import numpy as np import librosa import os, copy from scipy import signal import paddle.fluid.layers as layers def get_positional_table(d_pos_vec, n_position=1024): position_enc = np.array([ [pos / np.power(10000, 2*i/d_pos_vec) for i in range(d_pos_vec)] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)]) position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1 return position_enc def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None): ''' Sinusoid position encoding table ''' def cal_angle(position, hid_idx): return position / np.power(10000, 2 * (hid_idx // 2) / d_hid) def get_posi_angle_vec(position): return [cal_angle(position, hid_j) for hid_j in range(d_hid)] sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 if padding_idx is not None: # zero vector for padding dimension sinusoid_table[padding_idx] = 0. return sinusoid_table def get_non_pad_mask(seq): return layers.unsqueeze((seq != 0).astype(np.float32),[-1]) def get_attn_key_pad_mask(seq_k, seq_q): ''' For masking out the padding part of key sequence. ''' # Expand to fit the shape of key query attention matrix. len_q = seq_q.shape[1] padding_mask = (seq_k != 0).astype(np.float32) padding_mask = layers.expand(layers.unsqueeze(padding_mask,[1]), [1, len_q, 1]) return padding_mask def get_triu_tensor(seq_k, seq_q): ''' For make a triu tensor ''' len_k = seq_k.shape[1] len_q = seq_q.shape[1] batch_size = seq_k.shape[0] triu_tensor = np.triu(np.ones([len_k, len_q]), 1) triu_tensor = np.repeat(np.expand_dims(triu_tensor, axis=0) ,batch_size, axis=0) return triu_tensor def guided_attention(N, T, g=0.2): '''Guided attention. Refer to page 3 on the paper.''' W = np.zeros((N, T), dtype=np.float32) for n_pos in range(W.shape[0]): for t_pos in range(W.shape[1]): W[n_pos, t_pos] = 1 - np.exp(-(t_pos / float(T) - n_pos / float(N)) ** 2 / (2 * g * g)) return W def cross_entropy(input, label, position_weight=1.0, epsilon=1e-30): output = -1 * label * layers.log(input + epsilon) - (1-label) * layers.log(1 - input + epsilon) output = output * (label * (position_weight - 1) + 1) return layers.reduce_sum(output, dim=[0, 1])