# !/usr/bin/env python3 # Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" The source file of the LoccState class. """ import math import paddle import paddle_quantum from ..intrinsic import _get_float_dtype from typing import Optional class LoccState(paddle_quantum.State): r"""An LOCC state in LOCCNet. We care not only about the quantum state in LOCC, but also about the probability of getting it and the corresponding measurement result. Therefore, this class contains three attributes: quantum state ``data``, the probability of getting this state ``prob``, and the measurement result leading to this state, namely ``measured_result``. Args: data: Matrix form of the quantum state of this ``LoccState``. Defaults to ``None``. prob: Probability of getting this quantum state.. Defaults to ``None``. measured_result: Measurement result leading to this quantum state. Defaults to ``None``. num_qubits: Total number of qubits. Defaults to ``None``. backend: Backend of Paddle Quantum. Defaults to ``None``. dtype: Type of data. Defaults to ``None``. """ def __init__( self, data: paddle.Tensor = None, prob: paddle.Tensor = None, measured_result: str = None, num_qubits: Optional[int] = None, backend: Optional[paddle_quantum.Backend] = None, dtype: Optional[str] = None, ): if data is None and prob is None and measured_result is None: self.data = paddle.to_tensor([1], dtype=paddle_quantum.get_dtype()) self.prob = paddle.to_tensor( [1], dtype=_get_float_dtype(paddle_quantum.get_dtype()) ) self.measured_result = "" self.num_qubits = 0 else: self.data = data self.prob = prob self.measured_result = measured_result if num_qubits is None: self.num_qubits = int(math.log2(data.shape[-1])) else: self.num_qubits = num_qubits backend = paddle_quantum.get_backend() if backend is None else backend assert backend == paddle_quantum.Backend.DensityMatrix self.backend = backend self.dtype = dtype if dtype is not None else paddle_quantum.get_dtype() def clone(self) -> "LoccState": r"""Create a copy of the current object. Returns: A copy of the current object. """ return LoccState( self.data, self.prob, self.measured_result, self.num_qubits, self.backend, self.dtype, ) def __getitem__(self, item): if item == 0: return self.data if item == 1: return self.prob if item == 2: return self.measured_result raise ValueError("too many values to unpack (expected 3)") def __repr__(self): return ( f"state: {self.data.numpy()}\n" f"prob: {self.prob.numpy()[0]}\n" f"measured_result: {self.measured_result}" ) def __str__(self): return ( f"state: {self.data.numpy()}\n" f"prob: {self.prob.numpy()[0]}\n" f"measured_result: {self.measured_result}" ) LoccStatus = LoccState