# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle.fluid.dygraph as dg import paddle.fluid as fluid import paddle.fluid.layers as layers class PreNet(dg.Layer): def __init__(self, input_size, hidden_size, output_size, dropout_rate=0.2): """Prenet before passing through the network. Args: input_size (int): the input channel size. hidden_size (int): the size of hidden layer in network. output_size (int): the output channel size. dropout_rate (float, optional): dropout probability. Defaults to 0.2. """ super(PreNet, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.dropout_rate = dropout_rate k = math.sqrt(1 / input_size) self.linear1 = dg.Linear( input_size, hidden_size, param_attr=fluid.ParamAttr( initializer=fluid.initializer.XavierInitializer()), bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-k, high=k))) k = math.sqrt(1 / hidden_size) self.linear2 = dg.Linear( hidden_size, output_size, param_attr=fluid.ParamAttr( initializer=fluid.initializer.XavierInitializer()), bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-k, high=k))) def forward(self, x): """ Prepare network input. Args: x (Variable): shape(B, T, C), dtype float32, the input value. Returns: output (Variable): shape(B, T, C), the result after pernet. """ x = layers.dropout( layers.relu(self.linear1(x)), self.dropout_rate, dropout_implementation='upscale_in_train') output = layers.dropout( layers.relu(self.linear2(x)), self.dropout_rate, dropout_implementation='upscale_in_train') return output