# !/usr/bin/env python3 # Copyright (c) 2020 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Travelling Salesman Problem (TSP): To learn more about the functions and properties of this application, you could check the corresponding Jupyter notebook under the Tutorial folder. """ from itertools import permutations import numpy as np import networkx as nx import paddle import paddle_quantum from paddle_quantum.qinfo import pauli_str_to_matrix __all__ = [ "tsp_hamiltonian", "solve_tsp", "solve_tsp_brute_force" ] def tsp_hamiltonian(g, A, n): r"""This is to construct Hamiltonia H_C Args: g: the graph to solve A: the penality parameter n: the number of vertices of graph g Returns: Hamiltonian with list form """ H_C_list1 = [] for i in range(n - 1): for j in range(n - 1): if i != j: w_ij = g[i][j]['weight'] for t in range(n - 2): H_C_list1.append([w_ij / 4, 'i1']) H_C_list1.append([w_ij / 4, 'z' + str(i * (n - 1) + t) + ',z' + str(j * (n - 1) + t + 1)]) H_C_list1.append([-w_ij / 4, 'z' + str(i * (n - 1) + t)]) H_C_list1.append([-w_ij / 4, 'z' + str(j * (n - 1) + t + 1)]) H_C_list1.append([g[n - 1][i]['weight'] / 2, 'i1']) H_C_list1.append([-g[n - 1][i]['weight'] / 2, 'z' + str(i * (n - 1) + (n - 2))]) H_C_list1.append([g[i][n - 1]['weight'] / 2, 'i1']) H_C_list1.append([-g[i][n - 1]['weight'] / 2, 'z' + str(i * (n - 1))]) H_C_list2 = [] for i in range(n - 1): H_C_list2.append([1, 'i1']) for t in range(n-1): H_C_list2.append([-2 * 1/2, 'i1']) H_C_list2.append([2 * 1/2, 'z' + str(i * (n - 1) + t)]) H_C_list2.append([2/4, 'i1']) H_C_list2.append([-2/4, 'z' + str(i * (n - 1) + t)]) for tt in range(t): H_C_list2.append([2/4, 'i1']) H_C_list2.append([2/4, 'z' + str(i * (n - 1) + t) + ',z' + str(i * (n - 1) + tt)]) H_C_list2.append([-2/4, 'z' + str(i * (n - 1) + t)]) H_C_list2.append([-2/4, 'z' + str(i * (n - 1) + tt)]) H_C_list2 = [[A * c, s] for (c, s) in H_C_list2] H_C_list3 = [] for t in range(n - 1): H_C_list3.append([1, 'i1']) for i in range(n-1): H_C_list3.append([-2 * 1/2, 'i1']) H_C_list3.append([2 * 1/2, 'z' + str(i * (n - 1) + t)]) H_C_list3.append([2/4, 'i1']) H_C_list3.append([-2/4, 'z' + str(i * (n - 1) + t)]) for ii in range(i): H_C_list3.append([2/4, 'i1']) H_C_list3.append([2/4, 'z' + str(i * (n - 1) + t) + ',z' + str(ii * (n - 1) + t)]) H_C_list3.append([-2/4,'z'+str(i * (n - 1) + t)]) H_C_list3.append([-2/4,'z'+str(ii * (n - 1) + t)]) H_C_list3 = [[A * c, s] for (c, s) in H_C_list3] H_C_list = H_C_list1 + H_C_list2 + H_C_list3 return H_C_list def solve_tsp(g, A, p=2, ITR=120, LR=0.4, print_loss=False, shots=0): r"""This is the core function to solve the TSP. Args: g: the graph to solve A: the penality parameter p: number of layers of blocks in the complex entangled circuit (default value p=2) ITR: number of iteration steps for the complex entangled circuit (default value ITR=120) LR: learning rate for the gradient-based optimization method (default value LR=0.4) print_loss (bool, optional): whether print the loss value during optimization. Defaults to ``False``, not print shots (int, optional): measurement times at the final output of QAOA circuit, Defaults to ``0``, exact probability distribution Returns: string representation for the optimized walk for the salesman """ e = list(g.edges(data = True)) v = list(g.nodes) n = len(v) H_C_list = tsp_hamiltonian(g, A, n) net = paddle_quantum.ansatz.Circuit((n - 1) ** 2) net.complex_entangled_layer(depth=p) loss_func = paddle_quantum.loss.ExpecVal(H_C_list) opt = paddle.optimizer.Adam(learning_rate=LR, parameters=net.parameters()) for itr in range(1, ITR + 1): state = net() loss = loss_func(state) loss.backward() opt.minimize(loss) opt.clear_grad() if print_loss and itr % 10 == 0: print("iter:", itr, "loss:", "%.4f" % loss.numpy()) state = net() prob_measure = state.measure(shots=shots) reduced_salesman_walk = max(prob_measure, key=prob_measure.get) str_by_vertex = [reduced_salesman_walk[i:i + n - 1] for i in range(0, len(reduced_salesman_walk) + 1, n - 1)] salesman_walk = '0'.join(str_by_vertex) + '0' * (n - 1) + '1' return salesman_walk def solve_tsp_brute_force(g): """ This is the brute-force algorithm to solve the TSP. Args: g: the graph to solve Returns: the list of the optimized walk in the visiting order and the optimal distance """ n = len(g.nodes) all_routes = list(permutations(range(n))) best_distance = 1e10 best_route = (0, 0, 0, 0) for route in all_routes: distance = 0 for i in range(n): u = route[i] v = route[(i + 1) % n] distance += g[u][v]['weight'] if distance < best_distance: best_distance = distance best_route = route return list(best_route), best_distance