# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pandas as pd import librosa from .. import g2p from ..data.sampler import SequentialSampler, RandomSampler, BatchSampler from ..data.dataset import DatasetMixin from ..data.datacargo import DataCargo from ..data.batch import TextIDBatcher, SpecBatcher class LJSpeech(DatasetMixin): def __init__(self, root): super(LJSpeech, self).__init__() self.root = root self.metadata = self._prepare_metadata() def _prepare_metadata(self): csv_path = os.path.join(self.root, "metadata.csv") metadata = pd.read_csv( csv_path, sep="|", header=None, quoting=3, names=["fname", "raw_text", "normalized_text"]) return metadata def _get_example(self, metadatum): """All the code for generating an Example from a metadatum. If you want a different preprocessing pipeline, you can override this method. This method may require several processor, each of which has a lot of options. In this case, you'd better pass a composed transform and pass it to the init method. """ fname, raw_text, normalized_text = metadatum wav_path = os.path.join(self.root, "wavs", fname + ".wav") # load -> trim -> preemphasis -> stft -> magnitude -> mel_scale -> logscale -> normalize wav, sample_rate = librosa.load( wav_path, sr=None) # we would rather use functor to hold its parameters trimed, _ = librosa.effects.trim(wav) preemphasized = librosa.effects.preemphasis(trimed) D = librosa.stft(preemphasized) mag, phase = librosa.magphase(D) mel = librosa.feature.melspectrogram(S=mag) mag = librosa.amplitude_to_db(S=mag) mel = librosa.amplitude_to_db(S=mel) ref_db = 20 max_db = 100 mel = np.clip((mel - ref_db + max_db) / max_db, 1e-8, 1) mel = np.clip((mag - ref_db + max_db) / max_db, 1e-8, 1) phonemes = np.array( g2p.en.text_to_sequence(normalized_text), dtype=np.int64) return (mag, mel, phonemes ) # maybe we need to implement it as a map in the future def _batch_examples(self, minibatch): mag_batch = [] mel_batch = [] phoneme_batch = [] for example in minibatch: mag, mel, phoneme = example mag_batch.append(mag) mel_batch.append(mel) phoneme_batch.append(phoneme) mag_batch = SpecBatcher(pad_value=0.)(mag_batch) mel_batch = SpecBatcher(pad_value=0.)(mel_batch) phoneme_batch = TextIDBatcher(pad_id=0)(phoneme_batch) return (mag_batch, mel_batch, phoneme_batch) def __getitem__(self, index): metadatum = self.metadata.iloc[index] example = self._get_example(metadatum) return example def __iter__(self): for i in range(len(self)): yield self[i] def __len__(self): return len(self.metadata)