output.tensor(idx).shape(i);
      }
      int lod_size = output.tensor(idx).lod_size();
      if (lod_size > 0) {
        lod_map[name].resize(lod_size);
        for (int i = 0; i < lod_size; ++i) {
          lod_map[name][i] = output.tensor(idx).lod(i);
        }
      }
      idx += 1;
    }
    idx = 0;

    for (auto &name : fetch_name) {
      // int idx = _fetch_name_to_idx[name];
      if (fetch_name_to_type[name] == P_INT64) {
S
ShiningZhang 已提交
416
        VLOG(2) << "fetch var " << name << "type int64";
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        int size = output.tensor(idx).int64_data_size();
        int64_data_map[name] = std::vector<int64_t>(
            output.tensor(idx).int64_data().begin(),
            output.tensor(idx).int64_data().begin() + size);
      } else if (fetch_name_to_type[name] == P_FLOAT32) {
        VLOG(2) << "fetch var " << name << "type float";
        int size = output.tensor(idx).float_data_size();
        float_data_map[name] = std::vector<float>(
            output.tensor(idx).float_data().begin(),
            output.tensor(idx).float_data().begin() + size);
      } else if (fetch_name_to_type[name] == P_INT32) {
        VLOG(2) << "fetch var " << name << "type int32";
        int size = output.tensor(idx).int_data_size();
        int32_data_map[name] = std::vector<int32_t>(
            output.tensor(idx).int_data().begin(),
            output.tensor(idx).int_data().begin() + size);
S
ShiningZhang 已提交
433 434 435 436 437
      } else if (fetch_name_to_type[name] == P_UINT8
                || fetch_name_to_type[name] == P_INT8) {
        VLOG(2) << "fetch var [" << name << "]type="
                << fetch_name_to_type[name];
        string_data_map[name] = output.tensor(idx).tensor_content();
438
      }
S
ShiningZhang 已提交
439
      predictor_data.set_datatype(name, output.tensor(idx).elem_type());
440 441 442 443 444 445 446 447
      idx += 1;
    }
    outputs.add_data(predictor_output);
  }
  return 0;
}

}  // namespace client
S
ShiningZhang 已提交
448 449
}  // namespace paddle_serving
}  // namespace baidu