import math import paddle.fluid.dygraph as dg import paddle.fluid as fluid from parakeet.g2p.text.symbols import symbols from parakeet.models.transformerTTS.post_convnet import PostConvNet from parakeet.models.fastspeech.LengthRegulator import LengthRegulator from parakeet.models.fastspeech.encoder import Encoder from parakeet.models.fastspeech.decoder import Decoder class FastSpeech(dg.Layer): def __init__(self, cfg): " FastSpeech" super(FastSpeech, self).__init__() self.encoder = Encoder(n_src_vocab=len(symbols)+1, len_max_seq=cfg.max_sep_len, n_layers=cfg.encoder_n_layer, n_head=cfg.encoder_head, d_k=cfg.fs_hidden_size // cfg.encoder_head, d_v=cfg.fs_hidden_size // cfg.encoder_head, d_model=cfg.fs_hidden_size, d_inner=cfg.encoder_conv1d_filter_size, fft_conv1d_kernel=cfg.fft_conv1d_filter, fft_conv1d_padding=cfg.fft_conv1d_padding, dropout=0.1) self.length_regulator = LengthRegulator(input_size=cfg.fs_hidden_size, out_channels=cfg.duration_predictor_output_size, filter_size=cfg.duration_predictor_filter_size, dropout=cfg.dropout) self.decoder = Decoder(len_max_seq=cfg.max_sep_len, n_layers=cfg.decoder_n_layer, n_head=cfg.decoder_head, d_k=cfg.fs_hidden_size // cfg.decoder_head, d_v=cfg.fs_hidden_size // cfg.decoder_head, d_model=cfg.fs_hidden_size, d_inner=cfg.decoder_conv1d_filter_size, fft_conv1d_kernel=cfg.fft_conv1d_filter, fft_conv1d_padding=cfg.fft_conv1d_padding, dropout=0.1) self.weight = fluid.ParamAttr(initializer = fluid.initializer.XavierInitializer()) k = math.sqrt(1 / cfg.fs_hidden_size) self.bias = fluid.ParamAttr(initializer = fluid.initializer.Uniform(low=-k, high=k)) self.mel_linear = dg.Linear(cfg.fs_hidden_size, cfg.audio.num_mels * cfg.audio.outputs_per_step, param_attr = self.weight, bias_attr = self.bias,) self.postnet = PostConvNet(n_mels=cfg.audio.num_mels, num_hidden=512, filter_size=5, padding=int(5 / 2), num_conv=5, outputs_per_step=cfg.audio.outputs_per_step, use_cudnn=True, dropout=0.1, batchnorm_last=True) def forward(self, character, text_pos, mel_pos=None, length_target=None, alpha=1.0): """ FastSpeech model. Args: character (Variable): Shape(B, T_text), dtype: float32. The input text characters. T_text means the timesteps of input characters. text_pos (Variable): Shape(B, T_text), dtype: int64. The input text position. T_text means the timesteps of input characters. mel_pos (Variable, optional): Shape(B, T_mel), dtype: int64. The spectrum position. T_mel means the timesteps of input spectrum. length_target (Variable, optional): Shape(B, T_text), dtype: int64. The duration of phoneme compute from pretrained transformerTTS. alpha (Constant): dtype: float32. The hyperparameter to determine the length of the expanded sequence mel, thereby controlling the voice speed. Returns: mel_output (Variable), Shape(B, mel_T, C), the mel output before postnet. mel_output_postnet (Variable), Shape(B, mel_T, C), the mel output after postnet. duration_predictor_output (Variable), Shape(B, text_T), the duration of phoneme compute with duration predictor. enc_slf_attn_list (Variable), Shape(B, text_T, text_T), the encoder self attention list. dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list. """ encoder_output, non_pad_mask, enc_slf_attn_list = self.encoder(character, text_pos) if fluid.framework._dygraph_tracer()._train_mode: length_regulator_output, duration_predictor_output = self.length_regulator(encoder_output, target=length_target, alpha=alpha) decoder_output, dec_slf_attn_list = self.decoder(length_regulator_output, mel_pos) mel_output = self.mel_linear(decoder_output) mel_output_postnet = self.postnet(mel_output) + mel_output return mel_output, mel_output_postnet, duration_predictor_output, enc_slf_attn_list, dec_slf_attn_list else: length_regulator_output, decoder_pos = self.length_regulator(encoder_output, alpha=alpha) decoder_output, _ = self.decoder(length_regulator_output, decoder_pos) mel_output = self.mel_linear(decoder_output) mel_output_postnet = self.postnet(mel_output) + mel_output return mel_output, mel_output_postnet