# !/usr/bin/env python3 # Copyright (c) 2023 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Handwritten digit generation via quantum-circuit associative adversarial networks (QCAAN) """ import os import warnings import argparse import toml from paddle_quantum.qml.qcaan import train, model_test warnings.filterwarnings('ignore') os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python' if __name__ == '__main__': parser = argparse.ArgumentParser(description="Generating the handwritten digits by the QC-AAN model.") parser.add_argument("--config", type=str, help="Input the config file with toml format.") args = parser.parse_args() config = toml.load(args.config) mode = config.pop('mode') if mode == 'train': train(**config) elif mode == 'inference': model_test(**config) else: raise ValueError("Unknown mode, it can be 'train' or 'inference'.")