# The full config for test the BERT-QTC model. # The task of this config. Available values: 'train' | 'test'. task = 'test' # The text to be tested. text = 'The text to be predicted.' # The path of the trained model, which will be loaded. model_path = 'decoder.pdparams' # The number of the filters num_filter = 1 # The size of the kernel kernel_size = 5 # The depth of the quantum circuit circuit_depth = 2 # The length to pad padding = 2 # The pretrained bert model bert_model = 'bert-base-chinese' # The size of the hidden state obtained through the BERT model hidden_size = 768 # The classes of input text to be predicted. classes = ['火车', '音乐', '天气', '短信', '电话', '航班', '新闻']